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Using a real-time implementation of the self-consistent GW method, we theoretically investigate the photo-

induced changes in the electronic structure of the quasi two-dimensional semi-metal BaNiS2. This material

features four Dirac cones in the unit cell and our simulation of the time- and momentum-resolved nonequilib-

rium spectral function reveals a flattening of the Dirac bands after a photo-doping pulse with a 1.5 eV laser.

The simulation results are consistent with the recently reported experimental data on photo-doped BaNiS2 and

ZrSiSe, another Dirac semi-metal. A detailed analysis of the numerical data allows us to attribute the nonequi-

librium modifications of the Dirac bands to (i) an increased effective temperature after the photo-excitation,

which affects the screening properties of the system, and (ii) to nontrivial band shifts in the photo-doped state,

which are mainly induced by the Fock term.

PACS numbers: 71.10.Fd, 05.70.Ln

I. INTRODUCTION

Photo-induced changes in band dispersions and quasi-
particle life-times have been reported in different classes of
solids. In charge-transfer insulators such as cuprates, for
example, the photo-doping across the charge transfer gap
results in substantial band shifts and band broadenings,1–6

which can be explained by the induced changes in the elec-
trostatic energy (Hartree shifts)6,7 and enhanced nonlocal
charge fluctuations.8–10 In correlated semiconductors, photo-
excitation typically leads to a narrowing of the gap, which
is referred to as band gap renormalization.11,12 However, re-
cent experiments on excitonic systems revealed a richer be-
havior with a transient enhancement13 or suppression14–16 of
the band gap, which was attributed to the underlying excitonic
order.17–20

In weakly or moderately correlated metals, electron-
electron interactions typically result in a narrowing of the
bands near the Fermi level, so that photo-excitation and its as-
sociated heating effects are naively expected to lead to a band
widening. However, in the Dirac semi-metal BaNiS2, a recent
photo-doping study21 has observed a flattening of the Dirac
cone in the photo-doped state (Fig. 1). Remarkably, this flat-
tening of the Dirac cone persists up to 1 ps, indicating a bottle-
neck in the electronic dynamics. Similar measurements have
also been reported in photo-doping experiments on ZrSiSe,
a different material with Dirac dispersions.22 These experi-
mental results suggest a nontrivial effect of the photo-induced
changes on the screening environment in these materials.
Indeed, temperature-dependent equilibrium calculations21,22

point to an important role of the nonlocal interactions in this
unusual response of the electronic structure to photo-carriers.
As an extreme case of photo-manipulation of relativistic mate-
rials, recent photo-emission studies have demonstrated an ul-
trafast Lifshitz transition in the correlated type-II Weyl semi-
metal Td-MoTe2.23

To get deeper insights, a proper modeling and simulation of
the nonequilibrium states in Dirac semi-metals is needed. Be-

cause these materials are moderately correlated, and the time-
dependent screening of long-ranged interactions apparently
plays an important role, a promising approach is the nonequi-
librium implementation of the GW method.24 This formalism
has been successfully used to study transport in mesoscopic
systems,25 relaxation dynamics in various electron-boson cou-
pled systems,26,27 as well as the nonthermal destruction of
ordered states.28 In combination with dynamical mean field
theory,29 it allowed to reveal the effects of nonlocal charge
fluctuations in photo-doped charge transfer insulators.8 How-
ever, nonequilibrium GW studies of bulk materials have to
the best of our knowledge been performed so far mainly in
simple model contexts. Here, we bridge the gap to realistic
nonequilibrium materials simulations by treating an ab initio

model21,30 for BaNiS2 within the framework of nonequilib-
riumGW , to study the effect of photo-excitation with a 1.5 eV
pump pulse on the electronic structure and in particular the
Dirac cone dispersion.

Our simulations reproduce the nontrivial band flattening,

(a) (b)

Figure 1: Dirac cone flattening for the left (a) and the right (b) branch

after photo-excitation with a 1.5 eV laser, measured with tr-ARPES.

The black lines show the equilibrium dispersion, and the red lines

the dispersion measured after the photo-doping pulse. The k-points

are aligned along the Γ-M direction, Γ (M) being located at k‖ = 0

(k‖ = ±1.00 Å−1) (Experimental data adapted from Ref. 21.)
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in qualitative agreement with the experimental findings based
on time-resolved angle-resolved photoemission spectroscopy
(tr-ARPES) (see Fig. 1). These encouraging results, in combi-
nation with the controlled many-body framework, allow us to
address the central question of the paper: which many-body
processes are mainly responsible for these photo-induced
modifications in the electronic structure and which aspects
are specific to Dirac systems? The direct access to the time-
dependent self-energy and the screened interaction (or polar-
ization) enables an analysis of the physical processes driving
the photo-induced band renormalization of the Dirac states. In
particular, we will clarify the effect of the photo-induced heat-
ing on the screening properties, and reveal the importance of
the photo-induced Fock exchange modifications, which result
from the nonthermally populated bands.

