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Abstract—Since the middle of the 1990s, message passing
libraries are the most used technology to implement parallel
and distributed scientific applications. However, they may
not be a solution efficient enough on exascale machines since
scalability issues will appear due to the increase in computing
resources. Task-based programming models can be used to
avoid collective communications like reductions, broadcast, or
gather by transforming them into multiple operations on tasks.
Then, these operations can be scheduled by the programming
scheduler to place the data and computations in a way that
optimizes and reduces the data communications. These prop-
erties could help to solve some MPI and exascale computing
challenges.

The oil and gas applications could also benefit from task-
based programming properties. We developed a simplified
version of the Kirchhoff seismic pre-stack depth migration, a
subsurface exploration application, to experiment with HPX,
a task-based programming model as well and MPI and
MPI+OpenMP. Then, we perform strong scaling and weak
scaling experiments on Pangea, Total supercomputer. We also
study the variation of the number of OpenMP threads per MPI
process. We show that the current task-based programming
model schedulers lack the capability to completely manage the
memory used and are not efficient enough to reduce the data
migrations.

Index Terms—Kirchhoff Seismic Pre-Stack Depth Migration,
Task-Based Programming, Parallel and Distributed Applica-
tion

Introduction
On the current post petascale supercomputers, MPI

is the most common library used to implement parallel
and distributed applications. MPI is used to send data
between supercomputer nodes and is often associated
with OpenMP [1] or CUDA [2]. OpenMP can be used
to implement multi-threaded code that will be executed
on the CPU. On the other hand, CUDA can be used
to address Nvidia accelerators programming. However,
MPI+X may not be a solution efficient enough on exascale
machines, especially in terms of fault tolerance, check-
pointing [3] and collective communications scalability. A
task-based approach can help in managing fault tolerance
and check-pointing since the tasks could be restarted
on another location and data from tasks saved at any
moment. Task-based programming models can implement

fault tolerance by restarting the failed tasks on other
computing resources and even stop executing tasks on
processors with a high fault rate. Check-pointing could
be implemented by storing the state of the output of the
task in a way that allows to restart the application at the
last check-point and reconstruct the lost data. Moreover,
task-based programming models can also be used to avoid
collective communications like reductions, broadcast, or
gather by transforming them into multiple operations on
tasks. Then, these operations can be scheduled by the pro-
gramming scheduler to place the data and computations in
a way that optimizes and reduce the data communications.
Therefore, with the merging of parallel and distributed
programming, graphs of tasks and efficient schedulers are
a very interesting way to improve performances while
reducing communications.
The oil and gas applications [4] could benefit from

task-based programming properties [5]. It has also been
shown that task-based programming models can obtain
better performances than regular applications for several
dense linear algebra [6]. Thus, in this paper, we try to
explore the possibilities of task-based programming mod-
els with scientific applications. For instance, subsurface
exploration needs a large number of computing resources
to process the large volume of data acquired during the
subsurface surveys. Then, these data have to be efficiently
scheduled through the application from their reading from
the file system to their process in several parts of the
application. We implemented a simplified 2D version of the
Kirchhoff seismic pre-stack depth migration to implement
and perform experiments with task-based programming
models.
In the first section, we introduce task-based program-

ming paradigms. Then, in the second section, we present
the Kirchhoff seismic pre-stack depth migration and its
related algorithms. Furthermore, in the third section, we
give details about our implementation of the application.
Afterward, we show the results of our experiments. Finally,
in the last section, we discuss task-based programming
models as an alternative to MPI for the Kirchhoff seismic
pre-stack depth migration.



I. Task-Based Programming

Collective communications like reductions, gathers, and
broadcasts are very expensive due to the high number
of resources partaking in the operation and the cost of
sending information to distant resources on the network
connecting the nodes. A task-based approach can help
in managing fault tolerance and check-pointing since the
tasks could be restarted on another location and data
from tasks saved at any moment. Tasks allow separating
the expression of the parallelism from its parallel imple-
mentation by letting the developer express the tasks and
their dependencies while the runtime of the programming
models tries to run as many tasks as possible at the same
time, respects the dependencies, and tries to obtain the
best performances possible. This means that application
experts can express algorithms through graphs of tasks
without being required to understand the hardware in
detail.

