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1 Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France, 2 Centre
de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France, 3 Danish
Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular Medicine,
Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark

Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly
uneven distribution within cellular membranes, essential for establishment of cell polarity
and other processes. In this review, we discuss how combined action of PS biosynthesis
enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within
membrane contact sites (MCS) between the ER and other compartments, and lipid
flippases and scramblases that mediate PS flip-flop between membrane leaflets controls
the cellular distribution of PS. Enrichment of PS in specific compartments, in particular
in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which
can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling
between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS
transfer by passive flow. Such scenario is best documented by recent work on the
formation of autophagosomes. The existence of lateral PS nanodomains, which is well-
documented in the case of the PM and postulated for other compartments, can change
the steepness or direction of PS gradients between compartments. Improvements
in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular
samples, reconstitution of cellular lipid transport reactions and high-resolution structural
data have greatly increased our understanding of cellular PS homeostasis. Our review
also highlights how budding yeast has been instrumental for our understanding of the
organization and transport of PS in cells.

Keywords: phosphatidylserine, membrane asymmetry, lipid transfer protein, flippase, lipid scramblase,
membrane contact site, lipid domain, budding yeast

INTRODUCTION

Membranes of eukaryotic cells are composed of numerous lipid species. Many lipids are not
homogenously distributed within the cells, but instead are enriched in specific compartments
or even in sub-regions of a particular membrane compartment. This is particularly true for
phosphatidylserine (PS), a glycerophospholipid with a negatively charged headgroup. Although
PS, like many other lipids, is synthesized in the endoplasmic reticulum (ER), it is highly enriched
in the plasma membrane (PM) and in late endocytic compartments, in particular in their cytosolic
leaflet. Indeed, PS is by far the most abundant anionic phospholipid in the PM and accounts for
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∼20–30 mol% of its inner leaflet. PS is thus a key player in the
establishment of the “electrostatics” membrane territory in the
late secretory pathway (Bigay and Antonny, 2013; Holthuis and
Menon, 2014), as opposed to the territory of loose lipid packing
and low charge at the ER and cis-Golgi. In the “electrostatics”
territory, where bilayers are thicker and membrane packing
defects are reduced – due to a higher concentration of sterols and
saturated sphingolipids – PS fine-tunes interaction of peripheral
proteins with membranes. For example, K-Ras, a small GTP
binding protein that activates mitogen-activated protein kinase
(MAPK) signaling cascade via the effector Raf, is targeted to
the PM of mammalian cells via a C-terminal polybasic domain
followed by a farnesyl lipid anchor. Ras nanocluster formation
is perturbed by depletion of PS from the PM or by PM
depolarization (Zhou et al., 2015), resulting in modulation of
the signaling output. Similarly, PS controls the nanoclustering
of the yeast small GTPase Cdc42, which is essential for the
establishment of cell polarity (Sartorel et al., 2018; Meca et al.,
2019), and the Rho of Plants (ROP) family member ROP6
(Platre et al., 2019).

In this review, we will discuss cellular mechanisms that
contribute to the establishment of PS gradients between
and within membrane compartments, primarily focusing on
the budding yeast Saccharomyces cerevisiae. We will discuss
the contribution of PS synthesis and degradation, of the
transfer of PS between compartments within membrane
contact sites (MCS), and of PS flip-flop between membrane
leaflets. We will also review work on the presence of lateral
domains of PS within compartments, which introduce additional
gradients. Finally, we will highlight some recent research on
PS transport during autophagy, which illustrates how different
lipid transport pathways combine to distribute PS between
membrane compartments.

CELLULAR DISTRIBUTION OF PS AT
STEADY STATE

Early studies of PS subcellular distribution relied on membrane
fractionation followed by determination of the lipid content
using amine-reactive chemicals in association with biophysical or
chromatographic methods [reviewed in Leventis and Grinstein
(2010)]. In yeast, a complete study of the lipid composition of
subcellular membrane fractions by thin layer chromatography
revealed that PS mostly accumulated in the PM (33%) and
secretory vesicles (13%), whereas levels in the vacuole, the
nucleus, in mitochondria and in microsomes (ER fraction)
were around 3–6% (Zinser et al., 1991). Subsequent analysis
by mass spectrometry also revealed differences in acyl chain
composition of PS in different compartments in yeast, with
the PM mostly containing mono-unsaturated PS composed of
one oleic (C18:1) and one palmitic acid (C16:0), whereas di-
unsaturated PS was most prominent in the nuclear/ER and Golgi
membranes (Schneiter et al., 1999). The distribution of PS is
similar in mammalian cells, with PS representing ∼10–15 mol%
of the total lipid content of the PM (Leventis and Grinstein,
2010). Early biochemical studies using enzymatic degradation

by phospholipases, first performed on the PM of red blood
cells, also suggested that PS, as well as phosphatidylethanolamine
(PE), were almost exclusively located in the cytoplasmic leaflet
of this membrane, introducing the concept of transbilayer lipid
asymmetry, i.e., a difference in lipid concentration between two
leaflets of the same membrane (Verkleij et al., 1973).

Whereas fractionation methods suffer from possible cross-
contamination between membranes, higher PS concentration
in the PM and the endosomal system of eukaryotic cells was
subsequently confirmed in living cells by the use of genetically
encoded PS-specific probes, namely the Ca2+-independent
C2 domain of lactadherin (Yeung et al., 2008; Fairn et al.,
2011b) or the PH domain of evectin-2 (Uchida et al., 2011).
Comparison of PS surface staining using extracellular fluorescent
probes confirmed the largely cytosolic orientation of PS at
the PM of mammalian cells at resting state, whereas PS
became exposed in the external leaflet in cells undergoing
apoptosis (Fadok et al., 1992). A recent study from the Levental
group using phospholipase digestion of red blood cells coupled
with quantitative mass spectrometry confirmed the strongly
asymmetric distribution of PS at the PM, with ∼95% of PS
residing in the cytosolic leaflet. This work further revealed a
striking difference in acyl chain saturation between the two
leaflets, with the outer leaflet containing 35 mol% of saturated
lipids, whereas the majority of cytosolic leaflet lipids, including
PS, contained poly-unsaturated acyl chains (Lorent et al.,
2020), consistent with the fact that PS is highly unsaturated
in mammalian cells (Takamori et al., 2006). Such acyl chain
asymmetry has been shown to facilitate PM deformation in silico
(Tiberti et al., 2020).

The transbilayer distribution of PS in endomembranes is
less clear, and is particularly controversial for the ER. Because
the ER is a biogenic membrane that needs to be able to
quickly expand, it was proposed that phospholipids synthesized
on the cytoplasmic face of the ER should be rapidly flipped
toward the luminal leaflet by an as yet unidentified non-specific
and constitutive scramblase, which would be consistent with a
symmetrical distribution of phospholipids in the ER membrane
(Sanyal and Menon, 2009). However, biochemical studies using
microsomal purification, phospholipase treatment and thin layer
chromatography found accumulation of PS in the luminal leaflet
of the ER in rat liver cells (Higgins and Dawson, 1977; Bollen
and Higgins, 1980). More recently, electron microscopy has
been used to address this issue. Using an on-section approach
and purified Lact-C2 protein fused to GST as an epitope for
immunogold labeling, Fairn et al. (2011b), in agreement with
the earlier biochemical studies, showed accumulation of PS in
the luminal side of the ER and the Golgi apparatus, whereas PS
became exposed cytosolically at the trans-Golgi network.