The paper is organized as follows. Sections II and III in-
troduce the realistic two-band model for BaNiS2 and the real-
time GW method used in the numerical simulations, respec-
tively. Section IV discusses equilibrium properties of this cor-
related material, while Section V analyzes the time-dependent
changes in the Dirac dispersion of BaNiS2 after a photo-
excitation. Section VI summarizes our findings.

II. MODEL

We consider a two-dimensional (2d) two-orbital system
representing the low-energy electronic structure of BaNiS2 at
half-filling, as determined in Refs. 21,30. Within this ab-initio

derived description, we will focus on the charge dynamics,
which is relevant to study the renormalization of the Dirac
states seen in tr-ARPES. Thus, we restrict the model to spin-
less fermions, and treat BaNiS2 by the Hamiltonian

H(t) = Hkin +Hint +Hdip(t), (1)

with a kinetic term of the tight-binding form

Hkin =
∑

α,k

[

Eα − µ− tα(cos(kx) + cos(ky))

+ t′α cos(kx) cos(ky)
]

nkα

+
∑

α6=β,k

[tα,β sin(kx) sin(ky)d
†
kαdkβ + H.c.] .

(2)

Here, we have introduced the creation operators d†kα for spin-
less fermions in the orbitals α = z2, x2 − y2 with momentum

k, and nkα = d†kadka. The momentum is defined in a ro-

tated Brillouin zone with basis vectors k1 = (1, 1)/
√
2 and

k2 = (1,−1)/
√
2. We will neglect the z dependence of the

dispersion. The hopping parameters and local energies in eV
units are taken from Ref. 30:

Ez2 = −0.64, Ex2−y2 = 0.24,
tz2 = −0.68, tx2−y2 = 0.28,
t′z2 = 0.66, t′x2−y2 = −0.96,

tz2,x2−y2 = 0.28, tx2−y2,z2 = 0.28.

(3)

The interaction term is restricted to density-density inter-
actions of the form Hint = 1

2

∑

ij

∑

αβ V|i−j|niαnjβ −
1
2

∑

i

∑

α Vlocniαniα, which may be split into the non-local

intraorbital interaction 1
2

∑

ij

∑

αβ δα,βV|i−j|niαnjβ −
1
2

∑

i

∑

α Vlocniαniα and the interorbital interaction
1
2

∑

ij

∑

αβ(1 − δα,β)V|i−j|niαnjβ . Hence, in momen-
tum space, the interaction becomes

Hint =
1

2N

∑

k,k′,q

∑

αβ

δα,βV (q)d†k+qαdkαd
†
k′−qβdk′β

− 1

2N

∑

k1,k2,k3

∑

α

Vlocd
†
k1+k3−k2α

dk1αd
†
k2α

dk3α

+
1

2N

∑

k,k′,q

∑

αβ

(1− δα,β)V (q)d†k+qαdkαd
†
k′−qβdk′β ,

(4)

where N is the number of k points in the 2d Brillouin zone.
To obtain an interaction V which takes into account the 3d

nature of the material, we will consider a system of stacked
layers with interlayer distance Ic. In this setup, the interaction
vertex of the layered 3d system is given by31

V (q, kz) =
1

4πǫ0

2πe2

κ0|q|
sinh(|q|Ic)

cosh(|q|Ic)− cos(kzIc)
, ∀α, β.

(5)
where q = (qx, qy) denotes the momentum in the 2d lay-
ers, and kz the momentum perpendicular to the planes. For
BaNiS2, we take the in-plane lattice constant a = 3.140 Å and
Ic = 8.91 Å. The dimensionless momenta qxa, qya and kzIc
are in the range [−π, π]. κ0 is the dielectric constant, which
takes into account the screening from other bands, which have
been discarded in the downfolding to the low-energy model.
The constrained Random Phase Approximation (cRPA)32 in-
teraction of the closely related compound BaCoS2 suggests a
screening of the bare interaction by κ0 ≈ 10.33 Indeed, the
interaction with κ0 = 10 results in a flattening of the Dirac
cones after the photo-excitation by ≈ 5% (see Appendix A),
which is in reasonable agreement with the experimental re-
sults (Fig. 1).21 However, for a better visualisation of the
photo-induced effects, we choose in the following simulations
κ0 = 6, which results in stronger correlations and larger band
shifts, without qualitatively changing the results.

From Eq. (5), the effective interaction within a single 2d
layer is obtained by averaging over kz :

V (q) =
Ic
π

∫ π/Ic

kz,cut

dkzV (q, kz). (6)

Because the Coulomb-like interactionV (q, kz) has a singular-
ity at q = (0, 0) and kz = 0, we introduce a small-momentum
cutoff for the integration along the kz direction. This cuts off
the long-ranged part of the interaction, V (q → 0), as illus-
trated in Fig. 2. In the actual calculations, we use kz,cutIc =
0.23. We have checked that this kz,cut is small enough that the
results are not qualitatively affected.

