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ABSTRACT: Light sources on the scale of single molecules can be
addressed and characterized at their proper sub-nanometer scale by scanning
tunneling microscopy-induced luminescence (STML). Such a source can be
driven by defined short charge pulses while the luminescence is detected with
sub-nanosecond resolution. We introduce an approach to concurrently image
the molecular emitter, which is based on an individual defect, with its local
environment along with its luminescence dynamics at a resolution of a billion
frames per second. The observed dynamics can be assigned to the single
electron capture occurring in the low-nanosecond regime. While the emitter’s
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location on the surface remains fixed, the scanning of the tip modifies the
energy landscape for charge injection into the defect. The principle of measurement is extendable to fundamental processes beyond

charge transfer, like exciton diffusion.

KEYWORDS: Scanning tunneling microscopy-induced luminescence, nanosecond imaging, charge injection, charge dynamics

Energy conversion in both artificial and natural systems
proceeds via a sequence of fundamental processes
occurring at the quantum level of single photons and single
electrons. The individual charges during redox reactions,
biosynthesis, and light emission from optoelectronic devices
undergo a series of processes like tunneling, hopping, or
recombination leading to measurable chemical, electronic, or
optical signals."” In particular, the tunneling of the electron
through short molecular bridges plays a crucial role in electron
transport within molecular wires’ and between nucleic acids.'
While these charge transfer processes can be of a few
picoseconds or less, they are typically an order of magnitude
slower” when the transfer distances are increased to a few
nanometers and are thus accessible at the sub-nanosecond
temporal scale and controllable at the sub-nanometer spatial
scales.

Probing charged species with such spatial control can be
achieved using scanning tunneling microscopy (STM). This
approach is sensitive to the electronic density of states which
enables electronic spectroscopy and imaging of charged single
atoms,” molecules,® and defects,” '’ including elucidation of
intramolecular details if combined with atomic force
microscopy.’’ These studies, however, investigated static
systems, in which a charge was either permanently residing
in the system or replenished faster than the time resolution of
the measurement. Requiring the measurement of small
currents in the pA range, the temporal resolution of STM is
typically limited to millisecond resolution. This limitation can
be overcome by using advanced methodologies like all-
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electronic pump—probe spectroscopy'~ or coupling with
ultrafast laser pulses.”~"> In such experiments, the signal is
detected by employing the STM tunnel current to read out the
averaged response of the system that varies with the delay
between the applied (pulses. Employing STM-induced
luminescence (STML)'® in contrast provides a specific
selectivity to processes that result in photon emission, in
particular to electroluminescence of molecular emitters,'®™>’
including charged species,'”'” and allows steady-state sub-
molecular mapping of electroluminescence.””~>* Thanks to
time-resolved single-photon detectors, the STML sisgnal can be
probed with sub-nanosecond temporal resolution,”**** albeit
limited to local point measurements. In our work, we map the
electroluminescence in the time-domain and record optical
nanometer—nanosecond snapshots of light emitted by single
defects in thin organic films that light up within a few
nanoseconds after pulsed electronic excitation. Because photon
emission is intimately linked to electron injection, the
electroluminescence delay can be used as a real-time and
real-space monitor of the occurrence of an individual
nanosecond electron transfer process. The short lifetime of
the intermediate singlet excitonic state (<1 ns), which converts
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the charge injection into light emission, preserves the time
resolution of the measuring principle. The injection rate
depends on the position of the STM tip, which remote-
controls the electric field at the defect.

The experiment is schematically presented in Figure la. We
study time-resolved STML (TR-STML) from individual
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Figure 1. Probing the single electron injection dynamics. (a)
Experimental scheme. Negative nanosecond voltage pulses (100 ns
long, 1 ns rise/fall time) are applied to an STM junction. The pulses
enable photon emission from an individual emission center (EC) in a
Cyo thin film, which is recorded as a function of the delay with respect
to the pulse arrival. The measured exponential onset is a probe of the
single electron injection time (z,). By varying the tip position on the
surface, we map 7, with nm spatial precision. (b) Energy diagrams
illustrating the mechanism of the electroluminescence, which is a
result of a sequence of events labeled on top of the panel. t = tip, s =
Au substrate.