Freeze-fracture replica labeling (FRL) methods have also
been developed. Quick freezing of the specimen minimizes
membrane reorganization during sample preparation. The
membrane is then split into two leaflets, lipids and proteins
are fixed on a metal cast and lipid distribution is examined
by electron microscopy using specific lipid probes that are
recognized by gold-conjugated antibodies (Fujimoto et al., 1996;
Fujita et al., 2010). Such approach indicated that in human
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red blood cells, phosphatidylcholine (PC) and sphingomyelin
were exclusively located in the outer PM leaflet, whereas PE,
PS, phosphatidylinositol (PI), and phosphatidylinositol 4,5-
bisphosphate (PI(4,5)P2) were only found in the cytosolic leaflet
(Murate et al., 2015), in agreement with previous studies using
phospholipases. PS was also detected almost exclusively in the
cytosolic leaflet of the PM in human skin fibroblasts (Murate
et al., 2015; Tsuji et al., 2019). However, Tsuji et al. (2019) found
PS labeling predominantly in the cytoplasmic leaflet of the ER
in mouse embryonic fibroblasts, unless the cells were treated
with a Ca2+ ionophore, contradicting the results of Fairn et al.
(2011b). In yeast, using the evectin-2 PH probe they found PS
more or less evenly distributed between the two leaflets of the
ER, the nuclear membrane and the mitochondria. In contrast, the
labeling of the cytoplasmic leaflet of the Golgi and the vacuole was
much more pronounced than the luminal leaflet, indicative of a
strong asymmetric distribution of PS in those organelles. In the
PM and the vacuolar membranes, only cytosolic leaflets showed
PS accumulation (Tsuji et al., 2019).

The group of Fujimoto further delved into transbilayer lipid
asymmetry and its role in autophagosome formation (Orii
et al., 2021). They evaluated PS, PC, and phosphatidylinositol
4-phosphate (PI(4)P) asymmetry in yeast autophagosomal
membranes, autophagic bodies and vacuoles. They confirmed
that PS is largely confined to the cytosolic leaflet of the

vacuole in normal growth conditions but, interestingly, in
conditions favoring autophagy, PS, PI(4)P, and PC were found
evenly distributed over the two leaflets of autophagosomes
and autophagic bodies, suggesting that a general mechanism
enables transbilayer phospholipid movement in isolation
membranes/autophagosomes. This question will be further
discussed in Section “Lateral Organization of PS in Membranes.”

Altogether, these various studies indicate that, in healthy
cells (i.e., not undergoing apoptosis), PS accumulates in the
cytoplasmic leaflet of the PM. However, the exact content and
distribution of PS in endomembranes is less clear. Further studies
will be needed to resolve these discrepancies, as well as a better
understanding of the mechanisms that govern PS homeostasis.

PS SYNTHESIS AND DEGRADATION

Many pathways contribute to the cellular metabolism of PS, with
parallels but also differences between yeast and mammalian cells
(Acoba et al., 2020; Vance, 2020). In yeast, PS synthesis proceeds
via a single pathway, where the rate-limiting step of transfer
of phosphatidyl group from CDP-diacyglycerol to L-serine is
catalyzed by the integral ER membrane PS synthase Cho1 (Henry
et al., 2012) (Figure 1). Interestingly, this enzyme is not essential:
although the growth of cho11 cells is severely affected and the

FIGURE 1 | Overview of main PS metabolic and transport pathways in budding yeast. See text for details. Shades of purple indicate approximate relative PS
concentration in different membranes or leaflets. PS is represented with a purple headgroup. Red arrows indicate PS transport pathways that require energy
(transport against concentration gradient), whereas black arrow indicate passive PS transport. E – endosome, IMM – inner mitochondrial membrane, M –
mitochondria, OMM – outer mitochondrial membrane, TGN – trans-Golgi network, Vac – vacuole.
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cells display defects in cell polarity, yeast cells can survive without
PS (Hikiji et al., 1988; Fairn et al., 2011a). Similar observations
have been made in plants (Platre et al., 2018).

Several lines of evidence suggest that the active site of Cho1
faces the cytosol. First, both substrates for this reaction are
synthesized in the cytosolic environment, CDP-diacylglycerol
in the cytosolic leaflet of the ER by Cds1 (Tamura et al.,
2013) and L-serine in the cytosol by dephosphorylation of
3-phosphoserine by Ser2 (Albers et al., 2003). Second, Cho1
belongs to the CDP-alcohol phosphatidyltransferase (CAPT)
superfamily (pfam01066) of enzymes, which share the 25-30
amino acid long CAPT motif in their active site. Topology
predictions place the CAPT motif of Cho1 in the cytosolic
side of the ER (Bochud and Conzelmann, 2015), in agreement
with analyses of phosphorylation and ubiquitylation sites
(Swaney et al., 2013). Interestingly, whereas Cho1-GFP fusion
localized throughout the ER, Cho1 enzymatic activity was
shown to be significantly increased in PM-associated and
mitochondria-associated ER membranes (PAM and MAM),
suggesting localized synthesis of PS (Vance, 1990; Gaigg et al.,
1995; Pichler et al., 2001).

In mammals, PS synthesis proceeds via two pathways
involving PS synthases-1 and 2 (PSS1 and PSS2), which are both
enriched in MAM, and which catalyze the exchange of serine for
choline of PC and for ethanolamine of PE, respectively (Leventis
and Grinstein, 2010). Point mutations in PSS1 lead to a rare
genetic disease, the Lenz–Majewski syndrome, and correlate with
increased levels of cellular PS (Sohn et al., 2016). This effect is
explained by product inhibition of PSS1 by PS, which is alleviated
by the Lenz–Majewski mutations. Interestingly, these mutations
are predicted to affect protein regions exposed to the ER lumen,
opening topological questions regarding the mechanism of PS
synthesis by PSS1. In yeast, Cho1 was also suggested to be
negatively regulated by PS (Kannan et al., 2017) as well as by
phosphorylation via PKA (Henry et al., 2012).

Cho1 levels are also regulated at the transcriptional level by the
Henry regulatory circuit, which involves the repressor Opi1 and
the Ino2-Ino4 activator complex (Henry et al., 2012). PA levels in
the ER control the circuit by mediating the recruitment of Opi1
and allowing Cho1 expression during exponential phase, whereas
in stationary phase, PA is used for synthesis of triacylglycerol
and Opi1 represses the expression of lipid biosynthetic genes,
including Cho1 (Loewen et al., 2004; Hofbauer et al., 2018).

