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Red blood cells (RBCs) –erythrocytes– suspended in plasma tend to aggregate and form rouleaux.
During aggregation the first stage consists in the formation of RBC doublets [Blood cells, molecules,
and diseases 25, 339 (1999)]. While aggregates are normally dissociated by moderate flow stresses,
under some pathological conditions the aggregation becomes irreversible, which leads to high blood
viscosity and vessel occlusion. We perform here two-dimensional simulations to study the doublet
dynamics under shear flow in different conditions and its impact on rheology. Few illustrative
results obtained here in 3D agree with 2D results. We sum up our results on the dynamics of
doublet in a rich phase diagram in the parameter space (flow strength, adhesion energy) showing
four different types of doublet configurations and dynamics. We find that membrane tank-treading
plays an important role in doublet disaggregation, in agreement with experiments on RBCs. A
remarkable feature found here is that when a single cell performs tumbling (by increasing vesicle
internal viscosity) the doublet formed due to adhesion (even very weak) remains stable even under a
very strong shear rate. It is seen in this regime that an increase of shear rate induces an adaptation
of the doublet conformation allowing the aggregate to resist cell-cell detachment. We show that the
normalized effective viscosity of doublet suspension increases significantly with the adhesion energy,
a fact which should affect blood perfusion in microcirculation.
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I. INTRODUCTION

The distribution of nutrients and oxygen to tissues and organs is ensured by red blood cells (RBCs). Several
cardiovascular dysfunctions and RBC anomalies may impair proper blood perfusion of the organism. For example,
drepanocytosis [1, 2], which results in a stiff cytoplasm of RBCs under low oxygen conditions, compromises a proper
RBC flow in small blood vessels due to a formation of occlusions. In several blood diseases, such as diabetes and
hypercholesterolemia, as well as coronary heart disease, an enhanced tendency of RBCs to form aggregates [3–10]
has been reported. Fibrinogen (a protein contained in plasma) is the main cause of adhesion between RBCs [11].
Under physiological conditions the range of human fibrinogen level is approximately 1.8 - 4 mg/ml [12], and RBCs
aggregate and disaggregate reversibly under flow. In contrast, under pathological conditions the level of fibrinogen
may become high enough leading to more stable aggregates [9, 13]. Foresto et al [14] compared the aggregability of
RBCs from diabetic and healthy patients, using direct microscopic observation and numerical processing. They found
that the RBCs aggregation is highly enhanced in the case of diabetic patients compared to healthy patients. It has
been documented [15, 16] that within these patients a degradation of the glycoprotein surface of the RBC membrane
(which controls the electrical as well as steric repulsion between RBCs) favors aggregation. In addition, it has been
reported that under pathological conditions, such as diabetes and drepanocytosis, the fibrinogen concentration is
higher [8, 9, 13]. It is to be noted also that blood from pregnant women shows an important aggregability level which
is correlated with a high fibrinogen concentration [17]. It seems thus that enhanced adhesion can result both from an
increase of fibrinogen level and alteration of RBCs surface properties (within diabetic patients, for example).

In a completely different context, that of microgravity during space missions, it has been reported that the analysis
of blood from cosmonauts [18] showed an increase of amylase activity. This enzyme is known to digest partially
the glycocalyx on the surface of cells, such as RBCs and endothelial cells. This degradation promotes RBC-RBC
aggregation [19] and their adhesion to macrophages. This highlights the potential impact of long term space missions
on cardiovascular dysfunctions.

Theoretically, two models are evoked to describe the mechanism of adhesion between RBCs. The first one, which
was prevailing for a long time, is the bridging model and has been adopted to account for fibrinogen and neutral
dextran macromolecule-induced RBCs aggregation [20]. This model assumed that the proteins adsorb onto the RBC
membrane and form a cross-link to the nearby RBC [21]. The second model is the depletion one, stating that
configurational entropy of the suspended molecules (e.g. fibrinogen) is lowered close to RBC surface, leading to a
depletion layer, so that when the gap between two RBCs becomes of the order of depletion layer, the gap becomes
less populated by fibrinogen molecules than elsewhere, and this results into osmotic attraction between RBCs.

The erythrocyte doublet aggregation is the primary process in the formation of erythrocyte aggregates in blood
flow. Bertoluzzo et al [22] studied the erythrocytes aggregation, using light transmission through blood sample and
observed that the aggregation starts by the formation of a collection of RBC doublets. The doublet formation is
a first basic building block for aggregation that should be clarified. Ju et al [23] found numerically, using a Morse
potential to account for cell-cell interaction (representing depletion forces), that RBC doublet with a homogeneous
deformability sustains the adhesion, while an increased deformability difference between the two RBCs forming the
doublet favors the doublet dissociation. In another numerical study, Bagchi et al [24] modeled adhesion between RBCs
by the ligand-receptor model (the bridging model). They analyzed the dependence of dynamics of RBCs aggregates
on the adhesion energy. They found that the shearing force due to an imposed flow is more efficient to break the
bonds than the normal pulling force. Wang et al [25] observed numerically that the doublet performs rotation or
undergoes dissociation depending on the strength of inter-cellular force, the membrane deformability and the shear
stress. Recently, Flormann et al [26] analyzed the doublet shape in a quiescent fluid in vitro and in silico, and observed
that the contact surface of the doublet is flat for weak adhesion and becomes of sigmoid-type upon an increase of the
adhesion energy (the protein concentration). Their results [26] show a good agreement between 2D and 3D simulations
and with in vitro experiments. Hoore et al. [27] studied the effect of the spectrin network elasticity on the doublet
shapes in equilibrium, and found qualitatively the same doublet shapes found in 2D [26].