Furthermore, the task-based approach can help to
eliminate large-scale collective communications by encap-
sulating them inside tasks. Then, these tasks can run on
a subset of the resources allocated to the application and
execute collective communications on a smaller scale. The
graph of tasks can be efficiently scheduled so that the ex-
ecution of tasks optimizes data migrations, IOs tasks, and
data check-pointing. In task-based programming models,
data can only be exchanged between tasks as their input
and output parameters as opposed to exchanging data
during the execution of the task. Therefore the algorithms
using collective communications have to be redesigned to
avoid them or rewrite them as task operations.

A task can be defined as a set of encapsulated opera-
tions asynchronously executed. It can range from a few
computations to a fully distributed application. They can
only communicate with their input and output parameters
so that the programming model runtime can efficiently
manage data migrations and schedule tasks accordingly.
Data and/or control dependencies have to be provided
by the user. These dependencies are enforced during the
execution of the task-based application. The runtime tries
to execute as many tasks as possible.

We choose to use HPX for our experiments due to its
properties. HPX is an extension of the C++ standard
library to the distributed case. It provides an interface
for task-based programming through C++ concurrency
facilities such as dataflows and futures. The tasks are
executed as lightweight threads. These tasks are relatively
fine grain. HPX has interesting results on a low number
of nodes. It ran faster than MPI to perform a block-based
LU factorization as shown in [6].

Task-based programming models and their properties [7]
were explored previously. They express the key properties
of task-based programming in different ways. In this
paper, we explore the abilities of HPX with a subsurface
exploration application.

II. Kirchhoff Seismic Pre-Stack Depth Migration
In this section, the algorithms for the Kirchhoff seismic

pre-stack depth migration are introduced. Then, the par-
allelism approaches of the method are discussed Finally,
a task-based algorithm for the Kirchhoff seismic pre-stack
depth migration is presented.

A. General method
Seismic migration is a technique used to visualize the

underground. Data are acquired at the surface during an
acquisition campaign. Data are processed to geometrically
re-locate seismic events either in space or in time. They are
re-located to the location the event occurred in the subsur-
face rather than the location where it was recorded at the
surface. Migration moves dipping reflectors to their true
subsurface positions and collapses diffractions, resulting in
a migrated image that typically has an increased spatial
resolution and resolves areas of complex geology much
better than non-migrated images. A form of migration
is one of the standard data processing techniques for
reflection-based geophysical methods (seismic reflection
and ground-penetrating radar).
The Kirchhoff migration [8] [9] is a depth migration.

It is applied to seismic data in depth (regular Cartesian)
coordinates, which must be calculated from seismic data
in time coordinates. This method does therefore require
a velocity model, making it resource-intensive because
building a seismic velocity model is a long and itera-
tive process. The significant advantage of this migration
method is that it can be successfully used in areas with
lateral velocity variations, which tend to be the areas that
are most interesting to petroleum geologists.
The velocity model describes the propagation speed of

the waves into the different layers of the underground.
Geophysicists create a model and want to verify its
correctness. Their goal is to find the best model that
explains the data. They use the Kirchhoff migration that
determines where are the limits between layers.
The Green functions represent the response and the

behavior of the wave when the source is a Dirac impulse.
They allow solving the wave equation using an integral
formula in function of the source of the wave. The behavior
of the wave in the ground depends on the velocity model.
Usually, Green functions are precomputed and stored
on a disk for a 2D grid on the surface and a 3D grid
underground. During the building of the model and the
migration, Green functions are retrieved from the disk. To
reduce the IOs with the file system, the Green functions
are computed on a coarser grid than the one considered
for the image migration.
The Kirchhoff migration produces a 3D image of the

subsurface by retrieving the position of the reflection
points to show the different layers of the ground. To do so,
we find the time a wave needs to travel from a source to a
point (x, y, z) in the image, and travel back from this point
to the receiver is necessary. The Green functions in the



fine grid give this time. For a given source and receiver, if
the time a wave needs to travel through the point (x, y, z)
and the time to the peak of the trace match then (x, y, z)
can be a candidate to a reflection point. Moreover, we
know the Green functions for a coarse grain of the image,
so it is possible to know if the points in the sub-domain of
the coarse grid will match the time from the trace. If the
time matches, the points will be studied at a finer grain.
Figure 1 shows the two grid levels; the corners of the red
blocks represent the coarse grid while the inside contains
the finer grid. Otherwise, the points of the part of the
coarse grid will not be candidates to a reflection point
and those points will be ignored for the selected trace.