Due to the strong hybridization between the d and p orbitals
in BaNiS2, we describe the photo-excitation of the system by
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Figure 2: Effective 2d interaction from Eq. (6) with kz,cutIc = 0.31
(blue), 0.27 (light blue), and 0.23 (dark red). Here, the momentum q

is scaled with the lattice constant a.

a laser-induced (dipole allowed) population transfer between
the orbitals,

Hdip(t) =
∑

k

A(t)d†
kz2dkx2−y2 + H.c. . (7)

Here, the pump pulse A(t) = A0e
−(t−t0)

2/τ2

sin(ω(t − t0))
with frequency ω has a Gaussian envelope with a maximum
A0 at time t0 and a full width at half maximum τ .

Energy and temperature will be measured in units of eV and
time will be measured in units of fs.

III. METHOD

A. Green functions

We will treat the equilibrium and nonequilibrium properties
of model (1) within the GW approximation.28 The time evo-
lution of the correlated system is simulated using the NESSi
software library,34 which is based on the L-shaped Kadanoff-
Baym contour formalism.29

It is convenient to introduce a spinor representation for the
two orbitals:

Ψk ≡
(

dk,1

dk,2

)

. (8)

The corresponding 2×2 Green’s function is given by the con-
tour C ordered expectation value:

Ĝk(t, t
′) = −i〈TCΨk(t)Ψ

†
k(t

′)〉 (9)

and is determined from the solution of a Dyson equation with
appropriate self-energy. For later use, we also introduce the

single-particle density matrix ρk,αβ = 〈Ψ†
k,βΨk,α〉 and its lo-

cal component ρloc,αβ = 1
N

∑

k ρk,αβ , where N denotes the
number of k points in the 2d Brillouin zone. All the results
shown will be calculated for 20× 20 k points.

B. Hartree-Fock approximation

To calculate the Hartree and Fock self-energies, we employ
the usual mean-field decoupling of the interaction term (4).
The 2×2 Hartree self-energy in orbital space is then given by

ΣH
q,αβ(t) =δαβ

(

V (|q| = 0)ρloc,ᾱᾱ(t)

+ [V (|q| = 0)− Vloc]ρloc,αα(t)
)

, (10)

where the first term corresponds to the inter-orbital interaction
and the second term to the non-local intra-orbital interaction.
An overline marks the opposite orbital.

As is seen in Fig. 2, for small cutoff kz,cut the potential
V (|q| = 0) becomes very large. To avoid numerical prob-
lems resulting from this, we impose charge neutrality, so
that the attractive potential of a neutralizing homogeneous
background shifts the total Hartree term to zero. In other
words, ΣH

q ∝ 〈ρtot〉, and 〈ρtot〉 = 0, if the homogeneous
background is taken into account. In practice, we set the
Hartree self-energy in the initial equilibrium state to zero,
while the orbitally-resolved components take nonzero values
in the photo-excited nonequilibrium state.

The 2×2 Fock self-energy term in orbital space is given by

ΣF
k,αᾱ(t) = − 1

N

∑

q

V (q)ρk−q,αᾱ(t),

ΣF
k,αα(t) = − 1

N

∑

q

V (q)ρk−q,αα(t) + Vlocρloc,αα(t).

(11)

C. GW approximation

In the GW method24 the effect of screening is taken into
account at the Random Phase Approximation level. This for-
malism can be derived from a Luttinger-Ward functional and
hence yields a conserving approximation. In addition to the
Hartree and Fock contributions, we consider the electronic
self-energy

ΣGW
k,αβ(t, t

′) = i
1

N

∑

q

Gk−q,αβ(t, t
′)Wq,αβ(t, t

′), (12)

where Wq,αβ is the screened interaction, whose self-energy is
given by the polarization

Πq,αβ(t, t
′) = −i

1

N

∑

k

Gk+q,αβ(t, t
′)Gk,βα(t

′, t). (13)

We obtain a closed set of equations by considering the Dyson
equation relating the bare and screened interactions,

Ŵq = V̂q + V̂q ∗ Π̂q ∗ Ŵq, (14)

where ∗ marks the convolution on the Kadanoff-Baym contour
and the hat symbol indicates 2 × 2 matrices in orbital space.
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Figure 3: (a) k-dependent band dispersion Ak(ω) for BaNiS2 calculated for T = 0.07 eV on a 20×20 k grid. For the Fourier transformation

we use a time window tmax = 6.8 fs. The intensity is measured in units 1/eV. The red dashed line represents the Hartree-Fock contributions

to the band structure, while the solid red line shows the QPGW band structure defined by Eq. (20). For comparison, we also show the non-

interacting band dispersion by the green dashed line. The horizontal dashed line corresponds to the Fermi level FL. (b) Ak(ω = 0) plotted in

the first Brillouin zone, showing the four Dirac points (surrounded by high intensity regions) on the diagonals. The intensity is measured in

units 1/eV.