More recently Quaife et al. [28] studied dynamics of a doublet under extensional and shear flows by using a 2D
vesicle model. Under a linear shear flow (which is of interest to our study) they observed that the doublet undergoes a
tumbling regime, that we shall refer to as rolling (for the sake of distinction with the classical single cell tumbling). By
analyzing systematically dynamics of 2D vesicle doublets under various conditions, we find besides rolling, three other
distinct dynamics: flexible rolling (FR), rolling-sliding (RS) and flow alignment (FA). The FR motion corresponds
to a situation where the two vesicles undergo global tumbling (rolling) but the contact interface between the two
vesicles oscillates between flat and sigmoid shape. In the RS regime the two vesicles slide with respect to each other
during rolling. The FA regime corresponds to the situation where the two vesicles align with the flow. We present a
general phase diagram of different phases of doublets. We shall also analyze the overall rheology. RBCs aggregation
controls the rheological properties of blood which may constitute a promising diagnosis for cardiovascular diseases
[29]. We will also present few illustrative simulations in 3D in the presence of shear elasticity. We find occurrence
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of R, FR and RS in the same regions of flow and adhesion strength as in 2D. While a systematic analysis is under
investigation, the preliminary results lend support to the general character of the results.

II. MODEL AND SIMULATION METHOD

A. Membrane model

We consider a 2D model, namely phospholipid vesicles. The two-dimensional vesicle model has proven to capture
several features known for RBCs. Shapes like parachute and slipper [30, 31], dynamics, such as tumbling and tank-
treading [32, 33] are also manifested by both systems. We consider a set of phospholipid vesicles inside a straight
channel, bounded by two rigid walls located at y = 0 and y = W , where W is the channel width. The vesicles are
subject to a linear shear flow v∞x (y) = γ̇y where γ̇ is the shear rate. Periodic boundary conditions are used along x
axis (the flow direction).

The force applied by the membrane on the surrounding fluid is obtained from the functional derivative of the follow-
ing energy, which is the sum of three terms: the bending energy (Helfrich energy [34]), the membrane incompressiblity
contribution and the adhesion energy (Lennard-Jones potential) between two vesicles:

E =
∑
i

Eb
i +

∑
i 6=j

Eadh
i,j , (1)

where

Eb
i =

k

2

∮
mi

c2ds+

∮
mi

ζds (2)

is the bending and incompressibility energy of the i-th vesicle and

Eadh
i,j = ε

∮
mi

ds(Xi)

∮
mj

ds(Xj)φ(|Xi −Xj |) (3)

is the energy of adhesion between i-th and j-th vesicle. The variable s represents the curvilinear coordinate on the
vesicle contour, c is the local curvature of the membrane, k is the membrane bending rigidity, ζ is a local Lagrange

multiplier associated with the constraint of local perimeter inextensibility, φ = −2

(
h

rij

)6

+

(
h

rij

)12

is Lennard-

Jones potential which describes attractive interaction at long ranges and repulsive interaction at short ranges. Here
rij = Xi −Xj , where Xi and Xj are two position vectors of two material points on two different vesicles i and j. h
is the equilibrium distance between two points of the i-th and j-th vesicle and ε is the minimum energy associated to
this distance. The functional derivative (providing the force) of the bending energy the membrane incompressiblity
contribution can be found in [35]. The total force including vesicle-vesicle interaction has the following form :

f(Xi) = f(Xi)
b + f(Xi)

adh (4)

Where

f(Xi)
b = k [

d2c

ds2
+
c3

2
]n− cζn +

dζ

ds
t (5)

and

f(Xi)
adh = −ε

∑
j 6=i

∫
mj

[
dφ(rij)

drij

(
rij
rij
.n(Xi)

)
+ c(Xi)φ(rij)

]
n(Xi)ds(Xj). (6)

n and t are the normal and tangential unit vector respectively. The force can be rewritten in a dimensionless form:

f̄(Xi)
b = [

d2c̄

ds̄2
+
c̄3

2
]n− c̄ζ̄n +

dζ̄

ds̄
t (7)

and

f̄(Xi)
adh = −ε̄

∑
j 6=i

∫
mj

[
dφ̄(r̄ij)

dr̄ij

(
r̄ij
r̄ij
.n(Xi)

)
+ c̄(Xi)φ̄(r̄ij)

]
n(Xi)ds̄(Xj) (8)
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where dimensionless variables are defined as follows:

f̄ =
R3

0f

k
, ε̄ =

R2
0ε

k
, c̄ = cR0, s̄ =

s

R0
, r̄ij =

rij
R0

, φ̄(r̄ij) = φ(r̄ijR0). (9)

R0 =
√
A/π is the effective radius of the vesicle and A is the enclosed vesicle area.