Fig. 1. Fine and Coarse grids for subsurface image

At the finer grain level, the Green functions are inter-
polated or extrapolated for each point in the block. This
gives the travel time T (x, y, z) between the source and
the receiver passing by the point (x, y, z). Then, only the
points matching the time of the trace are kept. Those
points are likely true reflection points. An arbitrary value
(the aperture) As,r(x, y, z) [10] that favors points with
less awkward reflection angles, and positions that are more
likely to match the true reflection point, can be calculated.
This value depends on the coordinates of the receiver ’r’,
the coordinates of the source ’s’, and the point (x, y, z).
The value As,r(x, y, z)ts,r(x, y, z) expresses the intensity
of the contribution of the trace for the point (x, y, z).
The image at a pixel is generated by summing the

contribution of all the traces that can be a true reflection
point :

I(x, y, z) =
∑

ts,r∈T

As,r(x, y, z)ts,r(τs(x, y, z) + τr(x, y, z))

(1)
I(x, y, z) is the pixel (x, y, z) of the image. ts,r is the

trace which has s as source and r as receiver. T is the
ensemble of traces. As,r is the amplitude associated to s

and r. τj(x, y, z) is the time need for a wave to travel from
j (a source or a receiver) to (x, y, z).

foreach trace t do
r = extractReveiver(t)
s = extractSource(t)
Gs = loadPrecomputedGreenFunc(s)
Gr = loadPrecomputedGreenFunc(r)
foreach (x, y, z) in the coarse grid do

/* contains values for (x, y, z), (x+1, y, z),
(x, y+1, z), (x, y, z+1), (x+1, y+1, z), (x,
y+1, z+1), (x+1, y, z+1) and (x+1, y+1,
z+1) */
TS = computeTravelTime(Gs, x, y, z)
TR = computeTravelTime(Gr, x, y, z)
A = computeAmplitude(s, r, x, y, z)
foreach (i, j, k) in the fine grid do

Ts = interpolate(i, j, k, x, y, z, TS)
Tr = interpolate(i, j, k, x, y, z, TR)
Ai = interpolate(i, j, k, x, y, z, A)
Img(i, j, k) += Ai × ts,r(Ts + Tr)

Algorithm 1: General Kirchhoff seismic pre-stack depth
migration

Algorithm 1 shows a possible high-level implementation
of the Kirchhoff seismic pre-stack depth migration as
presented in this section. In this algorithm, the functions
extractReveiver and extractSource are used to extract the
position of the receiver and the source of the trace data.
Then, these positions are used to load the precomputed
Green functions from disk through the functions load-
PrecomputedGreenFunc. The loaded Green functions are
used to compute, in the computeTravelTime function, the
travel time that a sound wave will need to travel from the
source to the receiver passing by a position in the coarse
grid. The interpolate function uses these travel times to
interpolate them for positions in the fine grid so that the
image at this position can be computed.
B. Parallelism
In the Kirchhoff Migration, only the output image is

modified. The traces and the Green functions are accessed
only for reading. Therefore, the update of the image by the
contribution of a trace conditions the parallelism available.
Moreover, the traces are independent and the update of
a point on the image depends only on the contribution of
the trace.
It means that all the points can be updated at the same

time by a trace. It also means that there are concurrency
problems if a point is updated by two traces. Since the
update is a sum, it is worth considering creating images for
different sets of traces independently, then reduce (sum)
the different images into a final image.
From a computational point of view, traces can be

treated in any order and points can be computed in-
dependently. Several traces can be treated at the same



time with reductions on the output images. So there is
a lot of available computational parallelism but there is
also data to transfer between compute units and from the
file system. Moreover, creating several images to reduce
them later also produces communications to reunite them
into one. In the case where the Green functions are
precomputed, loading them into the memory can be an
issue. They take a lot of space on disk so it is expensive
to load them several times. Thus, scheduling those data
movements can be a good alternative to find an efficient
way to manage the data without having to communicate
too much. To better express the dependencies, the method
is described as a graph of tasks.

C. Task-Based Method
In the Kirchhoff Migration, the only data modified is

the output image and the inputs are only accessed for
reading. Therefore, all the parallelism of the method is
related to the accesses to the image and the IOs with the
file system to fetch the traces and Green functions. There
are two main sources of parallelism: splitting the image
to work on multiple sub-images and splitting the trace set
to work on them in parallel.

