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Abstract—We implement parallel and distributed versions of
the sparse matrix-vector product and the sequence of matrix-
vector product operations, using OpenMP, MPI, and the ARM
SVE intrinsic functions, for different matrix storage formats.
We investigate the efficiency of these implementations on
one and two A64FX processors, using a variety of sparse
matrices as input. The matrices have different properties in
size, sparsity and regularity. We observe that a parallel and
distributed implementation shows good scaling on two nodes
for cases where the matrix is close to a diagonal matrix, but the
performances degrade quickly with variations to the sparsity
or regularity of the input.

Index Terms—Parallel computing, distributed computing,
matrix-vector multiplication, sparse matrix, A64FX, network
on chip.

I. Introduction
Sequences of sparse matrix multiplication are a key part

of many numerical applications, notably iterative methods
such as the conjugate gradient [1]. In addition, with the
increasing use of sparse matrices in Deep Learning [2],
the training of deep neural networks relies more and
more on sparse matrix-vector multiplication. Therefore,
implementing an efficient sparse matrix-vector product
(SpMV) is necessary to ensure reliable performance for
applications using it.

In this article, we focus on the Fujitsu A64FX processor
that powers the Fugaku supercomputer [3], which is #1 in
the TOP500 list at the time of the study. This processor
contains 48 compute cores, split into four groups of 12.
Each such group is called Core Memory Group (CMG),
and has its own L2 cache and memory. The CMGs inside
a processor are linked by a network-on-chip that handles
the communications between them. The processors are
linked by a 6D topology Tofu interconnect. For large-
scale computations, we need to use parallel and dis-
tributed applications. In these cases, the communications
often become a limiting factor for the performance, and
therefore require thorough investigation and optimization.
Single node sparse matrix-vector product with OpenMP
and global addressing on the network-on-chip has already
been considered in a recent study [4]. Therefore, we
focus here on multi-node implementations with MPI and

MPI+OpenMP. We also evaluate the efficiency of using
MPI on a single node to perform communications between
the CMGs of the A64FX chip instead of using global
memory addressing. We consider several standard storage
formats for sparse matrices such as compressed sparse rows
(CSR), Ellpack-itpack (ELL), and coordinates (COO).
These formats are not always ideal for SpMV computation,
but they are largely used in widespread packages and
applications, and as such they deserve to be studied as
a baseline to better understand the performance patterns
and bottlenecks.

This paper is organized as follows: in Section II, we
introduce the block decomposition used to distribute
the sparse matrices on the different MPI processes, and
the algorithms used to perform the sparse matrix-vector
product with several sparse storage formats. In Section
III, we describe our distributed application (sequence
of SpMV) and the test matrices used to compare the
performance of the different implementations and storage
formats. Then, in Section IV, we detail the experiments
and the results obtained. Finally, in Section V, we give a
summary and an overview for future work.

II. Data Distribution and Sparse Storage Formats
In this section, we introduce the matrix distribution

and the sparse storage formats used in our applications.
They are used to store matrices distributed across multi-
ple compute nodes, which induces communication issues
depending on the distribution of the matrix. The SpMV
algorithms were introduced previously and are available in
more detail, for instance, in [5]. We choose to implement
the compressed sparse row (CSR) and two versions of the
coordinates (COO) storage formats, which are used, for
instance, in TensorFlow, Pytorch, and cuSPARSE from
Nvidia [6]. We also implemented the Ellpack-itpack (ELL)
storage format since it is shown that it has been shown
to obtain good performance on GPUs [7].

A. 2D block decomposition
In this section, we consider different ways of distributing

sparse matrices across several nodes. We use a 2D block



decomposition of the matrix. Each sub-matrix is a sparse
matrix compressed in memory with a sparse storage
format. We are not looking into the load balancing issues
that may arise if some blocks are more populated than
others. This is a different complex issue which is not the
focus of this study.