In both yeasts and mammals, PS metabolism has been linked
to the metabolism of phosphoinositides via the PI 4-kinase Stt4
(Trotter et al., 1998) and the PI(4)P phosphatase Sac1, which
localizes to the ER. In mammals, increased PS levels in the ER
directly activate Sac1 (Sohn et al., 2016), and in yeast, deletion
of Sac1 was shown to decrease PS levels and change its cellular
distribution (Tani and Kuge, 2014).

In yeast as well as in at least some mammalian cell types,
the main pathway of PS consumption is via decarboxylation
into PE (Vance, 2020) (Figure 1). Mammalian genomes encode
a single PS decarboxylase, PISD, which localizes to the inner
mitochondrial membrane (Kuge et al., 1991). Deletion of this
gene in mice leads to abnormal mitochondrial morphology
and embryonic lethality (Steenbergen et al., 2005). Two PS

decarboxylases, Psd1 and Psd2, are present in yeast; psd11 psd21
cells are auxotrophic for ethanolamine, because PE can only
be generated via the Kennedy pathway (Storey et al., 2001).
Psd1 has been localized to the inner mitochondrial membrane,
where high PE levels, particularly generated at this location,
are important for maintaining proper mitochondrial function
(Bürgermeister et al., 2004; Calzada et al., 2019). However, a
recent study suggests that a fraction of Psd1 resides at the
ER, and that the ratio between the two pools is modulated
according to metabolic needs (Friedman et al., 2018). Similarly,
an alternatively-spliced form of the mammalian PISD has been
shown to localize to lipid droplets (Kumar et al., 2021). For the
second yeast decarboxylase, Psd2, early reports using subcellular
fractionation suggested that it localized to the Golgi and the
vacuole (Trotter et al., 1995), which is supported by the presence
of a Golgi retention sequence in Psd2. More recent work suggests
primarily endosomal localization for Psd2 (Gulshan et al., 2010;
Ma et al., 2018; Wang et al., 2020). It is clear that decarboxylation
of PS to PE requires export out of the ER to reach Psd1 and Psd2
or PISD in mammalian cells.

PS can also be deacylated into lyso-PS, which can be coupled
with acyl chain remodeling, but these reactions are not well
explored. Two yeast phospholipases B, Pbl2, and Pbl3, are
reported to have broad phospholipid specificity (Henry et al.,
2012). Another phospholipase B with broad specificity, Lbl1, has
been suggested to function on lipid droplets (Selvaraju et al.,
2014). In mammalian cells, lyso-PS has been shown to act as a
signaling molecule and can be further degraded into glycerol-
phosphoserine and a free fatty acid (Omi et al., 2021). Finally,
phospholipids can be degraded via the autophagy pathway by
the lipase Atg15 residing in the vacuole, but the function of this
enzyme also remains to be explored (Hirata et al., 2021).

EXPORT OF PS FROM THE ER

The overall low concentration of PS at the ER suggests that the
majority of PS is exported out of the ER after synthesis. One
major way of lipid transport is via the vesicular pathway; however,
vesicles in general lack mechanisms for selective transport of
lipids, therefore vesicular transport will tend to equilibrate lipid
composition of different compartments. In contrast, lipid transfer
proteins (LTPs) can be highly selective for specific lipid species
and can create strong lipid gradients, notably by coupling the
transport of two or more lipid species (Wong et al., 2019;
Lipp et al., 2020). Whereas vesicles will maintain the bilayer
distribution of a phospholipid, LTPs only have access to one
bilayer leaflet, i.e., the cytosolic leaflet in the case of cytosolic
LTPs. By selectively depleting PS from the cytosolic leaflet of
the ER or other compartments, and enriching it in cytosolic
leaflets of other compartments, LTPs will therefore influence the
transbilayer asymmetry.

Lipid transfer proteins usually function within MCS,
regions of close apposition between two (or sometimes more)
compartments, which are stabilized by protein tethers that
simultaneously contact two compartments (Wong et al., 2017;
Wu et al., 2018). Because the ER forms MCS with most other
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cellular compartments, PS can potentially be directly transferred
anywhere in the cell via an LTP (Figure 1).

The first MCS was identified between the ER and the
mitochondria. Pioneer work by Jean Vance suggested that the
MAM fraction of the ER is involved in lipid exchange between
the two compartments (Vance, 1990). Because PS is used as
a substrate for synthesis of PE by the PS decarboxylase Psd1
in the inner mitochondrial membrane, LTPs must exist to
transfer PS from the ER to the mitochondria. Early biochemical
studies identified protein fractions displaying PS-transfer activity
(Butler and Thompson, 1975; Lafer et al., 1991). Within
the mitochondria, PS transfer from the outer to the inner
mitochondrial membrane, mediated by Ups2 and Mdm35, has
been well characterized (Watanabe et al., 2015; Aaltonen et al.,
2016). In contrast, the identity of LTP(s) that transfer PS from
the ER to the mitochondria remains highly debated (see Acoba
et al., 2020, for a recent in-depth review).

In yeast, the ERMES complex, which tethers the ER and the
mitochondria, was proposed to mediate transfer of PS and PC
via a hydrophobic tunnel formed by the SMP (synaptotagmin-
like mitochondrial lipid-binding protein) domains of ERMES
subunits Mdm12, Mdm34, and Mmm1 (Kornmann et al.,
2009; AhYoung et al., 2015; Jeong et al., 2017; Kawano
et al., 2017) (Figure 2A). However, ERMES mutants do not
display a strong defect in phospholipid distribution, suggesting
that additional proteins must be involved in PS transfer
to mitochondria. Furthermore, the ERMES complex is not
conserved in metazoans.

A number of studies suggest that an important lipid transfer
route between the ER and the mitochondria in yeast proceeds
via the vacuole and is mediated by vCLAMPs (vacuole and
mitochondria patch). The MCS is formed by Vps39, which
bridges the interaction between Ypt7 on the vacuolar and
TOM40 on the mitochondrial membrane (Elbaz-Alon et al.,
2015; Montoro et al., 2018; Acoba et al., 2020). Disruptions
of ERMES and vCLAMPs show synergistic effects, suggesting
that the two complexes mediate complementary lipid transfer
pathways. The large multi-subunit protein Vps13, which has
four human orthologs (VPS13A-D), has been shown to function
in the same pathway as vCLAMPs, and can be observed at

vacuole-mitochondria MCS as well as at the nucleus-vacuole
junction (Dziurdzik and Conibear, 2021). Like ERMES, Vps13
can tether two compartments by simultaneously binding to the
ER and to the membrane of another compartment (directly or
via an adaptor protein) (Figure 2B). Interestingly, Vps13 is also
important for the formation of the prospore membrane during
sporulation (Park and Neiman, 2012). Biochemical and structural
work suggests that the N-terminal part of Vps13 mediates
transfer of glycerophospholipids by forming an elongated tube
with a hydrophobic groove that can act as a bridge for lipid
crossing (Kumar et al., 2018; Li et al., 2020). Such set-up would
be very efficient and shared with the autophagy protein Atg2,
which is discussed at the end of this review. However, Vps13 does
not appear very selective and it has been suggested that it could
mediate bulk-flow of lipids to support membrane expansion by
coupling its activity with lipid synthesis on the donor and a
lipid sink on the acceptor membrane (Lees and Reinisch, 2020).
This model would be compatible with observations that PS
synthesis is enriched in the MAM fraction (Vance, 1990) and
that targeting of a heterologous PS synthase to ER-mitochondria
contacts promotes PS transfer to the mitochondria (Kannan et al.,
2017). Furthermore, on the mitochondrial side, decarboxylation
of PS to PE would provide a sink in the acceptor compartment,
provided that PS can be flipped to the inner leaflet of the outer
mitochondrial membrane. To what extent Vps13 participates in
the specific transfer of PS remains to be determined.