The latter method creates several images that have to
be combined. It is only a sum but it requires migrating
images between the computing resources. On the other
hand, the data from the trace will have to be duplicated
for each sub-image but only the Green functions for the
sub-part of the image can be loaded.

foreach trace t do
r = extractR(t)
s = extractS(t)
foreach sub-block b from the coarse grid do

Gs = loadPrecomputedGreenFunc(s, b)
Gr = loadPrecomputedGreenFunc(r, b)
migrateSubBlock(b, t, Gs, Gr)

Algorithm 2: Task-Based Kirchhoff seismic pre-stack
depth migration

We choose to implement the method with distributed
images. Algorithm 2 shows the available high-level paral-
lelism of the method. This is also a task-based algorithm
in which the tasks consist of migrating traces into a
sub-image. The task corresponds to the interpolation of
the travel time and the sum with the image introduced
in Algorithm 1. This algorithm is implemented with
MPI, MPI+OpenMP [1] and HPX [11], a task-based
programming model in which dependencies between tasks
are data-oriented.

III. Application Description
For this implementation, we simplified the Kirchhoff

seismic pre-stack depth migration by considering the ab-
sorption to be equal to 1 and by only studying the 2D case.
This implementation is a very basic and simplified version

of the Kirchhoff seismic pre-stack depth migration which
keeps a similarly high-level algorithm while simplifying
the computations needed to perform the migration on the
image points.

A. C Kernel Description
The kernel performing the main operations for this

method is implemented in C and provides functions to
manage traces, Green functions, and images. There are
three kinds of functions implemented in this kernel. The
first type is IOs to read and write traces, images, and
Green functions from files. The second type of function
is used to associate propagation time precomputed with
Green functions to the trace that is used to create the
image. Then, the last type is the actual migration.
The migration function expects a fine grain image

to update and a trace with the propagation times to
make the round trip from the source of the trace to the
receiver passing by every point of the large grain image.
It performs an interpolation to compute the propagation
time needed to travel from the source to the receiver for
each point of the fine-grain image by using the propagation
times shipped with the trace. So, with the knowledge of
the time, it would take to make the round trip to the
considered image point, we scale it to the trace time scale
to retrieve the amplitude of the sound wave at this time
in the trace. Then, the amplitude is added to the value
at the corresponding point in the fine-grain image. This
amplitude could be scaled with the absorption at this point
but we set the absorption to 1 for this implementation
so this is not necessary here. The migration function
has OpenMP directives to parallelize the work on the
image. They can be activated by compiling the library
with OpenMP.
For our experiments, we use a constant velocity model

to generate the initial propagation times. Therefore, we
implemented a function to interpolate propagation times
on a large grain grid from the constant velocity model.
A function to generate simple traces has also been imple-
mented to use in our experiments.
Figure 2 gives, on the top, an example of a generated

trace used as input for our applications. In the middle, this
figure provides a plot of the propagation times to make
the round trip from the source point located at (500,0),
each point of the figure, and the receiver located at (500,
0) in a uniform medium. On the bottom, the plot shows
the migrated image produced by the Kirchhoff migration
with the trace on the top of the figure taken at several
different source locations (the source and the receiver are
located at the same place).

B. Distributed and Parallel Implementations
Distributed and parallel applications were implemented

on top of the C kernel in MPI and HPX.
The MPI application uses the C functions to generate

the traces and propagation time associated with the
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Fig. 2. Kirchhoff Migration - generated sample trace (top), wave
propagation times for a source and receiver located at (500, 0)
(middle), migrated image (bottom)

distributed processes. The image is distributed across the
processes allocated to the application. The traces are
duplicated on each process since they are accessed de-
pending on the travel time extracted from the propagation
time shipped with the trace. The propagation times are
generated with the trace and only the part that is used
in the migration is selected. Then, the migration can be
executed on the local image with the local trace and
propagation times.