Equation (14) is valid in the density-density approximation.
General interactions would require a two-particle basis.35

The interaction vertex V̂q, with Vq,αβ = Vq, is instanta-

neous in time, i.e. V̂q(t, t
′) = V̂qδC(t, t

′) with δC denoting the
contour δ-function. Thus, in the actual implementation, we
treat it separately. In practice, we define the charge suscepti-
bility as

χ̂q = Π̂q + Π̂q ∗ V̂q ∗ Π̂q + . . . (15)

and numerically compute it by solving the integral equation34

χ̂q − Π̂q ∗ V̂q ∗ χ̂q = Π̂q. (16)

The effective interaction is then determined as Ŵq = V̂q +

V̂q ∗ χ̂q ∗ V̂q.
In order to calculate the spectral functions, we use traces

over the orbital indices, i.e.

Gloc =
1

N

∑

k

Gk with Gk = Tr Ĝk. (17)

The local spectral functions at time tp are calculated from
the forward-Fourier transformation with respect to t′ over a
time interval of length tmax,

Aloc(tp, ω) = − 1

π
Im

∫ tp+tmax

tp

dt′GR
loc(tp, t

′)e−iω(t′−tp).

(18)

For the k-dependent spectral functions, we apply instead a
backward-Fourier transformation with respect to t:

Ak(tp, ω) =
1

π
Im

∫ tp+tmax

tp

dtGR
k (t, tp + tmax)e

iω(tp+tmax−t).

(19)

IV. EQUILIBRIUM PROPERTIES

A. Bandstructure

Figure 3(a) shows the correlated electronic structure of
BaNiS2 (Eqs. (1)-(3)) along the momentum path Γ =(0, 0) →
M=(π, π) → X=(π, 0) → Γ =(0, 0), while the spectral func-
tion at the Fermi energy,Ak(ω = 0), is shown as a function of
k = (kx, ky) in Fig. 3(b). The band dispersion is calculated
from Ak(ω) with tmax = 6.8 fs. This relatively short Fourier
window leads to a broadening of the bands. However, we
choose here the same value as in the later nonequilibrium sim-
ulations with pump pulse, where the time window is restricted
by the limited maximum simulation time. As one can see, a
Dirac cone appears along the k-path from (0, 0) to (π, π). The
Fermi surface consists of four very small Fermi pockets encir-
cling the Dirac points, which are clearly visible in Fig. 3(b) in

Figure 4: Local equilibrium spectral function calculated from the

Fourier transformation of GR
loc(t, t

′) with tmax = 6.8 fs for different

temperatures. The Dirac behavior near ω = 0 eV is smeared out by

the relatively short Fourier window and interaction effects.
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the form of four spots with strong intensity, in agreement with
Refs. 21,30. A consequence of the Dirac dispersions is an ap-
proximately linear increase in the density of states away from
the Fermi energy, as indicated by the (strongly broadened) lo-
cal spectral functions plotted in Fig. 4.

In order to illustrate renormalization effects on the band
dispersion due to different self-energy contributions, we plot
in Fig. 3(a) the band structure obtained by keeping only the
Hartree-Fock (HF) terms of the full GW self-energy (red
dashed lines) and the “quasi-particle GW” (QPGW) peak po-
sition (red solid lines). The HF contribution leads to a widen-
ing of the band structure compared to its non-interacting coun-
terpart (green dashed line). On the other hand, including ad-
ditionally the ΣGW

k self-energy contribution results in a flat-
tening of the band dispersion. The QPGW bands in Fig. 3(a)
corresponds to the poles of the quasi-particle GW spectral
function36

Ak(ω) ∝
1

ω − ǫk + µ− ΣH − ΣF
k − ReΣGW

k (Ek)
, (20)

where Ek is the self-consistent solution of the equation

Ek = ǫk − µ+ΣH +ΣF
k +ReΣGW

k (Ek). (21)

B. Temperature dependence

An interesting question concerns the temperature depen-
dence of the screening in this Dirac semi-metal, since this has
an important effect on the correlated electronic structure. We

analyze here the fully screened interaction Ŵq (Eq. (14)) com-
puted for different temperatures T , using the cutoff kz,cutIc =
0.23. This function is related to the frequency-dependent di-

electric constant by Ŵq = V̂q ∗ ǫ̂−1
q (with ǫ̂q = 1− V̂q ∗ Π̂q).

In Fig. 5(a), we plot the real part of the screened interaction
1
2 Tr[ReŴloc] as a function of T . For comparison, the local

component of the ‘bare’ interaction Vloc = 1
2 Tr[

1
N

∑

q V̂q] is
shown by the dashed line. As one can see, the local compo-
nent of the static screened interaction increases with decreas-
ing temperature, i.e. the screening becomes less effective. The
q ≡ |q| = 0 component (inset of Fig. 5(a)) suggests that
this comes primarily from the temperature dependence of the
strongly screened long-range interaction, since the static value
of the long-range interaction increases significantly as tem-
perature is reduced. This is a characteristic feature of Dirac
semi-metals such as BaNiS2, whereas in “conventional” met-
als with a large density of states at the Fermi level, one finds
the opposite temperature-dependent screening behavior (see
Appendix E).