The studies on lipid transfer between the ER and the
mitochondria illustrate the complexity and plasticity of
lipid transport pathways, where lipids can reach the same
compartment via different routes, and one pathway can often
compensate for another.

In 2013, the group of Anne-Claude Gavin presented clear
evidence that two highly homologous yeast proteins, Osh6 and
Osh7, bind PS and mediate its transfer between the ER and
the PM, consistent with their enrichment at the cortical ER,
which represents ER-PM contact sites (Schulz et al., 2009;
Maeda et al., 2013). These two LTPs belong to a family of
seven yeast Osh proteins, homologous to the ORP family
of oxysterol-binding protein–related proteins. The ORP/Osh
proteins, which are present in all eukaryotes, are characterized by

FIGURE 2 | Schematic representation of proteins implicated in PS transfer in the cytosol. (A) The yeast ERMES complex tethers the ER to the outer mitochondrial
membrane (OMM) and could mediate passive flow of PS via a hydrophobic tunnel. This model is adapted from Kawano et al. (2017). (B) Vps13 acts as a lipid bridge
between the ER and different compartments, which it targets by interacting with compartment-specific adaptors (X). The yeast protein interacts directly with the ER
membrane (Dziurdzik and Conibear, 2021). (C) Osh6 in cooperation with Ist2 utilizes the PI(4)P gradient to transfer PS. (D) ORP5 and ORP8 represent the closest
mammalian orthologues of Osh6. They use a PH domain and a transmembrane domain to bind to the PM and the ER, respectively.
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a conserved lipid-binding domain (ORD, for oxysterol-binding
protein–related domain). Based on the observation that yeast
lacking six of the seven Osh proteins remain viable and lack
any strong phenotypes, Osh proteins were initially thought
to play redundant roles in the maintenance of cellular lipid
homeostasis (Beh et al., 2001). However, Osh proteins can be
observed in different cellular locations (Olkkonen and Li, 2013),
and crystal structures have shown that, despite their overall
similar fold, different ORDs can accommodate different lipid
species, phospholipids and/or sterols (Im et al., 2005; de Saint-
Jean et al., 2011; Maeda et al., 2013; Tong et al., 2013; Moser
Von, Filseck et al., 2015; Delfosse et al., 2020). The apparent
redundancy between Osh proteins must therefore rather be due
to a redundancy in lipid transport pathways and mechanisms
that drive lipid enrichment in different membranes, and/or to
compensatory effects between different lipid species. However, it
also cannot be excluded that, in cells, Osh proteins can be more
promiscuous with regards to the lipid species than what has been
reported with minimal systems in vitro.

Based on the conservation of critical histidine residues in all
ORD’s, the common ligand for all Osh/ORP proteins is likely
PI(4)P (Raychaudhuri and Prinz, 2010; Delfosse et al., 2020). It
was first demonstrated for Osh4 and its mammalian orthologue
OSBP that their ORDs can interchangeably accommodate a sterol
or a PI(4)P molecule, leading to a model whereby the two lipids
are exchanged in a single transfer cycle, with PI(4)P supplying
the energy required for transport of the counter lipids against
its concentration gradient, i.e., transfer of sterol from the ER to
the trans-Golgi network in the case of Osh4 and OSBP (de Saint-
Jean et al., 2011; Mesmin et al., 2013). Similarly, Osh6, as well as
its closest mammalian orthologues ORP5 and ORP8, bind and
transport PI(4)P, mediating counter-exchange with PS (Chung
et al., 2015; Moser Von, Filseck et al., 2015) (Figures 2C,D).
Because PI(4)P is continuously generated at the PM by the PI-
kinase Stt4 and hydrolyzed at the ER by the PI(4)P phosphatase
Sac1 (Foti et al., 2001; Zewe et al., 2018), the gradient of PI(4)P
between these two compartments allows Osh6 to transfer PS
from the PS-poor ER to the PS-rich PM. The same holds for
the transfer of sterol by Osh4/OSBP from the ER to the trans-
Golgi network. An acidic patch in the amino-terminal region of
Osh6, which forms a lid over the lipid-binding pocket, acts as an
electrostatic switch, allowing Osh6 to limit its interaction with
the negatively charged PM after lipid extraction to execute cycles
of PS-PI(4)P exchange and promote build-up of PS at the PM
(Lipp et al., 2019).

Phylogenetic analyses suggest that ORP9, 10 and 11 could
also bind to PS due to conserved features that they share with
Osh6/7 and ORP5/8 (Raychaudhuri and Prinz, 2010; Maeda
et al., 2013). In agreement, a recent study implicates ORP10
in PS transfer between the ER and the trans-Golgi network
(Venditti et al., 2019).

It is not clear whether Osh6/7 and their mammalian
orthologues always utilize PI(4)P as a counter-ligand for
transfer of PS; one could imagine that PI(4)P may not be
required if PS were to be transported along its concentration
gradient. For example, ORP5 and ORP8 were suggested to
mediate PS transfer from the ER to mitochondria, where PS

is then decarboxylated, assuring continuous clearance of PS
(Galmes et al., 2016). The mechanistic details of this proposed
pathway remain to be resolved.

A recent study has suggested that Sfh1, a homologue of the
PI/PC transfer protein Sec14, mediates the transfer of PS to
endosomes, where PS is converted into PE by Psd2, and also
the reverse delivery of PE back to the ER (Mizuike et al., 2019).
Another protein from the same family, Pdr17/Sfh4, physically
interacts with Psd2 and genetic evidence suggests that Sfh4, Psd2,
and Osh6/7 function in the same pathway (Wang et al., 2020).
Other genetic evidence suggests that PS is supplied to Psd2 via
endocytosis from the PM (Costanzo et al., 2016; Wong et al.,
2021), and endosomal recycling is important in maintaining a
PE/PS equilibrium (Ma et al., 2018). The roles of Sfh1 and Sfh4
in PS transport remain to be resolved.

ORGANELLE TARGETING OF PS
TRANSFER PROTEINS

Localization of LTPs to contacts between two compartments is
a straightforward way to control lipid targeting and can also
enable coordination of activities of different LTPs (Hanada, 2018;
Quon et al., 2018). Another possible benefit is to promote the
rate of lipid transfer, although this may be more affected by the
rate-limiting step of lipid extraction (Wong et al., 2017).