The block distribution consists of both a distribution
by rows and a distribution by columns. The Nc × Nr
matrix is split in Ngc × Ngr sub-matrices. The sub-
matrices are stored in a sparse storage format locally.
In this case, the input vector is split across the columns
of the matrix and the sub-vectors are duplicated on the
sub-rows of the same column. The resulting vector has the
same size as the number of rows in the sub-matrices of
the corresponding row. However, each computing resource
contains a part of a sub-vector. To obtain the global result,
all the distributed results of the same row have to be
summed then each row has to be gathered if the full result
vector is needed in one place.

B. COO

Algorithm 1: COO format data structure and
matrix vector product
struct {

Vector row, col, val
} MatrixCOO

Function spmv_coo()
Data: m : MatrixCOO, v : Vector
Result: r : Vector
For i from 0 to m.val.size() - 1 do

r[m.row[i]] += m.val[i] * v[m.col[i]]

The COO format stores three vectors of equal size: row
index, column index, and value. Algorithm 1 shows the
formula for the matrix-vector product using this format.
In this implementation, the sub-matrix does not have to
be sorted, i.e. this implementation does not expect the
coordinates of the values of the matrix to be in a given
range. Therefore, this implementation can process any
value in any position in any sub-matrix (which is not the
case with the other storage formats). However, we cannot
deduce the range of position in the full input vector as
well as the range of position for the output vector since
there are no restrictions on the range of coordinates of the
values in the matrix.

It can allow a better load balancing at the cost of a
full vector in input and output, which will change how
the output vector will be processed to construct the full
output vector.

C. SCOO
The SCOO format uses the same three vectors as

COO, and two additional numbers/integers to locate
the sub-matrix within the overall matrix. Algorithm 2

Algorithm 2: SCOO format data structure and
matrix vector product
struct {

Vector row, col, val
Integer fr, fc

} MatrixSCOO

Function spmv_scoo()
Data: m : MatrixCOO, v : Vector
Result: r : Vector
For i from 0 to m.val.size() - 1 do

r[m.row[i] - m.fr] += m.val[i] * v[m.col[i] - m.fc]

describes the sparse matrix vector product for SCOO.
These informations are the first row (fr) and the first
column (fc) in the sub-matrix. The algorithm for the
SCOO storage format is similar to the algorithm for COO;
the supplementary information is used in the algorithm
to properly position the output vector. In this case,
the range of position for the input and output vectors
can be computed since the range of coordinates for the
values in the SCOO storage format are restricted to the
data distributions discussed in Section II-A. Therefore,
depending on the data distribution, the input and output
vector shapes change.

In this case, the construction of the output vector will
depend on the division of the matrix as specified in Section
II-A.

D. CSR

Algorithm 3: CSR format data structure and ma-
trix vector product
struct {

Vector idx, col, val
Integer fc

} MatrixCSR

Function spmv_csr()
Data: m : MatrixCSR, v : Vector
Result: r : Vector
For i from 0 to m.idx.size() - 1 do

For j from m.idx[i] to m.idx[i+1] - 1 do
r[i] += m.val[j] * v[m.col[j] - m.fc]

The CSR format also uses three vectors to store the
matrix. Here, the vector containing the indexes of the row
is replaced by a vector that contains the position of the
beginning of each row in the column vector. Algorithm 3
describes the sparse matrix vector product for CSR. The
data structure contains the three vectors necessary to store
the matrix in the CSR storage format as well as useful
information about the position of the sub-matrix in the
global matrix, i.e. the first column (fc) in the sub-matrix.
As for the SCOO storage format, the ranges of position
for the input and output vectors can be computed.



E. ELL

Algorithm 4: ELL format data structure and matrix
vector product
struct {

Vector col, val
Integer fc, max_col

} MatrixELL

Function spmv_ell()
Data: m : MatrixELL, v : Vector
Result: r : Vector
For i from 0 to m.lrs - 1 do

For j from 0 to m.max_col - 1 do
r[i + m.rpos] += m.val[i * m.max_col + j]
* v[m.col[i * m.max_col + j]- m.fc]

The Ellpack format uses two rectangular matrices.
The first vector stores the position of the values in the
columns and the second stores the corresponding values.
Algorithm 4 describes the sparse matrix vector product
for the Ellpack sparse storage formats. The data structure
contains the number of columns needed in the vectors and
the two vectors necessary to store the matrix in the ELL
storage format as well the first column (fc) in the sub-
matrix which is used in this algorithm. As for the SCOO
and CSR storage formats, the ranges of position for the
input and output vectors can be computed.