Second, in Fig. 5(b), we plot the imaginary part
1
2 Tr[ImŴloc] of the screened interaction, which is related to
the real part by the Kramers-Kronig formula. Here, we see
a pronounced peak around ω ≈ 1.5 eV, which corresponds
to the valence-conduction band splitting away from the Dirac
cones, as may be deduced from Fig. 4. This peak shifts to
slightly lower energies as T is decreased, consistent with the
larger Re[Wloc] at ω & 2. Similarly, we observe a small peak

Vloc

V(q=0)

(a)

(b)

Figure 5: Screened interaction W calculated for different tempera-

tures. Panels (a) and (b) show the real and imaginary part of the local

component Wloc(ω), respectively. The inset shows the corresponding

q = 0 components.

shift in the long-ranged screened interaction (see the inset of
Fig. 5(b)) at ω ≈ 6 eV. This peak can be associated with
single-particle excitations between side bands of Ak(ω) near
k = 0. For ω . 1, in the energy region dominated by the

Dirac cones, we see a clear reduction of 1
2 Tr[ImŴloc] with

decreasing T , which implies a smaller absolute value of the
polarization (see Appendix D). This temperature dependence
of the polarization is a hallmark of Dirac systems and results

ka

Figure 6: Momentum-resolved imaginary part of the screened inter-

action 1

2
Tr[ImŴk(ω)] computed at T = 0.07 eV. The red dashed

line shows the dispersion of the long wavelength plasmon. Here, we

use the formula for the 2d conical model with Coulomb interactions

from Ref. 37, and the parameters appropriate for BaNiS2.
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in the unusual temperature evolution of the screened interac-
tion seen in panel (a).

Another characteristic property of 2d Dirac systems is
the appearence of a long wavelength plasmon, which has
a smaller plasma frequency in the q → 0 limit than a
conventional 2d metal.37 This plasmon can be identified in

the momentum-resolved spectra 1
2 Tr[ImŴq(ω)] as the small

peak at low frequencies (see Fig. 6). For illustration, we ad-
ditionally indicate by the red dashed line the energy disper-
sion of the plasmon obtained from the analytical formula in
Ref. 37, valid for the conical model with Coulomb interac-
tions, and the parameters for BaNiS2. The Dirac prediction
nicely matches our numerical results in the q → 0 limit.

In addition to the plasmon, we notice the broad feature cen-
tered around ω ≈ 6 eV, which is associated with the peak
shown in the inset of Fig. 5(b).

V. NON-EQUILIBRIUM RESULTS

A. Pulse excitation

In this section, we investigate the time-dependent modi-
fications in the electronic structure and screening properties
of BaNiS2 after a photoexcitation. We simulate the photo-
excitation of the system with a short light pulse by direct
dipole allowed transitions between the orbitals contributing

(a)

(b)

Vloc

Figure 7: Time-dependent (a) real and (b) imaginary part of the local

screened interaction W (ω) after a photo-excitation. The equilibrium

results at the initial T = 0.07 and the temperature of the thermalized

system (T = Teff = 0.12) are shown by dashed and solid black lines,

respectively. In the main panels, the blue lines are on top of the solid

black lines.

to the Dirac cone (see Eq. (7)). For the pump pulse we choose
the parameters ω = 1.5 eV, A0 = 0.15, τ ≈ 2.3 fs, and
t0 = 3.6π/ω , unless otherwise specified. While this pulse
frequency is consistent with the experiments in Ref. 21, the
pulse duration is shorter (it contains only about five cycles),
due to computational limitations in the accessible time range.
Before the pump, the system is in equilibrium at T = 0.07 eV,
where its low-energy properties are dominated by the Dirac
physics. The following results are obtained using a 20 × 20
grid in momentum space. A finer k grid does not significantly
change the results.

B. Nonequilibrium screening

First, we analyze the screening effects after the photo-
excitation. In Fig. 7, we plot the real and imaginary parts of
the time-dependent screened interaction. As one can see, the
static screened interaction is slightly reduced after the photo-
excitation (Fig. 7(a)), while the peak in the imaginary part is
slightly shifted from ω ≈ 1.8 eV to higher energies. This is
qualitatively similar to the effect of heating in equilibrium (c.f.
Fig. 5). For comparison, we plot in the same figure also the
equilibrium result for T = 0.12 eV, which is the temperature
Teff of the thermalized system (black solid line). The low-

frequency effective interaction 1
2 Tr[ReŴR

loc(t, ω = 0)] after
the pulse resembles the equilibrium result at T = 0.12 eV. On

the other hand, the peak in 1
2 Tr[ImŴR

loc] is shifted to slightly
higher frequencies than in equilibrium. This indicates some
differences in the broadening or energy position of the bands,
but these differences are rather small. The inset shows that the
thermalization of the q = 0 component is slower than in the
case of the local component.