As in the case of Vps13 and the multi-subunit ERMES
complex, several Osh proteins and the majority of ORPs contain
additional domains and targeting sequences outside of their
ORDs that mediate the targeting to MCS (Figure 2). ORP5
and ORP8 localize to the ER through a transmembrane domain
downstream of their ORD and they rely on a pleckstrin homology
(PH) domain for interaction with the PM via phosphoinositides
(Chung et al., 2015; Sohn et al., 2018) (Figure 2D). PH domains
are used by many proteins, including Vps13, Osh1, Osh2, Osh3,
and the majority of ORPs, to interact with negatively charged
membrane lipids or lipids in combination with the small GTPase
Arf1 (Levine and Munro, 2002; Dziurdzik and Conibear, 2021).
However, the transmembrane domain of ORP5/8 is an exception
among LTPs (Delfosse et al., 2020), because the other multi-
domain Osh/ORP proteins interact with the ER using a short
“FFAT” motif (two phenylalanine in an acidic tract), which binds
to the cytosolic domain of the integral ER protein VAP (Scs2 and
Scs22 in yeast) (Loewen et al., 2003). VAP proteins interact with
a multitude of LTPs and other proteins and therefore represent
a major mechanism for protein localization to the ER (Slee and
Levine, 2019). A FFAT motif, or a phosphorylated variant, is
used by mammalian VPS13 proteins to contact the ER (Kumar
et al., 2018; Guillén-Samander et al., 2021). A putative FFAT
motif has also been identified in the yeast Vps13 sequence (Slee
and Levine, 2019), and it has also been suggested that the yeast
Vps13 could interact directly with the lipid surface of the ER
(Dziurdzik and Conibear, 2021).

Some LTPs can target several compartments by interacting
with different binding partners. The most striking example is
Vps13, which can bind to a number of adaptor proteins residing
on different membranes using its adaptor-binding β-propeller
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domain (Park and Neiman, 2012; John Peter et al., 2017; Bean
et al., 2018) (Figure 2B). In mammalian cells, VPS13A and
VPS13D were shown to localize to the ER-mitochondria contacts
using different mechanisms. The localization of VPS13A requires
its C-terminal PH domain (Kumar et al., 2018), whereas VPS13D
uses the β-propeller domain to interact with the mitochondrial
GTPase Miro (Guillén-Samander et al., 2021). Miro is an
orthologue of Gem1, which interacts with ERMES in yeast
(Kornmann et al., 2011), suggesting that VPS13D could replace
the function of ERMES in mammalian cells. Splice variants
of Miro also localize to peroxisomes, implicating VPS13D
in phospholipid transfer to peroxisomes, which have been
shown to require non-vesicular lipid transfer for their growth
(Raychaudhuri and Prinz, 2008). ORP5/8 have been proposed
to localize to the MCS between the ER and mitochondria by
interacting with the mitochondrial protein PTPIP51 via their
ORD (Galmes et al., 2016). A recent study reports ORP5 in the
contacts between the ER and the lipid droplets (Du et al., 2019).

Although Osh6 and Osh7 contain only an ORD domain, they
show a well-defined localization at the ER-PM contacts (Schulz
et al., 2009; Maeda et al., 2013). We have recently demonstrated
that the localization of Osh6 to this MCS is mediated by
another protein, Ist2 (D’Ambrosio et al., 2020). Importantly,
the interaction between Osh6/7 and Ist2 is required for their
PS transfer activity in cells (D’Ambrosio et al., 2020) and for
the subsequent processing of PS into PE by Psd2 (Wong et al.,
2021) (Figure 2C). Unlike the adaptors mentioned earlier, Ist2
is itself a tethering protein between the ER and the PM. Its
deletion reduces the amount of ER-PM contact and leads to an
increase in cellular PI(4)P levels (Manford et al., 2012; Wolf
et al., 2012). The N-terminal domain of Ist2 is embedded in the
ER, followed by a disordered cytosolic tail close to 300 amino
acids in length, and finally a polybasic region that interacts with
the PM (Fischer et al., 2009; Maass et al., 2009; Kralt et al.,
2014). Interestingly, disordered domains are common in proteins
that populate MCS (Jamecna et al., 2019). Recently, two teams
employed high resolution imaging to explore the organization of
yeast ER-PM contact sites and found that Ist2 displayed a slight
preference for flat ER sheets (Collado et al., 2019; Hoffmann et al.,
2019). A short segment of about 30 amino acids in the middle
portion of the tail, which is conserved in yeasts, is sufficient to
localize Osh6, and small mutations in this segment functionally
mimic deletion of Osh6/7 (D’Ambrosio et al., 2020). Total PS
levels were substantially decreased in ist21 and in osh61 osh71
cells, which can be explained by the product inhibition of the
PS synthase Cho1 (Kannan et al., 2017) and suggests that this
transport pathway removes a large fraction of PS from the ER.

Whereas the cytosolic tail of Ist2 is unique to fungi
(D’Ambrosio et al., 2020), the ER-embedded domain, which
contains ten predicted transmembrane helices, bears homology
to the TMEM16 protein family (Brunner et al., 2014). These
proteins have been shown to function as Ca2+-activated lipid
scramblases and/or ion channels (see Section 5), raising the
possibility that the transmembrane domain of Ist2 could function
in the regulation of lipid homeostasis at the ER. However,
reconstitution of purified Ist2 into proteoliposomes did not reveal
any lipid scramblase activity under the experimental conditions

used, either in the presence or absence of Ca2+ (Malvezzi et al.,
2013). It cannot be excluded that Ist2 could be activated in a
different manner. Therefore the function and regulation of the
transmembrane domain of Ist2 remain to be determined.

TRANSBILAYER MOVEMENT OF PS BY
FLIPPASES AND SCRAMBLASES

Due to their amphipathic nature, phospholipids including
PS show extremely slow spontaneous transbilayer movements
(or flip-flop) with half-times ranging from several hours to
days depending on the nature of the phospholipid headgroup
(Holthuis and Levine, 2005). The polar headgroup has to
overcome the high energy barrier posed by the hydrophobic
core of the membrane formed by lipid acyl chains. However,
many processes, such as membrane expansion mediated by lipid
synthesis or lipid transfer, require rapid flip-flop of phospholipids
across membranes to overcome the gain or loss of lipids in one
leaflet vs. the other one. PS flip-flop has also been shown to be
important for the regulation of vesicular membrane traffic (Chen
et al., 2010; Uchida et al., 2011; Xu et al., 2013; Hankins et al.,
2015).

Eukaryotic cells have evolved three types of membrane
transporters that mediate the transbilayer flip-flop of lipids
(Montigny et al., 2016). First, scramblases transport lipids in
a non-selective, bidirectional and energy-independent manner
to equilibrate the composition of the two leaflets. In contrast,
floppases and flippases use ATP hydrolysis to actively translocate
specific lipids unidirectionally against their concentration
gradients, hence creating or maintaining transbilayer lipid
asymmetry. Floppases transport lipids from the cytoplasmic
to the exoplasmic (external or luminal) leaflet of membranes;
flippases transport lipids in the opposite direction, i.e., from
the exoplasmic to the cytoplasmic leaflet. We will focus on
scramblases and flippases as no floppase has been shown to
regulate PS distribution.