III. A(Ax+ x) + x Application
In this section, we describe out target application: the

sequence of SpMV with vector addition A(Ax+x)+x. We
also describe the different sparse matrices that are used
in the experiments.

A. Distributed A(Ax+ x) + x

The sparse operation A(Ax + x) + x consists of a call
to the sparse matrix-vector product followed by the sum
of the output vector with x, then a second iteration of
these processes. This application is more representative
of the iterative methods using the SpMV as kernel, since
the result vector has to be redistributed to all processes
after the first iteration. This operation A(Ax+x)+x has
been implemented in MPI and MPI+OpenMP on top of
a sparse matrix-vector product kernel that supports the
CSR, ELL, COO, and SCOO storage formats as well as
the different matrix distribution possibilities. The commu-
nications, the building of the output vector depending on
the distribution of the matrix, and the sum are managed
with the programming models in which the application is
implemented (e.g. reductions from OpenMP or MPI)1.
The program is compiled using the Fujitsu compiler
in Clang mode, with flags ‘-Kopenmp -fPIC -Ofast -
mcpu=native -funroll-loops -fno-builtin -march=armv8.2-
a+sve’.

1Code is available at https://github.com/jgurhem/TBSLA/tree/dev_array

The Nc×Nr input matrix is distributed over a Ngc×
Ngr decomposition, as seen in Section II-A. This kernel is
called in the MPI processes to perform the sparse matrix-
vector product on the local matrices. Ngc×Ngr is equal
to the number of available processes in the application.
This allows each process to manage its sub-matrix.
B. Test Matrices

We use several sparse matrices with different properties,
in order to get a broader view of the performance of
our application in a variety of situations (size, sparsity,
regularity...).

The first test matrix we use to evaluate performance is
Matrix Market’s nlpkkt120. It is a square matrix with
3,542,400 rows and 96,845,792 entries. The number of
entries per row is regular (about 27), and the matrix has
a strong diagonal pattern. This matrix was used in the
previous study about SpMV on the A64FX processor [4].

We use two additional matrices, drawn from the SuiteS-
parse Matrix Collection [8]: cage14 and cage15. These two
matrices are structurally similar to one another, but their
sizes are different (see Table I for dimensions). Compared
to nlpkkt120, they have high sparsity, and higher deviation
from the diagonal for the nonzero entries. Therefore, we
expect them to highlight the cost of communications
since the data will be distributed across more nodes and
processes.

matrix rows columns nnz
cage14 1,505,785 1,505,785 27,130,349
cage15 5,154,859 5,154,859 99,199,551

nlpkkt120 3,542,400 3,542,400 96,845,792
TABLE I

Matrices informations

Finally, we use C-diagonal Q-perturbed matrices intro-
duced in [9]. These matrices consist of C values above
the diagonal including the diagonal with a probability of
Q to change the column position of the value. Figure 1
represents a 30×30 C-diagonal Q-perturbed sparse matrix
with C=4 and several values of Q (0.05, 0.5 and 0.9) where
each black square is a non-zero value. The deviation from
the diagonal increases quickly with the parameter Q.

Fig. 1. C-diagonal Q-perturbed sparse matrix with C=4 and Q=0.05
on the left, Q=0.5 on the middle and Q=0.9 on the right

IV. Experiments
In this section, we experiment with our different imple-

mentations of the sparse matrix-vector product. First, we



focus on the improvements provided by using ARM SVE
for the sparse matrix product. Then, we present the results
of experiments with Matrix Market’s nlpkkt120 matrix
example for COO, CSR, ELL, and SCOO. We compare
them with the results on cage14 and cage15. Finally, we
use C-diagonal Q-perturbed matrices as benchmarks for
the CSR and ELL implementations.