The HPX application is based on the same principles.
The image is split and managed by tasks. A task calling the
migration available in the kernel has been implemented as
well as tasks to generate the traces and the propagation
times. There are also tasks to associate the trace with
the appropriate propagation times. In Figure 3, the first
HPX function requires the data needed for the migration
and calls the C kernel to perform the migration. This
function defines an HPX task. Then, this task is used
in the following function to express data dependencies
between the tasks with HPX dataflow function. This
function iterates over all the traces and sub-images to
launch the tasks to perform the migration on the input
traces. Afterward, the tasks can be efficiently executed by
the HPX scheduler to obtain the migrated image.

s t a t i c hpx_ : : c l i e n t : : Image hpx_ : : d e t a i l : :
migrate_trace (hpx_ : : c l i e n t : : Image const& I
, hpx_ : : c l i e n t : : Trace const& T) {

using hpx : : dataf low ;
using hpx : : u t i l : : unwrapping ;

hpx : : shared_future<hpx_ : : d e t a i l : : TraceBase>
T_data = T. get_data ( ) ;

hpx : : shared_future<hpx_ : : d e t a i l : : ImageBase>
I_data = I . get_data ( ) ;

return dataf low (hpx : : launch : : async ,
unwrapping ( [ I ] ( hpx_ : : d e t a i l : : ImageBase

const& i_ , hpx_ : : d e t a i l : : TraceBase
const& t_) -> hpx_ : : c l i e n t : : Image {

hpx_ : : d e t a i l : : ImageBase i ( i_ ) ;
i . migrate_trace (t_) ;
return hpx_ : : c l i e n t : : Image ( I . get_id ( ) , i

) ;
}) ,
I_data , T_data) ;

}

HPX_PLAIN_ACTION(hpx_ : : d e t a i l : : migrate_trace ,
migrate_trace_action ) ;

void hpx_ : : Image : : k i rchhof f_migrat ion ( ) {
migrate_trace_action act_m ;
using hpx : : dataf low ;
std : : s i ze_t inc r = 0 ;
f o r ( std : : s ize_t t = 0 ; t < trace . get_nt ( ) ;

++t ) {
f o r ( in t i = 0 ; i < images . s i z e ( ) ; i++) {

using hpx : : u t i l : : p laceho lde r s : : _1 ;
using hpx : : u t i l : : p laceho lde r s : : _2 ;
auto Op = hpx : : u t i l : : bind (act_m ,

l o c a l i t i e s [ i * l o c a l i t i e s . s i z e ( ) /
images . s i z e ( ) ] , _1, _2) ;

images [ i ] = dataf low (hpx : : launch : : async ,
Op, images [ i ] , t race . get_trace ( inc r
) ) ;

i n c r++;
}

}
}

Fig. 3. HPX Kirchhoff migration task implementation and execution



These applications support the generation and pro-
cessing of several traces. They were designed to perform
scaling experiments on the migration with a distributed
image.

IV. Numerical Experiments
In this section, we perform numerical experiments on

the Kirchhoff seismic pre-stack depth migration imple-
mented in MPI, MPI+OpenMP, and HPX on Pangea II.
We perform strong scaling and weak scaling experiments
as well as we study the influence of the number of OpenMP
threads on our kernel.

A. Pangea II
Pangea II is the supercomputer on which the exper-

iments have been performed. It is owned by Total and
located in Pau, France. This supercomputer is composed of
nodes built with 2 Xeon E5-2680v3 12C 2.5GHz processors
for a total of 220 800 cores. The nodes are connected
with Infiniband FDR interconnects. It performs at 5.283
PFlop/s for Linpack and 162.692 TFlop/s for HPCG.

B. Strong Scaling
Strong scaling experiments were performed on a 15000

× 15000 points image. We executed our Kirchhoff seismic
pre-stack depth migration MPI, MPI+OpenMP and HPX
applications on 10 generated traces with propagation
times. We study the performance improvement of the
migration while the number of nodes (cores) increases and
the size of the image is kept constant.

Figure 4 shows the results of our strong scaling experi-
ments on the Kirchhoff seismic pre-stack depth migration
for an image of the size of 15000 × 15000 and 10 traces.
HPX execution times are increasing with the increase of
computing resources which should not be the case.

HPX may induce image migration between nodes that
are not necessary. HPX assigns data to a locality that
represents a physical node. A trace may be assigned to a
different location than one of the images on which the trace
will be migrated. At this moment, either the image or the
trace has to be migrated to compute the new image. The
image is larger than the trace so if the image is transferred
between the nodes, it is not efficient. Besides, the traces
can be used on several sub-images at the same time. This
one-to-many dependency may not be properly understood
by HPX, especially in the case where the data could be
duplicated to run tasks on multiple instances of the data at
the same time. In this case, the one-to-many dependencies
between the trace and the sub-image could be transformed
by HPX into a sequence of tasks processing sub-images
one by one instead of processing them at the same time.
It could restrict the execution flow of the tasks and reduce
the performance.