An analysis of the q dependent nonequilibrium results
shows that the q → 0 plasmon and the broad peak near
ω ≈ 6 eV are enhanced, while for larger q the pulse induces
mainly a broadening of the features, again in qualitative agree-

Figure 8: Difference ∆Ak between the spectral function of the

photo-excitated system (t ≈ 10.9 fs) and the initial equilibrium spec-

tral function (T = 0.07 eV). The dashed lines indicate the QPGW

peak positions from Eq. (20) for the initial equilibrium state (blue

dashed line) and after the photo-excitation (red dashed line). Both

spectral functions are calculated with tmax = 6.8 fs.
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Figure 9: (a) Time-dependent k-resolved spectral function calculated at ka = (π/5, π/5). The blue line corresponds to the equilibrium

spectrum at T = 0.07 eV and the red line to the nonequilibrium spectrum after the pulse at t ≈ 10.9 fs. Solid (dashed) vertical lines indicate

the positions of the QPGW bands (bands which take into account the Hartree-Fock contribution to the full GW self-energy). (b) Difference

between the QPGW energies of the upper (“+”) and lower (“-”) band at ka = (π/5, π/5) in equilibrium (dark red dashed line with dots)

and after a photo-excitation (dark red solid line with dots) as a function of T or Teff. In addition, we plot the analogous results taking into

account only the Fock (blue lines with triangles) and Hartree-Fock (light blue lines with squares) contributions to the full GW self-energy.

The effective temperature after the photo-excitation is estimated from the total energy.

ment with the effect of increasing temperature in equilibrium.
Hence, from the nonequilibrium behavior of W it appears that
the photo-induced changes in the screening environment are
essentially equivalent to the changes induced by heating. If
significant differences in the band renormalization between
photo-doped and heated systems are found, it is hence un-
likely that the dominant effect is the nonthermal screening en-
vironment.

C. Nonequilibrium spectral function

To study the time- and momentum-resolved spectral func-
tion, we calculate Ak(t, ω) in analogy to Eq. (18). In Fig. 8,
we plot the difference between the photo-excited (t ≈ 10.9 fs)
and the equilibrium spectrum (T = 0.07 eV). Even though the
spectral resolution is limited because of the short Fourier win-
dow (tmax = 6.8 fs), it is obvious that the spectral weight
in the momentum region associated with the Dirac cone is
shifted towards ω = 0, which implies a flattening of the Dirac
dispersion. In addition, the figure shows a significant broad-
ening of the bands in the photo-excited state, consistent with
the results from a recent GW+DMFT study.8

To clearly illustrate the flattening of the Dirac cones, we
plot in Fig. 9 the spectra of the equilibrium and photo-excited
system for ka = (π/5, π/5). While the photo-excitation in-
duces both shifts and broadenings of the spectra, the peak po-
sitions are slightly shifted towards ω = 0. This result, which
is not sensitive to the cut-off value kz,cut,

39 is consistent with
a flattening of the Dirac cone.

For a better visualisation of the energy shifts, we indicate in
the same figure the QPGW peak positionsEk from Eq. (20) by
vertical solid lines. We furthermore show by vertical dashed
lines the peak positions obtained by keeping only the Hartree-
Fock contribution to the full GW self-energy. The photo-
induced change of the interorbital Hartree-Fock contribution

along the Γ → M direction can be calculated as (see Ap-
pendix C):

∆ΣF
k,αα +∆ΣH

αα = − 1

N

∑

q

V (q)∆ρk−q,αα(t), (22)

where ∆ρ represents the photo-induced change in the charge
density distribution. Since the photo-excitation reshuffles
charge from orbital α = 1 to orbital α = 2, correspond-
ing to ∆ραα < 0 (> 0) for the states below (above) FL,
it results in the flattening of the effective bandstructure ob-
tained by keeping the Hartree-Fock terms of the GW self-
energy. This is clearly visible by looking at the dashed lines
in Fig. 9(a). Moreover, we can see that the bandstructure
which accounts only for the Hartree-Fock contributions re-
sponds more strongly to the photo-doping than the full QPGW
bandstructure, which indicates that the non-retarded (Hartree-
Fock) and retarded self-energy diagrams have opposite ef-
fects on the correlated electronic structure, and that the former
dominate the band shifts.

Similar effects as in the photo-doped system can be found
by increasing the temperature in equilibrium, as is shown in
Appendix B. However, the nonthermal population created by
the photo-doping leads to a stronger flattening than a simple
heating. For a quantitative analysis of the corresponding band
renormalizations, we plot in Fig. 9(b) the energy difference
between the upper and lower band at ka = (π/5, π/5) at
different temperatures and after the photo-excitation. For a
proper comparison between equilibrium and nonequilibrium
results, we estimate the effective temperature Teff after pump-
ing from the change in the total energy, i.e. we search for
the equilibrium system with T = Teff and the same total en-
ergy as the photo-excited system. In Fig. 9(b), we show that
the flattening of the cone is qualitatively similar in the photo-
doped and heated system, but the effect of photo-doping is
significantly stronger. Comparing separately the effects of the
Fock, Hartree-Fock, and the full GW self-energy on the band
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shifts, we see that the nonthermal contribution to the Dirac
cone flattening is primarily due to the Fock term. The en-
hanced band-flattening in the photo-doped state and the im-
portance of the Fock contribution represent the main results of
this study. Together with the analysis in Sec. V B we may con-
clude that rather than an effect of nonthermal screening, the
pronounced changes measured by tr-ARPES in photo-excited
BaNiS2 originate from the Fock exchange.