A. ARM SVE
A major feature of the recent ARM-based processors,

including the A64FX, is the Scalable Vector Extension
(SVE) that enables support for SIMD operations with
per-lane prediction, which allows for efficient vectorization
[10]. The vector length can be specified as a multiple
of 128 bits. We use a vector of 512 bits, which is the
default for the processor and allows for the simultaneous
computation of 8 double-precision values (64 bits each).
The SVE instructions can be generated automatically by
the compiler for simple functions. However, this is not
currently supported for the SpMV, which require indirect
access to the stored arrays. Instead, we used the ARM
SVE intrinsic functions to implement a vectorized version
of the SpMV on different matrix formats. Then, we used
the nlpkkt120 matrix to benchmark the efficiency of the
vectorization.
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Fig. 2. Ax with ARM SVE vs no SVE for CSR and ELL with
nlpkkt120 as example

Figure 2 shows the results (in GFlop/s) obtained with
the two implementations of ELL and CSR, on the sparse
Ax operation. We can see that ELL without vectorization
runs slightly faster than CSR for this matrix. We can also
see that CSR with vectorization runs slightly faster than
CSR without. In CSR’s case, the addition of vectorization
improves the performance of the sparse matrix-vector
product by about 8% whereas, for ELL, the vectorized
code does not always improve the performance. Therefore,
we choose to use vectorization for CSR in the experiments
presented in the rest of this section. For ELL, we choose
to run both implementations and show the results of the
implementation that provides the best results.

The lack of significant speedup when using a vectorized
implementation could mean that the latency associated
with the SVE intrinsics (see analysis in [4]) compensates
the benefits of computing several values at once. It could

also be that the optimizations done by the compilers on
the non-vectorized code (software pipelining, etc.) already
bring this code close to the best reachable performance
for this application.

There are several possible ways to improve the efficiency
of the vectorization. A first possibility is to fine-tune the
prefetching options of the compiler for the input data. A
second option is to apply manual unrolling to the inner
loop, which can improve performance noticeably on some
applications. Another option is to use data storage formats
better suited to vectorization, such as the SELL-C-sigma
[11] format used in a previous study on this processor [4],
or other proposed formats [12]. We did not explore these
possibilities in this study, and instead wanted to evaluate
the possible gain of using intrinsic functions “off-the-shelf”.
As shown in the rest of this section, we focus more on the
general behavior of the applications for different input
matrices and different implementations. We believe this
is a valuable first step before diving more in case-by-case
optimization and tuning.

B. Matrix Market’s nlpkkt120
For the experiments in this section, we used the nlp-

kkt120 matrix as a benchmark for our implementations of
the sparse Ax as well as the sparse A(Ax+ x) + x.
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Fig. 3. Ax for COO, CSR, ELL and SCOO with nlpkkt120 as
example

Figure 3 shows the performance obtained with each
storage format for the sparse Ax with the OpenMP
implementation. We can see that the results for CSR
and ELL are similar since their implementation with the
vectorization is based on a similar approach. However,
COO and SCOO are not vectorized and they need a
sum on the output vectors of each thread to compute
the resulting vector. Because of the COO/SCOO format,
the time spent to compute the sum increases with the
number of cores (= OpenMP threads) used, leading to
minimal scaling.

Table II shows the number of floating-point operations
per second for the MPI and the MPI+OpenMP implemen-
tations, for the sparse matrix-vector product on 1 and
2 nodes. The last row of the table represents the pure
MPI implementation whereas the other rows show the
results for the MPI+OpenMP implementation. The thread



threads COO CSR ELL SCOO
1 2 1 2 1 2 1 2

1 7.9 10.0 75.6 127.2 81.7 145.5 6.0 11.9
2 3.8 4.4 75.0 136.4 72.4 135.0 6.0 11.9
4 5.4 4.0 73.6 142.2 80.3 135.0 5.9 11.7
6 5.9 2.6 73.8 130.0 64.2 131.7 5.8 11.4
12 3.1 3.1 72.5 131.5 69.9 129.4 5.5 11.0
24 3.0 2.4 71.9 130.9 69.1 124.5 3.2 5.4
48 1.6 2.6 69.8 127.9 68.8 123.2 2.4 3.3

MPI 14.5 27.4 78.1 119.1 84.4 121.2 6.8 13.0
TABLE II

MPI and MPI+OpenMP performance (in GFlop/s) for Ax with
nlpkkt120 matrix on 1 and 2 nodes for COO, CSR, ELL and

SCOO storage formats with different number of threads per MPI
process, keeping 48 threads total on each node

column gives the number of threads per MPI process used
during the execution while keeping all the cores busy (e.g.
when there are 2 threads per process, there are 24 MPI
processes).