MPI+OpenMP has a scaling close to MPI. However, it
is less efficient than pure MPI parallelization. MPI has the
best performances and also scales well. The applications

1 (24) 2 (48) 4 (96) 8 (192)
Nodes (Cores)

0

10

20

30

40

50

Ti
m

e 
(s

)

MPI
MPIOMP
HPX

1 (24) 2 (48) 4 (96) 8 (192)
Nodes (Cores)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e 
(s

)

MPI
MPIOMP

Fig. 4. Strong scaling considering HPX, MPI and MPI+OpenMP
for a 15000 × 15000 points image on Pangea II. The second figure
is zoomed on MPI and MPI+OpenMP.

use the same kernel but the management of the memory
is up to the programming model used to implement the
application. This explains the difference in performances
between MPI and HPX. As for the differences between
MPI and MPI+OpenMP, the OpenMP directives intro-
duced in the kernel do not produce multi-threaded code
as efficient as the multi-process code produced by the
pure MPI parallelization for this application. This will
be further discussed in Section IV-D.

C. Weak Scaling
Weak scaling experiments were performed on an image

in which the number of points increases with the number
of nodes used. The base image size is 15000 × 15000
and the first dimension is multiplied by the number of
nodes. For instance, the image used for 4 nodes is 60000 ×
15000. We executed our Kirchhoff seismic pre-stack depth
migration MPI, MPI+OpenMP and HPX applications on
10 generated traces with propagation times. We study
the performance improvement of the migration while
the number of nodes (cores) and the size of the image
increases.
Figure 5 shows the results of our weak scaling experi-

ments on the Kirchhoff seismic pre-stack depth migration
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Fig. 5. Weak scaling considering HPX, MPI and MPI+OpenMP for
a 15000 × 15000 points image on Pangea II. The second figure is
zoomed on MPI and MPI+OpenMP.

for an image of base size of 15000 × 15000 which grows
with the number of nodes (cores) and 10 traces. The
ideal weak scaling is a constant execution time when
the computing resources allocated to the application are
increasing in the same proportions as the data. This is
not the case for HPX. This may be due to HPX memory
management and unexpected image and trace migrations
between nodes which we are not able to control. The
MPI and the MPI+OpenMP applications have a weak
scaling almost perfect since the execution time stays
almost constant while increasing the image size and the
number of nodes in the same proportions.

D. Variation of the Number of OpenMP Threads
In this section, we will focus on the performances

of our MPI+OpenMP implementation. Experimentations
on the MPI+OpenMP Kirchhoff seismic pre-stack depth
migration application with a different number of OpenMP
threads allocated to the application have been performed
for an image of 15000 × 15000 points. On one hand, we
used only one process and changed the number of OpenMP
threads allocated to the application until all the cores of
the node are used. On the other hand, we used all the
cores of the node but we changed the number of processes

allocated to the MPI+OpenMP as well as the number of
OpenMP threads allocated per process to keep one thread
per core. We test the performances of our migration kernel
with the addition of the OpenMP directives.

Threads Cores Median execution time (s)
2 24 63.383
4 24 65.3781
6 24 71.5322
12 24 76.7288
24 24 254.1039

TABLE I
Execution time for a pure OpenMP application while increasing

the number of OpenMP threads allocated to the application for a
15000 × 15000 point image on Pangea II.

Table I shows the execution times of the kernel de-
pending on the number of threads allocated to the pure
OpenMP application on one node of Pangea II. We can
see that the execution time does not change much while
increasing the number of threads except for 24 threads
where it is very high. The execution time should decrease
with the increase of parallel resources to solve the same
problem. This shows that our OpenMP implementation
of the migration kernel is not efficient enough to take
advantage of the available cores.

Processes Threads Cores Median execution time (s)
2 12 24 46.7809
4 6 24 6.3982
6 4 24 4.3045
12 2 24 8.7822
24 1 24 2.0901

TABLE II
Execution time for a hybrid MPI+OpenMP application while

increasing the number of MPI process while keeping 24 OpenMP
threads allocated to the application for a 15000 × 15000 point

image.