Fibrinogen concentration mg/ml — 0.898 2.391 4.197 5.402 6.597 8.098
Interaction energy µJ/m2 — -1.884 -2.719 -3.748 -4.655 -4.922 -6.566
Dimensionless macroscopic adhesion energy ε̄adh — 42.38 61.17 84.33 104.73 110.74 147.73

TABLE I. Fibrinogen level versus Interaction energy between two RBC measured using atomic force microscopy [11]

Previously, Brust et al [11] quantified the interaction energy between two RBCs at various fibrinogen and dextran
levels using single cell force microscopy. From their data (table I), we can estimate which range of protein level corre-
sponds to our simulation condition. When the contact length of two adhering vesicles is larger than the equilibrium
distance h, the interaction energy per unit surface is practically the energy of adhesion between two infinite plates.
The distance h corresponds to the minimal energy between two points, and does not necessary correspond to the
minimal energy for two planar surfaces. Let us denote that distance hp (see Fig.1). We first calculate the energy for
a given separation hp

εadh = −ε
∞∫
−∞

φ(
√
x2 + h2p)dx = ε

∞∫
−∞

[
2

(
h2

h2p + x2

)3

−
(

h2

h2p + x2

)6
]
dx =

3πh6

16h5p
− 63πh12

256h11p
, (10)

where x is the coordinate along the vesicle-vesicle contact line. We easily find that this energy has a minimum for
hp = (231/320)1/6h, and is equal to

εadh ' 1.6862hε. (11)

This will define the adhesion energy of the doublet. The dimensionless macroscopic adhesion energy (to be referred
to in all following results) is defined as

ε̄adh =
εadhR

2
0

k
(12)

We will take typical values of RBC membrane rigidity k = 4 10−19 J and radius R0 = 3 µm.

j

i
hp

√
x2 + h2

p

x

y

FIG. 1. Notations

B. Boundary integral formulation

The RBCs velocity and size are very small corresponding to a small Reynolds number (in the range 10−4 to 10−2).
Here we consider the limit of vanishing Reynolds number. In this case the fluid velocity inside and outside the vesicles
is described by the Stokes equations:

−∇p+ ηi∆v = 0 (13)

∇.v = 0, (14)
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where ηi, with i = 0, 1, is the viscosity of the internal (1) or the external (0) fluid, p is the pressure and v is the
velocity field. Due to the linearity of Stokes equations we can transform the set of fluid equations into an integral
equation. This is based on the use of Green’s function techniques[36], and is a quite accurate method for interface
problems. More precisely, for a point r0 which belongs to a membrane, the velocity v(r0) of that point has the
following dimensionless expression:

v(r0) =
2

1 + λ
v∞(r0) +

1

2πCa(1 + λ)

∮
m

G(r− r0).f(r)ds(r) +
(1− λ)

2π(1 + λ)

∮
m

v(r).T (r− r0).n(r)ds(r), (15)

where Gij(r− r0) and Tijk(r− r0) are the Green’s functions corresponding to the two-dimensional channel bounded
by two rigid walls [37] (Gij refers to the so-called single-layer contribution, while Tijk accounts for the double-layer
contribution). The Green’s functions satisfy the no-slip boundary condition at rigid walls. Ca is the capillary number
and λ the viscosity contrast, to be defined below.

We will analyze below the effect of the relevant blood flow and geometrical parameters on the rheological behavior
of vesicle doublet and discuss the mechanism of separation. In order to preserve high accuracy we use Fourier basis
discretization of all functions and compute all derivatives in Fourier domain [38, 39].

At high shear rates numerical stability problems may arise. In order to ensure long-term stability of the simu-
lations, we keep carefully the vesicle perimeter and surface fixed. Normally, fluid incompressibility and membrane
impermeability should keep the inner area of the vesicle constant. However, a small drift due to numerical errors can
not be fully excluded. We compensate this drift by reinflating or deflating the vesicle through homogeneous normal
deformation. Several benchmark simulations were performed with more refined meshes and time steps, higher number
of Fourier harmonics, sampling points and reduced critical inter-particle distance so as to avoid numerical artifacts.
Based on this verification and to ensure the numerical convergence/accuracy, each vesicle was characterized by 63
Fourier Harmonics. 512 sampling points were used to resolve the short-range hydrodynamics interactions.

C. Dimensionless parameters

Dimensionless numbers are used to describe the vesicle and the flow characteristics:

• The capillary number: allows to quantify the flow strength over bending rigidity of the membrane

Ca =
η0γ̇R

3
0

k
≡ γ̇τc (16)

• The confinement: describes the ratio between the effective diameter of the vesicle and the channel width

Cn =
2R0

W
(17)

• The viscosity contrast: the ratio between the viscosities of the internal and external fluids

λ =
η1
η0

(18)

• The reduced area: combining the vesicle perimeter L and its enclosed area A

τ =
(A/π)

(L/2π)2
(19)

This value will be set to 0.65 (inspired by that of human RBCs). Throughout this paper, we will use the following
scales: R0 for the distance, τc for the time and η0 for the viscosity.