We can see that COO does not scale well with
MPI+OpenMP, with the performance on 2 nodes being
sometimes lower than on 1 node. It is mainly due to
the OpenMP reduction on the resulting vector after the
execution of the OpenMP threads. However, the MPI
implementation scales well, even if the performance is
behind CSR and ELL, since there are more memory
accesses due to the format design. For CSR, ELL, and
SCOO, the best performance is obtained with pure MPI
for one node. For CSR, they are close to the ones
obtained with OpenMP only (78.9 GFlop/s for OpenMP
and 78.1 for MPI). However, for ELL, the performance
is better with pure MPI than OpenMP, whereas it is the
opposite for SCOO where the performance is better with
OpenMP. CSR and ELL’s best performance on two nodes
is obtained with MPI+OpenMP with 12 MPI processes
and 4 OpenMP threads per process, whereas for SCOO it
is with pure MPI.
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Fig. 4. A(Ax+x)+x for COO, CSR, ELL and SCOO with nlpkkt120
as example

We then ran experiments for the sparse operation
A(Ax + x) + x, which should better approximate the
iterative methods. Figure 4 shows its performance with
the OpenMP implementation up to 48 threads. We ob-
tain similar performance patterns as for Ax, which is
expected since it is based on this operation. However,

the performance is lower than for Ax since there are two
more additions between the resulting vector of Ax and the
input vector.

threads COO CSR ELL SCOO
1 2 1 2 1 2 1 2

1 2.6 1.1 8.9 10.4 8.3 10.6 3.8 5.9
2 2.8 1.7 8.2 9.2 8.1 9.1 3.7 5.9
4 3.2 3.1 13.1 15.0 13.9 14.8 4.3 7.2
6 2.3 1.9 16.7 17.6 16.0 17.9 4.6 7.5
12 2.1 1.9 18.1 20.8 17.2 22.5 4.6 8.0
24 3.6 1.8 27.5 25.9 29.6 25.1 3.6 5.6
48 1.6 3.4 34.1 35.8 33.4 36.1 3.3 4.3

MPI 3.2 1.2 9.0 9.9 8.1 9.9 3.6 5.6
TABLE III

MPI and MPI+OpenMP performance (in GFlop/s) for
A(Ax+ x) + x with nlpkkt120 matrix on 1 and 2 nodes for COO,

CSR, ELL and SCOO storage formats with different number of
threads per MPI process, keeping 48 threads on each node

With distributed sparse matrices, the sparse matrix-
vector product resulting vector is local, thus, it has to
be combined with the outputs in the other processes to
form the complete solution then perform the addition.
The creation of the full output vector is costly, as we
can see in Table III, in which the GFlop/s of the sparse
A(Ax + x) + x are given depending on the number of
OpenMP threads used to run the application. Indeed, the
best performance obtained with MPI or MPI+OpenMP
is about half the one with just OpenMP. Moreover, the
scaling of the application is poor since the improvement
from using 2 nodes is minimal at best. This is due to
the construction of the resulting vector to perform the
addition, since it is the only difference with the regular
Ax.

C. cage14 and cage15 matrices
As discussed in Section III, the two cage matrices

have a different pattern from nlpkkt120. The matrix is
more sparse, and the entries are more spread out from
the diagonal, which means the data will be distributed
differently.