Diverse transmembrane proteins have been implicated in
lipid scrambling. These include members of the Ca2+-regulated
TMEM16/anoctamin protein family, which also act as ion
channels (Malvezzi et al., 2013, 2018; Brunner et al., 2014; Lee
et al., 2018; Bushell et al., 2019; Kalienkova et al., 2019), a few
G protein-coupled receptors (GPCR) (Menon et al., 2011; Goren
et al., 2014), and, recently, the autophagy protein Atg9 (Maeda
et al., 2020; Matoba et al., 2020) and the ER protein complex
TMEM41B/VMP1 (Li et al., 2020; Ghanbarpour et al., 2021;
Huang et al., 2021). Upon reconstitution in proteoliposomes,
all these proteins catalyze lipid scrambling, suggesting that this
activity is intrinsic and does not require protein co-factors. The
Xk-family protein Xkr8 was shown to facilitate PS exposure in
apoptotic cells by a mechanism that involves cleavage by caspases
(Suzuki et al., 2013, 2016) or activation via phosphorylation near
the caspase recognition site (Sakuragi et al., 2019). Xkr9, a paralog
of Xkr8, was also shown to promote lipid scrambling in cultured
cells (Suzuki et al., 2014). However, a recent study (Straub et al.,
2021) has failed to demonstrate lipid flip-flop activity of purified
and reconstituted Xkr9, and the demonstration that Xkr8 is a
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bona fide lipid scramblase is also still awaiting reconstitution in
synthetic vesicles.

Among scramblases, members of the TMEM16 family are by
far the best characterized (Kalienkova et al., 2021). In 2014, the
first crystal structure of nhTMEM16 from Nectria haematococca
revealed a protein dimer featuring a hydrophilic groove on the
edge of each subunit. As this groove connects both leaflets, it
suggested a path along which the lipid polar headgroups might
slide along (Figure 3) (Brunner et al., 2014). This hypothesis has
been reinforced by biochemical studies and molecular dynamics
simulations (Bethel and Grabe, 2016; Lee et al., 2018). In addition,
recent cryo-EM structures explain the mechanism by which
Ca2+ binding stimulates lipid transport and also show that the
surrounding membrane is deformed by the protein. Thinning
of the membrane in the vicinity of the protein is associated
with defects in lipid packing, suggesting additional means for
lowering the energetic barrier for lipid translocation (Alvadia
et al., 2019; Bushell et al., 2019; Falzone et al., 2019; Feng et al.,
2019; Kalienkova et al., 2019).

Whereas most TMEM16 proteins localize to the PM, two
members of the family have been suggested to function at
the ER or in MCS between the ER and other compartments.
TMEM16K has been shown to localize predominantly to the
ER. As aforementioned, Tsuji et al. observed equilibration
of PS levels within the two ER leaflets when wild-type
cells were treated with the Ca2+ ionophore A23187, but
not when A23187 was added to TMEM16K−/− cells (Tsuji
et al., 2019), suggesting that TMEM16K is a Ca2+-regulated
ER scramblase. Further reconstitution into chemically-defined
liposomes confirmed that ability of TMEM16K to scramble lipids
and the stimulatory effect of Ca2+. PC and PE labeled with a
fluorescent NBD (nitrobenzoxadiazole) moiety are transported
equally well whereas the rate of NBD-PS transport is somewhat
slower (Bushell et al., 2019). Another recent study suggests
that TMEM16K functions in the contacts between the ER and
endosomes and is important for regulation of endosomal traffic
(Petkovic et al., 2020). A related protein, TMEM16H/ANO8
has been suggested to function as an ER-PM tether to regulate
Ca2+ signaling, but the molecular details of this tethering activity
remain to be resolved (Jha et al., 2019). Based on these studies,
TMEM16K appears as a strong candidate for the long sought-
after ER scramblase activity. Recent evidence indicates that the
integral membrane protein complex TMEM41B/VMP1 also acts
as an ER scramblase (Li et al., 2020; Ghanbarpour et al., 2021;
Huang et al., 2021), suggesting that both proteins could sustain
the biogenic function of the ER.

Beyond the ER, enrichment of PS in the cytosolic membrane
leaflet of healthy cells is catalyzed by the P4 subtype of the
ubiquitous P-type ATPase family (P4-ATPases). Interestingly,
P-type ATPases were initially identified as cation transporters, but
have recently been recognized as lipid transporters (Tang et al.,
1996; Coleman et al., 2009; Zhou and Graham, 2009; Dyla et al.,
2020). Most P4-ATPases form heterodimers with proteins from
the Cdc50 family, which help in targeting the mature complex to
its correct subcellular localization.

Recent cryo-EM and X-ray high-resolution structures of P4-
ATPases helped resolve a long-standing conundrum in the field,

i.e., how proteins with anticipated similar structures acquired
the ability to transport substantially bulkier substrates than
cations (Lyons et al., 2020). The first structures of a P4-
ATPase were those of the yeast Drs2/Cdc50 transporter (Bai
et al., 2019; Timcenko et al., 2019, 2021), followed by the
structures of human ATP8A1/CDC50A and ATP11C/CDC50A
(Hiraizumi et al., 2019; Nakanishi et al., 2020a,b). These
structures reveal that PS is precisely recognized and coordinated
via its headgroup in the core of the membrane (Figure 3).
However, it is still unclear how the lipid is then released to
the cytosolic leaflet. More structural and biochemical studies
are needed to address this issue. Noteworthy, the biochemical
characterization of P4-ATPases suggests a significantly lower
lipid transfer rate compared to scramblases – between 2 to 25
lipids per second for flippases (Theorin et al., 2019), as compared
to ≈ 10,000 lipids per second for scramblases. This difference
is likely due to the large conformational changes required for
flippases to catalyze lipid transport through an alternating-access
mechanism, compared to the facilitated diffusion performed by
scramblases (Goren et al., 2014).

In cells, P4-ATPase activity is regulated by interacting
proteins, such as kinases and small GTP-binding proteins, as well
as by phosphoinositides. In yeast, the trans-Golgi Drs2/Cdc50
flippase is autoinhibited by its N- and C-termini (Zhou et al.,
2013; Azouaoui et al., 2017; Bai et al., 2019; Timcenko et al.,
2019), which contain binding sites for the Arf-like protein Arl1
and the guanine nucleotide exchange factor Gea2, respectively
(Chantalat et al., 2004; Tsai et al., 2013). The flippase activity
is also activated by PI(4)P (Natarajan et al., 2009; Timcenko
et al., 2019). Although association of Drs2 with Arl1 and Gea2
is essential for stimulation of Drs2 activity in native TGN
membranes (Tsai et al., 2013), this requirement has not been
recapitulated in vitro. In addition, the PM Dnf1/2 and Lem3
flippases as well as the human flippase ATP8A2 are positively
regulated by kinases (Roelants et al., 2010; Chalat et al., 2017;
Frøsig et al., 2020). During apoptosis, PS internalization is also
abolished by caspase-mediated proteolytic cleavage of ATP11C
concurrently with Xkr8 activation (Segawa et al., 2014).