III. RESULTS

The strategy followed in this work consists in preparing initially two vesicles in the middle of the channel, separated
by a small distance that allows them to adhere to each other in the absence of an applied flow. Once they adhere to
each other and reach a steady state configuration, which depends on the adhesion strength, a shear flow is applied.
The study of conformation of vesicle doublet in the absence of flow allowed us to perform benchmarking of our code
by reproducing previous results [26, 27].
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A. Effect of viscosity contrast, flow strength and adhesion on the phase diagram of doublet

We first analyzed the effect of the viscosity contrast λ, the capillary number Ca and the adhesion energy εadh on the
dynamics of the doublet. The confinement parameter is set to Cn = 0.4. We explored two values of viscosity contrast,
λ = 1 and λ = 10. It is to be noted (for later purposes) that a single vesicle exhibits a tank treading motion in the
range from λ = 1.0 (and also below that value) to approximately 12 (when Cn = 0.4 and τ = 0.65), beyond which it
undergoes tumbling. This means that for both viscosity contrasts a single vesicle shows tank-treading. The critical
value for transition from tank-treading to tumbling also depends on Cn. We will explore a less confined situation
where a vesicle shows tumbling for λ = 10. We will see in the next section that having tumbling will dramatically
change our conclusion on the doublet separation process.

FIG. 2. Phase diagrams showing the different behaviors of doublet in the parameter space of the capillary number and the
dimensionless macroscopic adhesion energy. The simulation data are shown as dots. (a) λ = 1.0, (b) λ = 10.0. In (a) the
square symbol represents 3D simulations which are shown in the supplementary materiel [48] (R.avi, RR.avi and RS.avi)

Once the doublet reaches a steady-state configuration at equilibrium (i.e. in the absence of external flow), we
applied a shear flow with different values of shear rate and analyzed the dynamics exhibited by the doublet. We found
a quite rich phase diagram (Fig. 2-a) in a wide range of capillary number Ca and dimensionless macroscopic adhesion
energy ε̄adh. Before giving a theoretical foundation to each phase exhibited by the doublet, let us first describe
the phase diagram. Three regimes have been identified in the case of λ = 1: (i) at low capillary number the rolling
phase: the two vesicles remain attached with constant contact length and show a rolling motion (akin to tumbling;
see Fig. 3-a). This regime is denoted as R in Fig. 2-a. (ii) When the adhesion energy decreases the contact interface
shape transits from sigmoid to a flat interface during time as shown in the snapshots of (Fig. 3-b). (iii) Increasing the
capillary number the phase (FR) undergoes a transition towards a phase of rolling+sliding (RS; the doublet shows
rolling accompanied with a sliding between the vesicles; the length contact changes during time by oscillating between
two values (Fig. 3-c)). The sliding of the two vesicles on each other is due to the competition between the aggregation
and dis-aggregation (flow) forces, as well as due to tank treading of each membrane. This regime is denoted as RS in
(Fig. 2-a). (iv) At high capillary number the separation between the vesicles takes place, meaning the dis-aggregation
force due to flow is high enough to overcome the adhesion between vesicles. This regime is denoted as S in Fig. 2-a.
We will see below situations where a doublet may persist whatever the magnitude of the shear flow is.

In order to check the robustness of our results we have briefly analyzed the doublet in 3D by adopting a capsule
model with shear elasticity (see [26] for a brief description of the model). We present here three typical phases
exhibited by 3D doublet: R, FR and RS. The green squares in Fig. 2 (left panel) show the values of capillary
number and adhesion energy corresponding to 3D simulations. We have taken the same bending rigidity as in 2D
and the capillary number associated with shear elasticity is defined as Cs = η0γ̇R0/µ (where µ is cytoskeleton shear
modulus, µ ' 4 µN/m). The ratio between this number and bending one is µR2

0/κ ' 100. This allows, if need be, to
convert the data in Fig. 2 in terms of Cs (we find 0.03 and 0.06). For these values usually RBCs undergo tumbling
due to shear elasticity [41, 42]. In the supplementary material we show movies of the 3D simulations. We leave the
exploration of the full phase diagram in 3D for future works.
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1. Theoretical foundation to the phase diagram

We have seen in [26] that at equilibrium (absence of flow) at small adhesion the cell-cell interface is flat while at
large enough adhesion energy the interface is deformed. The passage from the flat to the deformed configuration
is a supercritical bifurcation. The shape of the cell-cell interface is characterized by the value of the amplitude of
deformation of the contact zone between cells As (when the contact interface is flat As = 0, and when the interface
has a sigmoid form As 6= 0). Figure 4 (blue symbols) show the supercritical bifurcation that we have reproduced
here. After the bifurcation there are two states (the upper and lower branches) where the two corresponding doublet
shapes (called state 1 and state 2 in Fig. 5) are mirror-symmetric with respect to a horizontal mirror.