Tables IV and V show the performance on these two
matrices compared to nlpkkt120, for OpenMP, MPI, and
OpenMP+MPI implementations, for Ax and A(Ax+x)+x
respectively. We only consider CSR and ELL as storage
formats, since the other two have shown poor scaling and
performance in the previous experiments.

matrixtype CPPOMP MPI MPIOMP
CSR ELL CSR ELL CSR ELL

cage14 29.5 23.1 31.7 24.7 32.4 25.2
cage15 28.8 22.2 31.0 24.5 33.2 26.2

nlpkkt120 78.9 81.7 78.1 84.4 75.6 81.7
TABLE IV

Performance (in GFlop/s) for several Matrix Market matrices for
Ax on 1 node

We can make two observations about these results.
First, the performance is lower than on nlpkkt120, at
least by a factor 2. The pure MPI implementation is also



matrixtype CPPOMP MPI MPIOMP
CSR ELL CSR ELL CSR ELL

cage14 27.9 22.0 5.1 4.2 15.3 14.0
cage15 26.0 20.5 5.8 5.9 17.1 14.7

nlpkkt120 62.6 60.6 9.0 8.1 34.1 33.4
TABLE V

Performance (in GFlop/s) for several Matrix Market matrices for
A(Ax+ x) + x on 1 node

never the best option for these two matrices, compared
to nlpkkt120. As expected, this is probably due to the
increased burden on communications caused by the data
distribution. Second, ELL performs noticeably worse than
CSR, whereas for nlpkkt120 the two formats give similar
results or ELL is slightly better. This may be due to
the number of nonzero entries being different across the
rows of the matrix This would lead to the storage of
useless zeroes, since ELL aligns on the highest number
of nonzeroes per row.

In order to get a clearer view of the effect of having
nonzero entries deviating from the diagonal on the per-
formance of our application, we now present experiments
on synthetic C-diagonal Q-perturbed matrices.

D. C-diagonal Q-perturbed matrices
1) C = 100: We used 8, 000, 000× 8, 000, 000 matrices

with C = 100 non-zero elements per row, with different
values of Q which represents the dispersion of the values
in the rows of the matrix. When Q is small the non-
zero elements of the matrix are concentrated close to the
diagonal of the matrix. When Q increases, the probability
of exchanging the position in the rows with another one
increases. Therefore, the values are more dispersed when Q
increases. Thus, when Q is small, the values in the rows are
close to each other. The values of the input vector, accessed
during the dot product between the row of the matrix
and the input vector, are also close in memory. However,
when Q increases, this is not the case anymore and the
accesses to the memory containing the input vector are
more random and more prone to cache misses. Therefore,
when Q increases, the performance of the sparse matrix-
vector decreases. This can be confirmed by Figure 5 in
which we represent the performance of Ax depending on
the values of Q for CSR and ELL.

Indeed, Figure 5 shows that the performances of CSR
and ELL are similar and that they depend on the values
of Q. When Q is small, the performance is very high
with up to 70 GFlop/s. However, when Q increases, the
performance of the sparse matrix-vector product degrades
quickly.

Tables VI and VII show the performances of CSR
and ELL for the sparse Ax with the MPI and
MPI+OpenMP implementations. We can see that the
MPI and MPI+OpenMP implementations are performing
better than the OpenMP implementation for CSR and
ELL. MPI+OpenMP with 1 MPI process and 48 OpenMP
threads per process obtains the same performance as pure
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Fig. 5. Ax with OpenMP for C-diagonal Q-perturbed matrices with
C = 100

threads 0.0 0.4 0.8
1 2 1 2 1 2

1 138.2 275.5 12.0 24.0 7.2 14.4
2 139.0 272.9 12.3 24.0 7.3 14.4
4 134.3 270.7 12.1 24.6 8.2 16.2
6 136.7 264.7 12.2 24.7 8.7 15.1
12 136.6 260.0 13.0 25.6 10.7 20.0
24 130.3 248.4 9.0 22.0 8.8 20.4
48 65.9 234.9 4.0 11.8 1.6 6.5

MPI 138.0 274.5 11.9 23.8 7.2 14.3
TABLE VI

MPI and MPI+OpenMP performance (in GFlop/s) for Ax with
C-diagonal Q-perturbed matrices on 1 and 2 nodes for CSR storage
format with different number of threads per MPI process, keeping

48 threads per node

OpenMP, which is not surprising since it is almost pure
OpenMP code. We can also see the influence of the value
of Q. When Q = 0, we can get up to 140 GFlop/s for
ELL whereas when Q = 0.8, we can only get 7 GFlop/s
with 1 node.