Table II shows the execution times for the
MPI+OpenMP executed on one node of Pangea II
where all the cores run an OpenMP thread and the
number of MPI processes changes. The number of threads
allocated for each MPI process is the number of cores
(24) divided by the number of MPI processes allocated
to the application. We can see that the pure MPI
application (24 processes and 1 thread per process) is the
fastest case. There are also two unexpected values; for
4 processes with 6 threads per process and 12 processes
with 2 threads per process. These values do not line up
with the rest. Especially the value for 12 processes with
2 threads per process that should reasonably be between
the value for 6 and 24 processes. The best performances
are obtained with 6 processes and 4 OpenMP threads
per process. These are the values used for our strong and
weak scaling experiments with MPI+OpenMP since they
obtain the best performances in both cases.
E. Discussions on performances
The migration kernel has to make interpolation of the

wave travel time from the receiver and the source to



reach the considered point. This interpolation accesses
the array containing the propagation times to perform
the interpolation at the coordinates of the point. These
accesses may be difficult to predict for the compiler thus
the OpenMP runtime is not able to efficiently divide and
parallelize the loops during the iteration over the image
points while computing the interpolation of the travel
times at the point. Thus, our implementation of the kernel
may not be written in a suitable way for the compiler
and the OpenMP runtime to efficiently parallelize it.
Therefore, using a pure MPI implementation avoid this
problem by splitting the image and the propagation
times beforehand at the process level. Then, the kernel is
executed on each sub-image without the necessity to try
to efficiently parallelize the loops iterating over the points
to perform the interpolations since they are already split
before calling the kernel.

In conclusion of our scaling experiments on the im-
plementations of the Kirchhoff seismic pre-stack depth
migration, our HPX application does not scale very well
both in terms of weak and strong scaling compared to our
MPI application. In the MPI application, the location of
each piece of data can be exactly controlled and there are
no communications during the migration. On the contrary,
the data migrations in our HPX application are up to
the runtime of the programming model. Therefore, there
may be migration of the images and the traces across
the nodes which reduce the performances. Besides, the
one-to-many dependencies between a trace and the sub-
images may be expressed sequentially in HPX instead of
in parallel which could restrict the execution and reduce
the performances. Moreover, there is a conversion between
the C data structures used in the C kernel and the C++
data structure used in HPX that may also decrease the
performances of the application since the data are not
converted in the C-based MPI application. Finally, the
introduction of OpenMP directives in the kernel is not
successful since the performances are not improved with
a hybrid MPI+OpenMP implementation compared to a
pure MPI implementation.

V. Conclusion
We introduced task-based algorithms for the Kirchhoff

seismic pre-stack depth migration and the parallelism
intrinsic to the method. Then, we introduced and imple-
mented a simplified 2D version of the Kirchhoff seismic
pre-stack depth migration as a task-based application
with HPX. We also implemented MPI and MPI+OpenMP
applications to compare with our task-based implemen-
tation. Then, we performed strong scaling and weak
scaling experiments as well as studied the influence of the
number of OpenMP threads on our kernel. We showed
that our HPX application does not scale very well both
in terms of weak and strong scaling compared to our MPI
application. We deduced that there were migrations of
the images and the traces across the nodes which reduced

the performances. We also showed that our addition of
OpenMP directives in the kernel did not bring as good
performances as our pure MPI application.
For the Kirchhoff seismic pre-stack depth migration,

the fine-grain management of the memory, the careful
alignment of the data, and the IOs allowed by the
pure MPI implementation yields better performances
than the higher-level implementations such as HPX and
MPI+OpenMP which are not able to cope efficiently with
the data placement, migrations, and dependencies. Indeed,
for this kind of application which is highly parallel in
term of computations and have irregular IOs, HPX and
MPI+OpenMP are less suitable than MPI. In this case, a
higher level of application description was not as efficient
to manage the local data necessary for the migration.
Therefore, a solution to this issue is to improve how

HPX manages the dependencies and make sure that it
reduces the memory operations that are not necessary
and costly. This could be achieved by pinning data to
nodes and trying to avoid sending these data between
nodes. In this case, a trace was used as input of the
migration for multiple images, thus there is a one-to-many
consumers operation and it is mandatory to improve how
the scheduler handles such dependencies.
Task-based programming models are an interesting

alternative to MPI due to their capacity to schedule
computations and data migrations to reduce costly com-
munications while optimizing the use of the computing
resources. Therefore, the scheduler could anticipate data
migrations and, in particular, IOs with the file system to
load data in advance so that they are ready to be used.
Moreover, it has been shown that task-based programming
models can have better performances than regular MPI
applications [12] [6] for dense linear algebra methods.
However, in this case, we did not manage to implement a
very efficient application due to several issues.
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