VI. SUMMARY

We presented a theoretical study of the effect of photo-
excitation on the electronic structure of BaNiS2 and the pos-
sibility of a photo-induced Dirac cone flattening in this quasi
two-dimensional Dirac material. Our study combined an ab-

initio inspired model for BaNiS2 with a nonequilibrium GW
treatment of the photo-induced dynamics. This advanced
methodology allowed us to study both the screening proper-
ties and interactions in the nonequilibrium state and their ef-
fect on the nonequilibrium electronic structure.

Calculating the effective screened interaction at different
temperatures in equilibrium, we demonstrated a non-trivial
screening enhancement with increasing temperature, which is
a hallmark of Dirac systems. In particular, we showed that
this effect comes primarily from a strong screening of the
long-range part of the interaction, since the q = 0 component
of the screened interaction decreases strongly with increasing
temperature. This can be traced back to the properties of the
polarization function, which exhibits a positive temperature
slope within the Dirac region, in contrast to a conventional
metal.

Our nonequilibrium simulations of BaNiS2 revealed both
an effective heating of the solid after a photo-excitation, and
photo-induced nonthermal effects. By computing the effective
temperatures of the photo-doped systems, and from compar-
isons with thermal data, we concluded that the changes in the
screening environment can to a large extent be explained by
the heating effect. On the other hand, the band renormaliza-
tion effects are much stronger in the photo-doped state than
in thermalized systems at the corresponding effective temper-
ature.

A separate analysis of the Hartree and Fock contributions
to the QPGW bandstructure showed that this nonthermal ef-
fect is mainly driven by the Fock exchange and the out-of-
equilibrium charge distribution. Our study demonstrates that a
nontrivial combination of heating, modifications in the screen-
ing environment, as well as band shifts due to the Fock term
are all relevant to describe photo-doped Dirac semi-metals.
This exemplifies the usefulness of unbiased nonequilibrium
many-body simulations for the interpretation of ultrafast time-
resolved experiments on correlated solids.
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Appendix A: Flattening of the Dirac cone for κ0 = 10

To illustrate the flattening of the Dirac cone in BaNiS2 after
a photo-excitation in a model with a more realistic screening
parameter, we performed a nonequilibrium GW simulation
with κ0 = 10 (see Eq. (5)). The initial temperature is set to
T = 0.07 eV and the system is excited by a pump pulse with
parameters ω = 1.5 eV, A0 = 0.1, τ = 1.3 fs. In Fig. 10 we
show the results of the simulations, where the black line illus-
trates the left branch of the Dirac cone in equilibrium and the
red line shows the dispersion after a photo-excitation (mea-
sured at t = 8.9 fs). Even though the limited k-point resolu-
tion makes a direct comparison difficult, one can see by com-
parison to Fig. 1 that the photo-induced Dirac cone flattening
in our simulation is comparable to the flattening observed in
the tr-ARPES experiments.

Appendix B: Temperature dependence of the band structure

In Fig. 11(a) we show the QPGW peak positions at different
temperatures (see Eq. (20)). As one can see, the band structure
of BaNiS2 does not significantly change as temperature is in-
creased. However, at certain k points, one finds a small broad-
ening of the upper band at higher temperatures, whereas the
lower band shows a simultaneous shift towards ω = 0. To il-
lustrate this, we plot in Fig. 11(b) Ak(ω) for ka = (π/5, π/5)
at T = 0.07 eV and 0.12 eV (Teff from Sec. V). As one can
see, increasing the temperature leads to a broadening of the

2 2 5
12

5
12

Figure 10: Dirac cone flattening of the left branch obtained from the

GW real-time simulations. The black curve shows the initial equi-

librium dispersion and the red curve the dispersion after the photo-

doping pulse. These simulations are performed with the dielectric

constant κ0 = 10. The initial temperature is T = 0.07 eV.
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Figure 11: (a) Temperature dependence of the QPGW band structure

calculated from Eq. (20). (b) k-resolved spectral function calculated

at ka = (π/5, π/5) for T = 0.07 eV (blue line) and T = 0.12 eV

(red line).

momentum-resolved spectral functions. However, the peak
position of the upper band does not change with temperature,
whereas the lower band shifts toward ω = 0.

Appendix C: Photo-induced changes in Hartree-Fock

The photo-doping of the system leads to the time-dependent
changes in the local (loc) charge density distribution with re-
spect to the equilibrium (eq) situation. For simplicity, we fo-
cus only on the diagonal contributions:

ρloc,αα(t) = ρloc,αα(eq) + ∆ρloc,αα(t). (C1)

The changes of the charge density distribution during the
pulse are

∆ρlocαα =

{

> 0 for α = 2,
< 0 for α = 1.