defects in thin Cgy films*>***"**° grown on a Au(111)

substrate using a cryogenic (4 K) STM with optical access.
The light emission from the defect is 1periodically induced by
high-fidelity 100 ns long square pulses "> with sharp edges
(~1 ns rise time) and an amplitude Upuise added to the static
bias voltage. The response of the system is probed by
recording TR-STML intensity transients, P(t), with sub-ns
time-resolution (see the Methods section for more details),
which reveal an exponential rise and decay with respect to the
applied square pulse both encoding the time (z,) a single
electron takes to be captured in the defect from the substrate
after a hole has been injected from the tip.”” This approach
relies only on the optical signal and does not require a peculiar
electronic configuration to access charge-injection rates.”**
In a first step, the geometry of the defect and its
neighborhood are studied by STM topography. C4, molecules
are resolved internally revealing their individual orientation in
the top layer of the thin (<10 nm) film (Figure 2a). The
simultaneously recorded electroluminescence yield at each
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pixel (photon map, Figure 2b) shows the spatially confined
emission center (EC) localized around the molecule numbered
as 1. It is known from earlier studies that ECs in Cy are related
to structural defects that trap a hole and an electron and enable
emission, otherwise symmetry forbidden, from the lowest
singlet electron—hole state (exciton) of Cgo 220272930 (Figure
2c). The optical emission spectra at an increasing distance
from the EC, measured on molecules with identical
orientation, still show the characteristic emission lines of Cg,
(Figure 2¢).** The origin of this specific EC is further
discussed in the Supporting Information.

When the bias voltage of the STM is driven more negative
by the transient voltage pulse than the applied static negative
voltage, it enables hole injection into a neutral defect state
(EC°) (left panel in Figure 1b) such that it becomes transiently
charged (EC*). This defect is then neutralized by a single
electron transfer from the Au(111) substrate, which occurs
within time 7, (middle panel in Figure 1b). Note that the
electron transfer from the substrate is substantially enhanced
by the strong electrostatic potential of the trapped hole which
shifts the electron defect level below the Fermi energy of the
substrate (Eg,).”” This process results in the creation of an
electron—hole pair (exciton) at the defect that may decay
radiatively by emitting a photon (right panel in Figure 1b). In
this study, we apply voltage pulses of amplitude U, that
move the Fermi level of the tip (Eg,) from inside the band gap
between the states derived from highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) of the C4 film to the highest lying HOMO states
within 1 ns, switching on charge injection and subsequent
photon emission.

In the next step, we study in detail the dynamics of this
electron injection process as a function of lateral position. We
choose 3 molecules (numbered 1—3) with identical orientation
(hexagon—hexagon bond facing upward) where the same local
density of states (LDOS) results in same tip height for a fixed
tunneling current set point. This is particularly critical for
comparing the respective dynamics at the molecules since the
electron transfer rate depends strongly on the tip—sample
distance.”” For consistency, we show that the emission spectra
are identical at all three positions (Figure 2c) exhibiting no
plasmonic contribution®”** and varying only in intensity. We
record the electroluminescence transients at the marked
positions and plot them in Figure 2d. As observed directly
from the TR-STML signal, the dynamics encoded in the rising
and falling edges of the light pulse slow down when hole
injection from the tip occurs farther from the center of the EC.
Here, we would like to stress that the exciton recombination
and photon emission are believed to always occur at the center
of the EC, close to molecule 1. Only at this position are the
selection rules relaxed, and the emission is permitted.zz’29 The
exciton lifetime remains shorter than 1 ns, and the hole
injection is comparatively slow (us regime) due to both the
tunneling current and trapping efficiency being low,***” such
that the majority of the current passing through the system
does not contribute to the luminescence. Because these
processes occur at time scales that are different from the one
observed in the experiment, the dynamics observed in the
luminescent transients can be related to the electron injection
from the substrate. Its rate can be obtained by fitting the
transient to a kinetic model describing the sequence shown in
Figure 1b.”7*® In Figure 2e we plot the extracted 7, as a
function of the distance from the central molecule (1) and find
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Figure 2. Electron transfer time to the defect as a function of the lateral tip position. (a) Constant current STM topography U = =3 V, I = 30 pA,
scale bar 2 nm. (b) Electroluminescence yield map (photon map) recorded simultaneously with panel a. Color scale bar: 0—60 counts/(s pA). (c)
Optical spectra recorded at positions marked in panels a and b. U = —3 V, I = 30 pA. The traces are offset for clarity; the dashed line indicates the
baseline. (d) TR-STML transients measured at positions marked in panels a and b, average current during the pulse, I ulse = 12 pA, Uy, = —2.83 V,
U, = —2.53 V. The dashed lines represent fits to the kinetic model. The extracted 7, values are indicated next to the traces. (e) Electron injection
time measured at different horizontal positions (1—3) and different vertical offsets (Az) ulse = 12 pA (Az=0pm), I pulse = 20 PA (Az=-20 pm),
Louise = 37 pPA (Az = =35 pm). The dashed lines are guides to the eye. The vertical error bars are the fitting errors. The horizontal error bar is 5%
error of the distance measurement.
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Figure 3. Electron injection dynamics as a function of the position on the surface. (a) Map of electron injection. The time constants are extracted
from TR-STML transients measured on a 10 X 7 grid (400 s integration time per pixel, U,, = —2.83 V, U4 = —2.53 V) and spatially interpolated.
(b) Photon map of the same region as in panel a. An overlay of the Cq lattice at the interface (grid) is represented by dashed circles (lines). The
color scale intensity ranges from 0 to 10 kets/s. (c—f) Light intensity snapshots extracted at the indicated time delays after the arrival of the pulse to
the junction. The images are normalized to the maximal light intensity over the whole data set, which is presented in Video SI. (g—j) Light
intensity snapshots normalized to the maximum on each pixel reached after ca. S0 ns. The luminescence reaches its maximum faster at the center of
the EC (lower part of the images). All scale bars are 1 nm.
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the potential barrier when the tip moves away from EC".