LATERAL ORGANIZATION OF PS IN
MEMBRANES

Segregation of lipids in the plane of the membrane has been
established for the PM, with nanodomains made of cholesterol
and sphingolipids being a prominent example (Levental et al.,
2020). Several lines of evidence also point to lateral segregation
of PS in the cytoplasmic leaflet of the PM. With the aid of
electron microscopy techniques and genetically-encoded lipid
biosensors, PS appears to cluster within domains of ∼11 nm in
diameter in the inner leaflet of the PM of baby hamster kidney
(BHK) cells (Fairn et al., 2011b). In a landmark study, Fairn
et al. (2011a) observed accumulation of PS in the bud neck
of S. cerevisiae, which was required for proper localization of
the small GTP binding protein Cdc42 and the establishment
of cell polarity. The uneven distribution of PS in the plane of
the membrane is also highlighted by the accumulation of PS
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FIGURE 3 | Lipid transport pathway in TMEM16 scramblases and P4-ATPase flippases. In TMEM16 proteins, each monomer (in green and orange, respectively)
harbors a cavity (underscored by the dashed white arrow) lined by hydrophilic residues and forming a groove through which lipid headgroups can transit from one
leaflet to the other – known as the credit-card model (Pomorski and Menon, 2006). In P4-ATPases, ATP binds to the nucleotide binding domain (in red). The bound
ATP molecule then phosphorylates a conserved aspartate in the phosphorylation domain (in blue). Phosphorylation triggers a rotation of the actuator domain (in
yellow) which leads to the opening of a lipid hemichannel toward the exoplasmic side of the membrane. The Cdc50 subunit of Drs2 is in pink. (PDB codes used for
this figure, nhTMEM16F: 4WIT, Drs2/Cdc50: 7OH7 (closed), 7OH6 (PS-occluded). The figure was generated with ChimeraX (Pettersen et al., 2021).

in caveolae (Fairn et al., 2011b). The relationship between PS
and caveolae is two-sided: on the one hand, caveolae control
PS clustering as knock-down of caveolin-1, the main structural
component of caveolae, significantly increases PS clustering at the
PM of BHK cells (Ariotti et al., 2014); on the other hand, both
PS sequestration using a tandem Lact-C2 domain or stimulation
of PS scrambling depletes caveolae. Such effect is specific to
PS because selective depletion of PI(4,5)P2 or PI(4)P using a
rapamycin inducible pseudojanin construct did not markedly
induce disassembly of caveolae at the PM (Hirama et al., 2017a).

Further nanocluster organization of PS was suggested in the
cytosolic leaflet of the PM of red blood cells and human skin
fibroblasts using FRL electron microscopy in combination with
anti-PS/PI antibodies and gold-conjugated secondary antibodies
(Murate et al., 2015). Moreover, a recent study aiming at
deciphering the selective interaction of the Influenza A virus
matrix protein 1 (M1) with PS suggests that PS can laterally
segregate in model membranes and at the PM of HEK293T cells,
irrespective of the presence of M1 (Bobone et al., 2017).

Decreasing the cholesterol content of the PM using methyl-
β-cyclodextrin drives massive relocalization of PS to endocytic
membranes as a consequence of increased membrane curvature,
a phenomenon that is exemplified by the recruitment of N-BAR
domain-containing endophilin (which displays avidity for highly

curved membranes) and synaptojanin (Daumke et al., 2014).
Removal of cholesterol increases the lateral concentration of
PS. Consequently, the surface charge density increases, thereby
facilitating membrane bending for endocytosis (Hirama et al.,
2017b). Repulsion of PS headgroups due to their negative charge
can be overcome by cholesterol, which is suggested to act as a
“spacer” between PS molecules.

The fact that decreasing the PS content disrupts proper
transbilayer localization of cholesterol suggests that PS and
cholesterol interact in the inner leaflet of the PM. This interaction
highly depends on the exact nature of PS acyl chains (Maekawa
and Fairn, 2015). Moreover, PS has been found to be an essential
component of PM nanoclusters that are made of K-Ras and
its downstream effectors. PS but not PI(4,5)P2 extensively co-
localizes with K-Ras nanoclusters (Zhou et al., 2014), suggesting
that K-Ras selectively interacts with PS. Noteworthy, cholesterol
depletion does not alter nanoclustering of K-Ras in mammalian
cells (Prior et al., 2003). Furthermore, restoration of K-Ras
nanoclustering occurs once PS-depleted cells are supplemented
with asymmetric PS species, i.e., PS with one saturated and one
unsaturated acyl chain (16:0/18:1 and 18:0/18:1), but not by fully
saturated PS species (Zhou et al., 2017).

In yeast, Nishimura et al. observed a synergistic effect of
unsaturated PS and PI(4)P on the activity of the PI(4)P kinase
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PIP5K at the PM, which depended on the presence of Osh
proteins. Using FRET, they observed a co-distribution of PS and
PI(4)P in liposomes, which was enhanced by the presence of
sterols. They suggested that Osh proteins promote the formation
of nanodomains at the PM, required for optimal activity of PIP5K
(Nishimura et al., 2019).

Molecular dynamic simulations using asymmetric membranes
mimicking exosomes derived from PC-3 cells indicated
interleaflet coupling between very long chain sphingomyelin
species (C24) and lipids of the inner leaflet, with a preferred
interdigitation occurring between SM 18:1/24:0 in the outer
leaflet and PS 18:0/18:1 in the inner leaflet (Róg et al., 2016),
which is the prevalent PS species in several mammalian cell types
(Skotland and Sandvig, 2019). Thus, interdigitation may be an
additional mean to regulate nanoscale organization of lipids (e.g.,
PS) in the cytosolic leaflet of membranes. Another example of PS
lateral segregation was observed in yeast after selective extraction
of the PM proteins Pma1 or Can1, which localize to different
membrane domains. Using styrene maleic-acid lipid particles
(SMALPs) for protein extraction and purification, the lipids
co-purified with each protein, termed the periprotein lipidomes,
were identified by mass spectrometry. The lipid fraction in
the vicinity of Pma1 and Can1 was found enriched in PS and
depleted in ergosterol compared to the overall membrane. Such
enrichment in PS and depletion in ergosterol would provide
an adequate environment for large conformational changes of
membrane proteins to take place in the otherwise highly ordered
yeast PM (van ’t Klooster et al., 2020).