In the presence of flow the sigmoid interface confers chirality to the doublet, as explained in Fig. 5. The order
parameter As is a measure of the chirality of the doublet. Hence we conclude that the transition from a straight
doublet interface at low adhesion to a sigmoid interface at high adhesion, as observed without flow, is a transition
from achiral to chiral states. The shear flow is chiral as well: Writing the shear flow as (γ̇y, 0), we see that it can be
represented as a sum of an elongational flow (γ̇y/2, γ̇x/2) and a rotational flow (γ̇y/2,−γ̇x/2). While the elongational
flow is achiral, the rotational flow is clearly chiral. It is also easy to check directly that no rotation of coordinates
can transform flow (γ̇y, 0) into flow (−γ̇y, 0). Because the shear flow is chiral, a doublet subject to this flow is chiral
regardless of the adhesion energy. Indeed, if the shape of the doublet under shear flow were achiral, the membrane
and adhesion forces would also be achiral, while the viscous forces of the chiral flow applied to an achiral shape are
chiral. It would thus be impossible for the two to balance each other (and to respect a force-free condition).

Let us provide a qualitative picture of the imperfect bifurcation. We have seen in [26] that the energy associated
with interface deformation (with amplitude As) can be written as a(β−βc)A2

s + bA4
s, with β ∼ εadh/κ, βc the critical

value for bifurcation, and a and b are positive constants. In the presence of flow the work due to interface deformation
is proportional to CaAs (changing the direction of flow changes sign of deformation, leaving CaAs invariant). The
total energy takes thus (apart from numerical prefactors) the form

E = CaAs + a(βc − β)A2
s + bA4

s (20)

If Ca = 0 the energy is minimal for As = 0 if β < βc (low adhesion), and is minimal for As 6= 0 when β > βc. In the
presence of flow the energy has a typical form of imperfect bifurcation. Setting derivative of E with respect to As to
zero yields a cubic equation for As which has either a single (non zero) real solution or three real solutions depending
on β (for a given Ca). This is nothing but the bifurcation represented in red in Fig. 4 showing a single solution with
As 6= 0 at small adhesion and three solutions at large adhesion.

The transition from FR to RS corresponds to a sudden relative complete sliding of the two cells with respect to
each other. By complete we mean that the surfaces slides from one end to the other where the two cells remain pinned
by a very small area (Fig. 3c); the two cells slide back and forth during time. Figure 6 shows the minimal area of
contact as one crosses the boundary FR − RS showing a sudden jump. Increasing Ca may either lead to FA or S
phase. In the FA phase the two cells align steadily with the flow, where each cell exhibits tank-treading (Fig. 3d).
Finally the S phase corresponds to the situation where the two cells cease to be bound to each other.

2. Effect of viscosity contrast

Subsequently we have evaluated the effect of the viscosity contrast on the phase diagram discussed above. The
results are shown in Fig. 2-b for λ = 10. Several observations are made. First, the rolling region becomes wider
if viscosity contrast is increased. Second, the rolling-sliding phase is absent for this viscosity contrast, in favor of a
flow-alignment (FA) phase (Fig. 3-d)). In this phase the vesicles align with the flow direction, remain attached and
they show a tank treading motion of their membrane. In order to shed some light on the origin of the flow alignment
at high viscosity contrast, we performed simulations on a single vesicle at fixed values of the capillary number Ca, the
confinement Cn and we varied only the viscosity contrast λ. Figure 7 shows that the inclination angle Ω of a single
vesicle (the angle between the long axis of the vesicle and the flow direction) decreases with the viscosity contrast,
until it aligns with the flow direction at high viscosity contrast. In this configuration (flow alignment) the doublet is
in an orientation with a small extensional tension which is not efficient to enforce the two vesicles to slide with respect
to each other.

B. The mechanism of doublet separation

One major question is whether or not doublet formation is reversible in vivo, and whether there is any simple
criterion (or hint) to answer this question. With this regard, Chien et al [40] investigated experimentally the dis-
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FIG. 3. Snapshots showing the dynamics of vesicle doublet for different capillary number Ca and viscosity contrast λ . Here
ε̄adh = 202.00 and Cn = 0.4. The snapshots are taken over one period of the doublet dynamic.

FIG. 4. Bifurcation diagram in the absence of flow (blue) and in the presence of flow (red) showing maximum deformation
amplitude of the contact line. Dashed line is the unstable branch (drawn by hand since the unstable branch can not be captured
by dynamics). The red branches are captured by starting from two different initial conditions (state 1 and 2, shown in Fig.5.
Note that if for state 1 the amplitude of the contact line deformation is counted positive, then it is negative for state 2, and
vice versa. Below the turning point we have FR phase and beyond we have R phase.