With A(Ax + x) + x, Q influences the performance in
a similar way as for Ax. However, there is no decrease in
performance compared to the experiments on nlpkkt120.
This is shown by Figure 6 that gives the performances of
A(Ax+ x) + x with OpenMP for CSR and ELL.

Table VIII and Table IX show the performances of CSR
and ELL for A(Ax+x)+x with MPI and MPI+OpenMP
with different values of Q for C-diagonal Q-perturbed
matrices. We can see that the performance of A(Ax+x)+x
is lower than for Ax, similar to what happened with
nlpkkt120. However, the scaling to 2 nodes is better.
Indeed, the best performance for 1 node and Q = 0 is
around 70 GFlop/s and 100 GFlop/s for 2 nodes and Q =
0. We can see similar results for CSR and ELL as well as



threads 0.0 0.4 0.8
1 2 1 2 1 2

1 133.3 265.2 12.2 24.4 7.3 14.5
2 132.1 260.0 12.2 24.4 7.3 14.5
4 131.0 261.4 12.3 25.0 7.4 14.9
6 130.8 254.4 12.4 25.3 7.6 15.3
12 131.0 253.9 12.9 26.3 9.0 17.1
24 126.5 255.5 8.6 16.8 7.5 14.1
48 64.5 241.5 3.3 11.0 1.3 5.5

MPI 140.7 279.6 12.0 24.1 7.2 14.4
TABLE VII

MPI and MPI+OpenMP performance (in GFlop/s) for Ax with
C-diagonal Q-perturbed matrices on 1 and 2 nodes for ELL storage
format with different number of threads per MPI process, keeping

48 threads per node
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Fig. 6. A(Ax + x) + x with OpenMP for C-diagonal Q-perturbed
matrices with C = 100

for the different values of Q. Therefore, it means that the
scaling issues are not coming from the dispersion of the
non-zero elements in the matrix. In this case, we used a
matrix of size 8, 000, 000× 8, 000, 000, whereas nlpkkt120
has a size of 3, 542, 400 × 3, 542, 400. Our matrix also
has a larger number of non-zero elements (800, 000, 000
vs 96, 845, 792), which makes it larger both in terms of
the vector sizes and the number of non-zero elements.
Our application is scaling better with the C-diagonal Q-
perturbed matrices than with nlpkkt120 since the matrix
is larger in this case.

2) Lower number of nonzeroes per row: The obser-
vations so far on C-diagonal Q-perturbed matrices do
not confirm our initial intuition that the dispersion of
nonzero entries from the diagonal caused an increase in the
cost of communications and lower performance. Instead,
it appears that the number of nonzeroes is the main
determinant. This could explain the results from Section
IV.C. under a new light, since cage14 and cage15 are

threads 0.0 0.4 0.8
1 2 1 2 1 2

1 32.5 35.7 9.4 15.3 6.2 10.7
2 32.2 36.3 9.4 15.3 6.2 10.8
4 35.8 55.4 9.7 18.2 6.6 12.2
6 42.5 55.0 10.2 18.2 7.0 12.3
12 51.7 64.2 11.2 19.8 8.7 13.6
24 72.4 81.3 8.1 14.4 7.7 13.2
48 50.3 103.9 2.7 9.8 1.3 5.2