that it increases from 3 to 8 ns when moving away laterally by
4 nm. Additionally, in line with our previous observations, we
find that 7, decreases when the tip—sample distance is reduced
(three curves in Figure 2¢).”” This can be ascribed to a
reduction of the energy barrier at the Cqo/Au(111) interface
due to the increase of the electrical field.

Next, we extend our analysis by mapping the charge-
injection times as a function of the tip position near an EC by
measuring TR-STML transients on a 10 X 7 point grid (see the
Methods section). In Figure 3a, we plot a spatially interpolated
map of extracted 7., and in Figure 3b, we present the photon
map to compare the spatial extension of the EC. As observed
in Figure 2d, the electron injection time to EC" increases when
the tip is located at the periphery of the EC.

The measurements described above can also be represented
in a sequence of images showing the time evolution of light
emission by slicing the 3-dimensional data block along
constant delay times. At first, we compare the map of fitted
steady-state intensity (Figure 3f) that is usually reached after
30—40 ns (see Figure 2d) with the photon map (Figure 3b) of
the same area. Indeed, the snapshot reproduces correctly the
spatial extent of the EC, measured by the spectrally integrated
photon map. Next, we present the snapshots for various delays
in Figure 3c—f, which are normalized to the highest recorded
intensity within the whole data set. As expected from the
lateral dependence of the charging time (Figure 2), the light
intensity evolves slower when the tip is positioned at the
periphery of the EC and is a direct visualization of the increase
in the electron capture time. This time evolution is emphasized
in Figure 3g—j, where each point has been scaled to its
intensity maximum reached under steady-state conditions so
that each pixel eventually reaches a value of 1. For instance,
Figure 3h,i demonstrates that, in the central part of the EC
(lower part of the images), the relative intensity is higher than
at the peripheries (upper part of the images). By measuring the
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nanosecond-resolved light emission using TR-STML, we can
thus probe and follow the single charge transfer time in 4
dimensions at the molecular scale with GHz frame rates
(intervals of 0.7 ns) as visualized in Video SI.

The observed reduction in the electron injection rate (i.e.,
increase in the charge transfer time constant) as a function of
the distance from the central position of the EC can be
explained by the electric field inside the Cg, film. The electron
and hole trap states have the LDOS maximum in the center of
the EC with the LDOS decaying with the lateral distance.”
Thus, when the tip is localized at the periphery of the EC, the
hole can still reach the defect state and create a charged defect
state EC*. Additionally, the probability of trapping the hole at
the defect is reduced compared to the central positions of the
EC, because it is more likely that the hole will be transported
through the semiconducting Cg, layer directly to the substrate.
This results in a lower electroluminescence yield, as shown in
Figure 2d (number of counts per time bin) and Figure 3b. The
electron capture by EC™ is purely field-driven, does not involve
transport from the tip, and thus constitutes a parameter
independent of the emission intensity. It is induced at some
distance away from the tip apex, similarly as the sharp rings
observed in dI/dV maps which indicate local charging effects
by the tip stray field.””'% The electric field is controlled by the
tip position as confirmed by electrostatic calculations (see the
Methods section) shown in Figure 4. Remarkably, when the tip
is located at the periphery of the EC, the electric field is
reduced but still sufficiently strong at the EC' position,
allowing the electron to tunnel. In Figure 4c, we compare the
potential energy situation for the cases in Figure 4a,b and find
that the potential energy barrier for the electron injection from
the substrate is increased by 0.1 eV (AE) when the tip is
displaced 2.5 nm from the location of the hole. AE increases
gradually when the tip is moved away from EC" as plotted in
Figure 4d, which slows down the exciton formation process

https://doi.org/10.1021/acs.nanolett.1c00328
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(Figure 2e). A similar energy barrier increase is observed when
the tip is retracted from the surface above the defect,”’” as
shown in Figure 2e.