aggregation of RBC doublets under oscillatory shear flow. They prepared two adhered cells in a flow channel where
the bottom cell adheres to a fixed plane and a polystyrene latex particle is used as a marker on the top cell. By
applying an oscillatory shear flow they observed that the velocity of the latex bead is twice the velocity of the upper
cell. From this it was concluded that the detachment occurs as rolling of the top cell along the bottom one and not
as sliding. In other words, the bottom surface of the top cell remained stationary in the lab frame except at the point
where the detachment occurred, while the velocity of the top surface of the top cell was twice that of its center of
mass. This motion is similar to tank-treading in the reference frame co-moving with the top cell, where its top and
bottom surfaces move with opposite velocities, while the overall shape of the cell remains virtually unchanged. Thus
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FIG. 5. (a) The two states 1 and 2 . (b) The time evolution of the amplitudes of the interface between the two cells for a
given situation corresponding to the two branches in Fig.4 in the regime of R phase. As is defined as the algebraic amplitude
measuring maximum algebraic values. More precisely, the amplitude is positive if the interface is displaced counterclockwise
(see upward and downward white arrows in left panel) from the straight line segment joining the two endpoints of the interface
(shown as while horizontal line) and negative if displaced clockwise (right panel). For example it is positive in a) and negative
in b). The black arrow shows the value of As. c) We see from amplitude evolution an asymmetry between the two branches
confirming the imperfect bifurcation in Fig.4.

FIG. 6. Minimal contact length between the two cells as a function of adhesion energy showing its collapse when passing FR
to RS.

FIG. 7. Inclination angle of a single vesicle as a function of viscosity contrast λ. The angle decreases with λ. The snapshots
show the vesicle under shear flow of Ca = 10.0.
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the ability of the cell membrane to tank-tread is essential for the doublet separation. We now use our model to see
whether preventing the membrane from tank-treading would have an effect on doublet dissociation.

FIG. 8. Phase diagrams showing the different behaviors of doublets in the parameter space of the capillary number and the
dimensionless macroscopic adhesion energy. The simulation data are shown as dots. (a) λ = 1.0, (b) λ = 10.0.

1. Supression of doublet separation

We have seen above that there exists (Fig. 2) a region of separation (region S) for a given set of parameters. In both
diagrams of Fig. 2 the separation phase (S) is preceded either by RS or FA phase. In both of the latter two phases the
membrane undergoes tank-treading. The question naturally arises of whether or not the separation phase is associated
with the existence of membrane tank-treading. We have thus investigated if the suppression (or a significant reduction)
of membrane tank-treading may affect separation. For that purpose we have chosen a wide enough channel (Cn = 0.2)
and only varied the viscosity contrast λ in order to reduce membrane tank-treading. As a guide, we have first analyzed
the case of a single vesicle and determined the critical λ for the transition from tank-treading to tumbling, and found
λ ' 7.0 (note that when Cn = 0.4 this transition takes place at about λ = 12). This means that for Cn = 0.2 a single
vesicle shows tank-treading for λ = 1 and tumbling for λ = 10. We have analyzed the phase diagram for these two
values and the results are shown in Fig. 8. For λ = 1 the same overall picture is found as in Fig. Fig. 2a. However,
the situation is drastically different when λ = 10.0 (Fig. 8-b). Indeed, we see that RS and S phases are almost absent,
and they appear only for extremely weak adhesion, far below physiological ranges. In other words, the doublet seems
to be very robust even for a very large capillary number. We have attempted to dig further into this result. The
doublet precise shape is a compromise between adhesion, which tends to increase vesicle-vesicle interface (like sigmoid
shape) and bending energy, which tends to minimize deformation, favoring a flatter interface. Deformation ability
can be measured by Ca, and dimensionless macroscopic adhesion energy by ε̄adh. An enlightening representation
of our result Fig. 8 is to plot ε̄adh as a function of Ca/ε̄adh. The results are shown in Fig. 9. This clearly shows
that the shape adapts itself to shear flow. Indeed, if that were not the case, namely that the doublet conformation
were independent of Ca for given adhesion energy, then the R/RS and RS/S phase borders observed for the lowest
dimensionless macroscopic adhesion energies would continue vertically to high dimensionless macroscopic adhesion
energies (in the representation of Fig. 9). In other words, the transition value of Ca/ε̄adh would be independent of
adhesion energy. Indeed, if bending energy saturates, the only remaining two energy scales are shear and adhesion
ones, so that the critical Ca/ε̄adh would have been a numerical constant. The fact that the phase diagram in the new
representation shows the same trend as in Fig. 8-b is a clear indication that the doublet adapts its shape in order
to escape dissociation. Figure 10 shows some doublet shapes highlighting adaptation to shear flow. Our results are
consistent with the work of Chien et al. [40], in that membrane tank-treading plays an important role in doublet
dissociation. For a single RBC the possibility of membrane tank-treading depends on capillary number, defined by
Cs = ηṘ0γ/µ, where we recall µ is the cytoskeleton shear modulus (typically µ ' 4µN/m). For low enough Cs

tumbling prevails whereas membrane tank-treading is possible at high Cs [41, 42]. Taking for η the value of water
viscosity (which is close to the plasma one) and R0 ∼ 3 µm, we obtain Cs ∼ 10−3γ̇ (with γ̇ in unit of s−1). For
healthy RBCs the transition between tumbling and tank-treading takes place at about Cs ∼ 0.1 [41, 42]. In human
vascular networks we expect membrane tank-treading to take place in arterioles only (the only vasculature site where
shear rate can reach values of about few 103 s−1). In some RBCs diseases, such as thalassemia [43], sickle-cell disease
[44] and malaria [45], the membrane shear modulus as well as cytoplasm viscosity may be significantly higher than
healthy ones. The corresponding shear rate beyond which membrane tank-treads may become significantly larger for
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pathological cells [41] so that its occurrence in vivo becomes unlikely. We can speculate that in this case RBC doublets
and larger aggregates become irreversible, compromising thus a proper blood perfusion to tissues and organs.