MPI 32.5 33.6 9.6 14.5 6.2 10.4
TABLE VIII

MPI and MPI+OpenMP performance (in GFlop/s) for
A(Ax+ x) + x with C-diagonal Q-perturbed matrices on 1 and 2

nodes for CSR storage format with different number of threads per
MPI process, keeping 48 threads per node

threads 0.0 0.4 0.8
1 2 1 2 1 2

1 32.5 35.2 9.5 15.3 6.2 10.7
2 31.9 36.8 9.5 15.6 6.2 10.9
4 35.4 53.8 9.9 18.5 6.5 12.2
6 41.5 55.3 10.3 18.6 6.7 12.4
12 51.3 59.3 11.4 20.3 8.7 13.0
24 71.8 83.3 8.2 14.7 7.2 10.5
48 50.3 106.1 2.9 10.3 1.3 5.6

MPI 32.6 33.1 9.6 14.8 6.3 10.4
TABLE IX

MPI and MPI+OpenMP performance (in GFlop/s) for
A(Ax+ x) + x with C-diagonal Q-perturbed matrices on 1 and 2

nodes for ELL storage format with different number of threads per
MPI process, keeping 48 threads per node

also more sparse than nlpkkt120, and showed decreased
performance for our application.

In order to confirm this observation, we repeat the
experiments with the OpenMP implementation on C-
diagonal Q-perturbed matrices, with C = 16 and C =
8 instead of C = 100, in order to simulate cases with
fewer nonzero entries. Results for C = 16 are presented
in Tables 7 and 8, respectively for Ax and A(Ax+x)+x.
Results for C = 16 are presented in Tables 9 and 10,
respectively.

For C = 16, performances on both applications are
slightly lower than for C = 100, and degrade faster even for
minor deviations from the diagonal (Q = 0.01). For C =
8, performance is noticeably lower, at around 40 GFlop/s
for Ax and 30 GFlo/ps for A(Ax+ x) + x. This confirms
that the number of nonzeroes is an important factor in
the performance.

V. Conclusion
We implemented a sparse matrix-vector product and

A(Ax + x) + x with several sparse formats that we used
to benchmark the performance of the vectorization on
A64FX chips. We have seen that our simple implementa-
tion of the vectorization, using SVE intrinsics for regular
Ellpack and CSR, provides only a small improvement in
performance (less than 10%). We also used coordinates-
based sparse storage formats but they were less efficient
than CSR and ELL due to the required reduction on the
resulting vector during the OpenMP parallel loop.



1 2 4 6 12 24 48
Cores

0

10

20

30

40

50

60

GF
lo

ps

CSR, 0.0
CSR, 0.01
CSR, 0.05
CSR, 0.2
CSR, 0.4

1 2 4 6 12 24 48
Cores

0

10

20

30

40

50

60

GF
lo

ps

ELL, 0.0
ELL, 0.01
ELL, 0.05
ELL, 0.2
ELL, 0.4

Fig. 7. Ax with OpenMP for C-diagonal Q-perturbed matrices with
C = 16
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Fig. 8. A(Ax + x) + x with OpenMP for C-diagonal Q-perturbed
matrices with C = 16

We have shown that Ax scales well up to 2 nodes with
matrices of different shapes and sizes. However, the sparse
A(Ax+x)+x is not scaling well with nlpkkt120, but scales
well with our larger C-diagonal Q-perturbed matrices.
Moreover, we have shown that MPI and MPI+OpenMP
provide better performance on multiple core memory
groups than OpenMP for large matrices such as our
C-diagonal Q-perturbed matrices, whereas OpenMP ob-
tained better performance on nlpkkt120. Finally, we
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Fig. 9. Ax with OpenMP for C-diagonal Q-perturbed matrices with
C = 8
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Fig. 10. A(Ax+ x) + x with OpenMP for C-diagonal Q-perturbed
matrices with C = 8

showed that the sparsity and dispersion of the values
in the matrices greatly influences the performance of
the sparse matrix-vector product. Indeed, matrices with
values localized in groups obtained better performance
than matrices without localization.

In future work, we will focus on large-scale and multi-
node applications based on the sparse matrix-vector prod-
uct such as page rank and conjugate gradient. We will
also investigate sparse storage formats more adapted to



the vectorization of operations. We will experiment with
larger and application extracted sparse matrices. Another
avenue is to explore the several compiler options for the
A64FX processor that could help improve the efficiency
of the vectorization, notably the tuning of prefetching for
the different cache levels.
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