Alternatively, one might assume that the exciton formation
due to charge injection occurs always below the tip apex
followed by exciton diffusion toward the defect where the
exciton would radiatively decay. In that case, the observed
increase of the time constant could be related to the diffusion
time of the exciton. However, the diffusion process of the
exciton occurs within its lifetime that is shorter than the
resolution of the experiment for our ECs and thus cannot be
resolved. Even though this scenario is consistent with the
intensity falloff with distance from the defect, it is not
compatible with the observed slowed-down dynamics at a large
distance. Exciton formation away from the defect would rather
require a constant or even shorter electron injection time since
in this scenario the hole would not get trapped and rapidly
move to the substrate—driven by the strong electric field.
Finally, we can exclude that the increased nanosecond time
delay results from the diffusion of the hole injected by the tip
at some nanometer distance from the defect, as the charge
hoppinggtime in C4y was reported to be in the femtosecond
regime.”

In conclusion, we establish an approach to image a light
emitter at the nanoscale and map the evolution of its light
emission with a rate of 10° frames per second, an approach that
goes beyond the steady-state submolecular mapping using
STML. The observed luminescence evolution reflects the
electron transfer from the substrate to a localized emitter and is
controlled by the electric stray field of the STM tip, mimicking
the energy landscape modifications induced by localized
charges and different molecular species. While the overall
charge transport in our system is dominated by the current
passing through the HOMO-derived states, monitoring
electroluminescence allows us to be sensitive to the electron
injection to the defect only. We envision our approach to be
used in future studies to explore single-electron injection
dynamics that reach even submolecular resolution with single-
molecule emitters or atomic point defects. In a material whose
exciton lifetime is increased, for instance, based on triplet
emission, the method presented here could be adapted to
study exciton diffusion in real time.

B METHODS

Scanning Tunneling Microscopy-Induced Lumines-
cence. All experiments were performed using a home-built
ultra-high-vacaum low-temperature (4 K) STM with optical
access provided by three lenses located in the STM head with
their focus on the tip apex. We couple one of the resulting
three independent light paths to a single-photon avalanche
photodiode (SPADs, MPD-PDM-R) and another one to an
optical spectrometer (spectrograph, Acton SP 300i; CCD
camera, PI-MAX). The Au(111) crystal is prepared by
repeated cycles of Ar" sputtering and annealing (up to 850
K). Cy is thermally evaporated from a Knudsen cell (850 K)
for 1 h on the crystal held at room temperature.

Time-Resolved Measurements. Transmission function-
corrected””*” voltage pulses (2 MHz repetition rate, 100 ns
length, 1 ns rise/fall time) are produced by an arbitrary wave
generator (AWG, Agilent M8190A) and sent to the tunnel
junction through high-frequency optimized wiring (semirigid
and coaxial cables). The amplitude of the pulses is —300 mV,
which is added to the DC offset bias (U,s) by a bias tee

(Picosecond Pulse Laboratories, S550B). L, is defined as the
tunneling current measured at U, for the same tip—sample
distance as during the pulse measurement. For the measure-
ments shown in Figure 3, the feedback loop was off during
acquisition of the transient but turned on between the
measurements to correct for the z drift of the STM tip. To
minimize the overall drift, the tip was stabilized at the EC for
10 h before the series. The integration time per point was 400
s. More details on the measurement can be found in the
Supporting Information.

Electrostatic Calculations. The calculations are done with
Mecway finite element analysis software (Mecway Ltd.) in the
full 3D geometry of the problem. The results are represented
in the figures by a cut along the symmetry plane of the
geometry defined by the tip axis and the position of the charge.
For details, see the Supporting Information.
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The Supporting Information is available free of charge at
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Size of the emission centers, details of the character-
ization of the single electron injection dynamics in
Figure 2, details of the grid measurement, electrostatic
potential calculations, and supporting references (PDF)

Video S1: evolution of sub-nm electroluminescence in
0.7 ns intervals (AVI)
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