FIG. 9. Phase diagrams showing the different behaviors of doublets in the parameter space of the dimensionless macroscopic
adhesion energy and the ratio of capillary number over dimensionless macroscopic adhesion energy. The simulation data are
shown as dots.

FIG. 10. Phase diagrams (same as in Fig.2) showing few shapes of doublet in the parameter space of the capillary number
and the dimensionless macroscopic adhesion energy. The simulation data are shown as dots. The darkest spots indicate the
pairs of parameters for which the shape is shown. We clearly see shape adaptation as Ca increases.

C. The effect of adhesion energy on the instantaneous normalized viscosity.

The goal of the next two paragraphs is to explore the effect of doublet dynamics discussed above on the rheological
behaviors of a doublet suspension. In order to quantify rheology we analyze the normalized viscosity. Here we consider
the very dilute regime. The effective viscosity can be written in the following form:

η = η0(1 + [η]ϕ) (21)
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where ϕ is the vesicle concentration, and [η] is the normalized viscosity (called also the intrinsic viscosity), representing
the doublet contribution to the viscosity. The effective viscosity is the ratio of the xy component of stress tensor to
the applied shear rate:

η =
< σxy >

γ̇
(22)

Where bracket < ... > means a surface average (i.e. average over the simulation area). Following Batchelor [46], the
normalized viscosity is given by:

[η] =
η − η0
η0ϕ

=
1

η0Aγ̇

∑
i

[∫
mi

yfxds+ η0(λ− 1)

∫
mi

(nxvy + nyvx)ds

]
(23)

The first term of the normalized viscosity describes the dynamical contribution which is due to the membrane force,
whereas the second term represents the kinematic contribution of the vesicle (the membrane velocity).

FIG. 11. Evolution of the normalized viscosity [η] as function of time. The snapshots are taken over one time period as shown
with the red dots. Here λ = 1.0, Cn = 0.4 and Ca = 1.0 (a) ε̄adh = 20.20, (b) ε̄adh = 40.40, (c) ε̄adh = 80.83, (d) ε̄adh = 202.00

We first analyzed how the normalized viscosity [η] changes during time for increasing adhesion energy with a
viscosity contrast λ = 1.0 and low capillary number Ca = 1.0. Figures 11a-d show that the viscosity of the suspension
is periodic with time. At very low adhesion strength the doublet shows RS regime (Fig. 11a). This state undergoes a
transition towards the R-regime at high adhesion strength ((Fig. 11d). This transition is accompanied by an increase
of the amplitude of the normalized viscosity. In the R-phase the contact interface of the doublet does not evolve
with time. The amplitude as well as the period of the normalized viscosity oscillation decreases with the adhesion
strength. This is attributed to the fact that the two vesicles become more and more pinned to each other (Fig. 11d) as
the adhesion energy increases, so that the overall cross section of the doublet which is exposed to the flow decreases,
opposing thus less resistance.
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D. Time average rheology of doublet suspension

As seen above a single vesicle is known to exhibit both tank-treading motion (at low viscosity contrast) and
tumbling motion (at high viscosity contrast). A suspension of vesicles exhibit both shear thinning and shear thickening
depending on viscosity contrast[47]. Here we find that the doublet suspension always exhibits shear thinning for the
set of parameters explored so far. The results are shown in Fig. 12 (note that capillary number axis in Fig. 12 is shown
in logarithmic scale). In all the three studied cases (Fig. 12a,b,c) the viscosity collapses by about 50%. A common
feature shown in Fig. 12a,b,c is that all curves (obtained for different adhesion energies) collapse on the same curve
for high enough capillary number. This collapse corresponds to the situation where all doublets are dissociated.

The persistence of shear thinning here is quite natural. Indeed, as Ca increases we have succession of phases that
tend to lower cross section of the doublet against the flow. At low Ca the doublet shows a rigid-like rolling (R).
Increasing Ca leads to FR. Because in this case the doublet flattens during time (due to interface flexibility), we
expect that the doublet offers less flow resistance. Similarly, in the RS and FA regimes the doublet spends some time
(RS) in the aligned direction with the flow, and this should lead to viscosity reduction. In the FA regime the doublet
viscosity is constant with shear rate since the FA configuration remains steady during time. Since our preliminary
simulation in 3D shows the existence of R, FR and RS upon increasing Ca, we expect the same impact on rheology
as in 2D.