Within internal organelles, the most striking example of
lateral lipid segregation has been observed in the yeast vacuoles
in response to starvation or stress conditions (Toulmay and
Prinz, 2013). The formation of these large (micron-scale) stable
domains appears lipid-driven and is sterol-dependent. The
distribution of PS in this system has not been addressed.
However, another very recently published report describes
formation of stable lipid domains at the PM of yeast cells that
lack PS (cho11) and are grown at an elevated temperature under
non-starvation conditions (Mioka et al., 2021). These domains,
termed “void zones,” are devoid of proteins and also of many
phospholipid species, and it is proposed that they represent
sterol and sphingolipid-rich domains that form when PS is not
available to promote lipid mixing. The formation of void zones
also requires transbilayer asymmetry because it is abolished when
PM flippases are deleted. These data underline the importance of
PS for PM organization and function.

In the ER, the existence of PS-enriched domains was
postulated based on the observation that PS-synthetase activity
was enriched in biochemically-purified MAM (Vance, 1990;
Gaigg et al., 1995). However, lateral inhomogeneity in the
distribution of PS within the ER has not been directly observed,
which is not surprising, given the difficulties in imaging of
internal membranes and the size and dynamics of the PS
nanodomains observed at the PM. Tsuji et al. (2019) observed
a higher concentration of PS in the nuclear compared to the ER
membrane, which, given the continuity of this membrane system,
would require a diffusion barrier that retains more PS in the
nuclear membrane. Several studies have reported the existence

of diffusion barriers in the ER, which could affect the flow of
lipids. A sphingolipid-based diffusion barrier has been proposed
to exist in the nuclear membrane and in the cortical ER at the
bud-neck region of yeast (Clay et al., 2014). A recent study
measuring bilayer thickness of the ER revealed thickening of the
membrane in the plane of cleavage between mother and daughter
cell, as well as at ER-trans-Golgi contact sites (Prasad et al., 2020).
This thickening depended on long-chain ceramides rather than
sphingolipids and acted as a diffusion barrier for transmembrane
proteins.

PHOSPHATIDYLSERINE TRANSPORT
DURING AUTOPHAGY

Recent studies of the autophagy pathway highlight the
importance of PS for this process and can be used as an
example for how different transport mechanisms can contribute
to the spatial organization of this lipid. During autophagy, a large
amount of phospholipid is required for the formation of isolation
membranes, precursors of autophagosomes. A long-standing
question in the field has been the source of this membrane. It
was presumed that the autophagosomal membrane is derived
from other pre-existing membranes that are delivered via
vesicular trafficking. The composition of the autophagosomal
membrane and the proximity of autophagosomes to the ER,
particularly to the ER exit sites from which the COPII transport
vesicles bud, pointed to an important contribution of the COPII
transport pathway delivering ER membrane to the growing
autophagosome (Jensen and Schekman, 2011; Shima et al.,
2019). However, recent work suggests that transfer of lipids
via LTPs, and even de novo lipid synthesis, make an important
contribution to the delivery of lipids required for growth of the
isolation membrane.

One of the proteins required for autophagosome formation
is Atg2. Interestingly, stretches of primary sequence similarity
have been noted between Atg2 and Vps13 (Velikkakath et al.,
2012). Similarities occur in the first ∼120 residues at the N
terminus (referred to as the Chorein_N domain) and in a stretch
of ∼70 residues in the C-terminal region (termed ATG_C in
Pfam). These similarities and the reconstitution of Atg2 activity
on synthetic membranes suggest that, like Vps13, Atg2 is an
LTP acting as a bridge to mediate fast flow of phospholipids
from the ER to the isolation membrane (Maeda et al., 2019;
Osawa et al., 2019; Valverde et al., 2019). To provide directionality
to this flow, Atg2 activity may be coupled with phospholipid
synthesis at the ER (Schütter et al., 2020). On the other end,
lipid scramblase activity of the autophagosomal protein Atg9
could provide a sink for the phospholipids delivered by Atg2
(Ghanbarpour et al., 2021). This is supported by the observation
that purified Atg9 facilitates transbilayer transport of NBD-PS, -
PC and -PE, as well as natural PI(3)P (Maeda et al., 2020; Matoba
et al., 2020). It remains to be determined whether PI(4)P is also
a transport substrate of Atg9. Ghanbarpour et al. (2021) further
show that ATG2 interacts with TMEM41B/VMP1, an ER protein
complex that displays scramblase activity toward NBD-PC, -PS
and -PE (Li et al., 2020). Reequilibration of phospholipids by

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 September 2021 | Volume 9 | Article 737907

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-737907 August 26, 2021 Time: 12:29 # 11

Lenoir et al. Transport and Distribution of Phosphatidylserine

TMEM41B/VMP1 and ATG9 as they are extracted from the ER
and delivered to the isolation membrane, respectively, would
promote proper stability and expansion of membranes, and
ensure efficient lipid shuttling. In agreement with the scramblase
activity of Atg9, PS, PI(4)P, and PC were found evenly distributed
over the two leaflets of autophagosomes and autophagic bodies,
in contrast with a predominantly cytosolic localization of PS at
the vacuole (Orii et al., 2021). An impressive reconstitution of the
activities of Atg9, Atg2, and a large (near full) number of other
Atg proteins in artificial membranes paves the way to a detailed
understanding of these processes (Sawa-Makarska et al., 2020).

CONCLUSION AND PERSPECTIVES

Our understanding of PS distribution within cell membranes
has greatly improved in recent years, benefiting from the
combination of cutting-edge cell biological, biochemical and
biophysical techniques. For example, such an interdisciplinary
approach revealed that lipid acyl chain unsaturation, including
PS, varies between membrane leaflets, and that this acyl chain
asymmetry is tightly linked with lipid packing and protein
transmembrane domain asymmetry in individual leaflets (Lorent
et al., 2020). We expect that advances in lipidomics and lipidomic
imaging will help provide a comprehensive map of PS and
lipid acyl chain distribution in cell membranes in the next few
years, which can be related to its functional relevance, as was
for example recently demonstrated by Shindou et al. (2017).
Whereas much progress has been made toward understanding
of the organization of PS at the PM, the spatial distribution
of PS in internal membranes remains enigmatic. This is hardly
surprising, given the difficulties in tracking of phospholipids
inside cells at the required spatial and temporal resolution and the
complexity and plasticity of lipid transport pathways. However,
the field is developing rapidly thanks to an increased interest
in the cell biology of lipids, ingenuity and technical advance.

On one hand, recent years have brought intense developments
in high/super-resolution imaging of cellular membranes, in
specific fluorescent probes and reporters of membrane polarity
or fluidity/disorder (Sot et al., 2021) and in novel electron
microscopy techniques (Heberle et al., 2020). On the other
hand, in vitro reconstitution and structural studies have greatly
improved our understanding of LTP function at MCS and of
elementary but previously elusive PS movements (Timcenko
et al., 2019; de la Mora et al., 2021). The reconstitution of
the autophagy pathway is a spectacular example of a complex
reconstituted reaction showing coupling between different lipid
transport proteins (Sawa-Makarska et al., 2020). Undoubtedly,
many more such successful in vitro reconstitution of cellular
processes is yet to come.
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