(C2)

From this, we can obtain the changes in the Hartree self-
energy due to the photo-excitation. Using the definition of
the Hartree self-energy:

ΣH
loc,αβ(t) = (δαβV (q = 0)ρloc,ᾱᾱ(t)

+δαβ[V (q = 0)− Vloc]ρloc,αα(t))

=δαβ [V (q = 0)ρtot − Vlocρloc,αα(t)]

(C3)

with ρtot = ρloc,00 + ρloc,11, we get

∆ΣH
αα(t) ≡ ΣH

αα(t)− ΣH
αα(eq) = −Vloc∆ρloc,αα(t). (C4)

In other words, the Hartree component leads to a narrowing
of the band width after the photo-excitation. Additionally, we
note that for a fixed value of the long-range Coulomb interac-
tion V (q = 0) the local interaction Vloc = 1/N

∑

q V (q) is
larger for smaller κ0. Hence, the effect of a narrowing band
width due to the photo-induced Hartree shift should be larger
for smaller κ0.

Now, let us focus on the photo-induced changes in the in-
terband Fock term. Using Eq. (11) we get

∆ΣF
k,αα = ΣF

k,αα(t)− ΣF
k,αα(eq)

= − 1

N

∑

q

V (q)∆ρk−q,αα(t) + Vloc∆ρloc,αα(t).

(C5)

Thus, from Eq. (C1) and Eq. (C5) we obtain

∆ΣF
k,αα +∆ΣH

αα = − 1

N

∑

q

V (q)∆ρk−q,αα(t), (C6)

where ∆ρk,αα < 0 (> 0) for the states below (above) the
FL. It follows that along the relevant direction Γ → M in
momentum space, the photo-induced changes in the Hartree-
Fock contributions to the GW self-energy lead to a flattening
of the bands directly after the pulse. This effect should be
larger for interactions with smaller κ0.

Appendix D: Polarisation function

Here, we calculate the temperature dependence of the local
component of the static polarization function, which is plotted

|
|

Figure 12: q = 0 component of the polarization function in the static

limit, Πq=0(ω = 0), calculated at different temperatures. Blue dots

are obtained from equilibrium GW real-time calculations, whereas

the black triangles show the result from the compressibility sum rule.

The gray dashed line shows the result of the analytical formula de-

rived in Ref. 21 in low temperature limit.
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Figure 13: (a) Temperature-dependent local spectral of a conventional metal (stronly doped BaNiS2). (b) Corresponding Ak(ω = 0) for

T = 0.07 eV plotted in the first Brillouin zone. (c) Real and (d) imaginary part of Wloc(ω) calculated for different temperatures (see labels in

panel (a)). The inset shows the corresponding q = 0 components.

in Fig. 12. As one can see, Πq=0(ω = 0, β) computed from
the compressibility sum rule

Πq=0(ω = 0, β) =

∫ ∞

−∞

dǫ

(

∂f(ǫ)

∂ǫ

)

D(ǫ), (D1)

shows a linear increase below T ≈ 0.1, which can be de-
scribed by the analytical expression for Dirac cone dispersions
derived in Ref. 21 (gray dashed line). In the above equation,
f denotes the Fermi function and D(ǫ) the density of states.

We note that for the comparison with our results we choose
a definition of the polarization function without a negative
sign. At higher temperatures one observes deviations from
this linear behavior, which originate from thermal excitations
beyond the Dirac region. Within our GW approximation,
the Dirac behavior of the polarization (Πq=0(ω = 0) =

Tr[ReΠ̂q=0(ω = 0)]) is not entirely reproduced (see blue line
in Fig. 12). The reason is that GW breaks the compressibility
sum rule, which can be restored by including vertex correc-
tions beyond the GW approximation.38 However, at T . 0.1
we still see a qualitatively similar temperature dependence
with a positive temperature slope, which is qualitatively differ-
ent from the temperature dependence for conventional metals.

Appendix E: Equilibrium screening in a conventional metal

To illustrate the different screening behavior in a conven-
tional metal, compared to the Dirac semi-metal BaNiS2, we
analyze the temperature dependence of the screened interac-
tion in a highly doped system (≈ 50%). We consider the
model described by Eq. (1) and shift the chemical potential
away from the Dirac points to approximately the energy of
the upper peak in Aloc (see Fig. 13(a)). This results in a large,
ring-shaped Fermi-surface, as shown in Fig. 13(b).

The calculation of the real part of the screened interaction
1
2 Tr[ReŴloc] at different temperatures in this conventional
metallic case yields a reduced screening with increasing T
(see Fig. 13(c)), and a long-ranged static component which is
almost completely suppressed at T = 0.2 eV. In the imaginary
part of Wloc one finds a pronounced peak around ω ≈ 2.0 eV
(see Fig. 13(d)), which approximately corresponds to the band
splitting, as shown in panel (a). This peak is slightly shifted
to lower energies by decreasing T . In the long-range part of
the interaction (inset) one observes a similar shift of the peak
at ω ≈ 6 eV. Interestingly, for ω ≤ 1 eV, we see a clear en-

hancement of 1
2 Tr[ImŴloc] with decreasing temperature.

These results illustrate that the screened interaction (and
polarization) in a conventional metal show the opposite tem-
perature behavior from a Dirac semi-metal, such as BaNiS2

(c.f. Fig. 5).
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