Figure 12d shows a peculiar behavior, in that the curves do not collapse at large capillary number, due to the
absence of dissociation. This figure shows a peculiar behavior: at low capillary number the suspension with high
dimensionless macroscopic adhesion energy has a higher normalized viscosity (which is quite intuitive), but at higher
capillary number the opposite is found. Let us provide an argument for this behavior. For a low dimensionless

FIG. 12. The normalized viscosity [η] as a function of capillary number Ca for different dimensionless macroscopic adhesion
energy ε̄adh. The simulation data are shown as dots. (a) λ = 1.0 and Cn = 0.4, (b) λ = 10.0 and Cn = 0.4, (c) λ = 1.0 and
Cn = 0.2, (d) λ = 10.0 and Cn = 0.2. Circle symbol represents the rolling phase, star: flexible rolling, square: rolling + sliding,
triangle: flow alignment, cross: separation.

macroscopic adhesion energy(say the red curve in Fig. 12d) and at low capillary number the doublet shows the R
motion where the contact length between the two vesicles oscillates in time while keeping sigmoid shape (not to be
confused with FR; see Movie 1 in the supplemental material [48]). For a higher adhesion (say the blue curve in
Fig. 12d), and at low capillary number, the contact surface has a persistent sigmoid shape. In other words, for a high
enough adhesion the doublet is quite rigid in its configuration yielding a higher viscosity, as intuitively expected. When
the capillary number increases, for the low adhesion case (the red curve in Fig. 12d), the shear stress is strong enough
to pull on the doublet leading to a peeling off the tail of each vesicle at the poles (see Movie 3 in the supplemental
material [48]). The extra tails that stick out of the vesicles increase the cross section of the doublet, leading to a
higher viscosity than the case where adhesion is stronger (preventing tails to stick out of the doublet, see Movie 4
in the supplemental material [48]). This explains why, at high capillary number, for weak adhesion the viscosity is
higher than for strong adhesion (the blue and red curves intersect).

Finally, let us quantify the effect of the dimensionless macroscopic adhesion energy on the normalized viscosity.
Note that the range of the dimensionless macroscopic adhesion energy from 5.0 to 90.0 corresponds to the physiological
conditions of fibrinogen level (these values are estimates from [11]). Pathological conditions correspond to a value
of dimensionless macroscopic adhesion energy greater than 90.0. Figure 13 shows that [η] increases monotonically
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FIG. 13. The normalized viscosity [η] as a function of the dimensionless macroscopic adhesion energy ε̄adh for different values
of viscosity contrast and confinement. The simulation data are shown as dots. (a) Ca = 1.0 and Cn = 0.4, (b) Ca = 100.0 and
Cn = 0.4, (c) Ca = 1.0 and Cn = 0.2, (d) Ca = 100.0 and Cn = 0.2. Circle symbol represents the rolling phase, star: flexible
rolling, square: rolling + sliding, triangle: flow alignment, cross: separation.

with ε̄adh, except for the case of Fig. 13d with λ = 10 which has been discussed in Fig. 12d where we have seen an
inversion of normalized viscosity behavior as a function of the dimensionless macroscopic adhesion energy. Note also
that the range of variation of normalized viscosity can be ample enough (it can attain a factor of two; see Fig. 13a.
Figure. 13b shows that (for λ = 10) the normalized viscosity exhibits two jumps, one at about ε̄adh = 30, which is due
to a sudden transition from S to FA when the adhesion energy decreases, and a second jump at ε̄adh = 150, due to a
transition from FA to R. The plateau shown in Figure. 13b (triangles) correspond to FA regime where the doublet
configuration remains the same upon increasing adhesion energy.

IV. SUMMARY AND CONCLUDING REMARKS

To summarize, in this paper we employed a boundary integral method and vesicle model to study the dynamics
and the rheology of vesicle doublet under shear flow. We varied the dimensionless macroscopic adhesion energy in
this study from 5.0 to 250.0, a range which corresponds to physiological and pathological conditions. We found
that the doublet can exhibit rolling, flexible rolling, rolling+sliding, aligned vesicles and that separation depends on
several parameters (capillary number, adhesion energy and viscosity contrast). A remarkable feature is that when
each single cell exhibits tumbling (for example due to a high enough internal viscosity), the doublet becomes quite
stable even for an extremely large shear stress (the separation region is almost absent in the phase diagram, Fig.8).
Indeed, the doublet adapts its spatial configuration to the applied flow in a way to escape dissociation. In vivo
RBC membrane may perform tank-treading in arterioles only. However, several RBCs pathologies are associated
with increased membrane rigidity or cytosol viscosity. This may result in a collapse of the membrane tank-treading
ability (even in arterioles) causing a stability of doublets, and impairing blood perfusion in microcirculation. Another
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important observation is that there are two stable configurations of the doublet at high enough adhesion. These two
states have quantitatively different dynamical signatures under shear flow. Lowering the adhesion strength results in
a loss of one of the configurations. This bifurcation marks the transition from rolling to flexible rolling dynamics, due
to the presence of a saddle node (turning point of the imperfect bifurcation).

The rheological study showed shear thinning, and a quite significant increase of viscosity with adhesion energy.
This increase with energy is a priori expected, since the doublet becomes more and more robust, and its higher cross
section opposes more flow resistance. Rheology may be an interesting alternative for a systematic blood diagnosis and
estimate of adhesion energy. A systematic numerical study in 3D including cytoskeleton is necessary before drawing
more practical conclusions. Our preliminary simulations in 3D presented here support phases like R, FR and SR in
the same range of flow strengths explored in 2D. It is hoped to investigate this matter further in a future work.
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