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ON THE CONVERGENCE OF THE CRANK-NICOLSON METHOD FOR THE LOGARITHMIC SCHR ÖDINGER EQUATION

PANAGIOTIS PARASCHIS AND GEORGIOS E. ZOURARIS Abstract. We consider an initial and Dirichlet boundary value problem for a logarithmic Schrödinger equation over a two dimensional rectangular domain. We construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization, with or without regularizing the logarithmic term. We develop a convergence analysis yielding a new almost second order a priori error estimates in the discrete L ∞ t (L 2 x ) norm, and we show results from numerical experiments exposing the efficiency of the method proposed. It is the first time in the literature where an error estimate for a numerical method applied to the logarithmic Schrödinger equation is provided, without regularizing its nonlinear term. u(0, x) = u 0 (x) ∀ x ∈ int(Ω), (1.3) where λ ∈ R {0}, f ∈ C(D, C), u 0 ∈ C(Ω, C) with u 0 ∂Ω = 0, and g ∈ C(C, C) given by (1.4) g(w) = 0, w = 0, w ln( w ), w = 0, ∀ w ∈ C.

It is well-known (see, e.g., Lemma 1.1.1 in [START_REF] Cazenave | Équations d' evolution avec non linéarité logarithmique[END_REF]) that g satisfies the Cazenave-Haraux (CH) property:

(1.5) Im [(g(z) -g(w)) (z -w)] ≤ z -w 2 ∀ z, w ∈ C, which is the basic tool to ensure uniqueness of the solution u (see, e.g., [START_REF] Cazenave | Équations d' evolution avec non linéarité logarithmique[END_REF], [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF], [START_REF] Guerrero | Global H 1 solvability of the 3D logarithmic Schrödinger equation[END_REF]). Here, we consider a two space dimensional logarithmic Schrödinger equation, because the corresponding numerical approximation problem is computationally more demanding and challenging than that for an one space dimensional one. Our decision to discretize the problem above in space by applying a finite difference method over an orthogonal grid is the reason why we pose the problem over the rectangle Ω. Also, this choice gives us the opportunity to observe the tensorization property (see e.g. [START_REF] Bialynicki-Birula | Nonlinear wave mechanics[END_REF], [START_REF] Carles | Logarithmic Schrödinger equation with quadratic potential[END_REF]) of the logarithmic Schrödinger equation, where, when f vanishes, the tensor product of two solutions to the one dimensional logarithmic Schrödinger equation consists a solution to the two dimensional one. Different types of boundary condition can be imposed on ∂Ω and we have shown our preference to the homogeneous Dirichlet boundary conditions since they can be easily included in a finite difference method. The logarithmic Schrödinger equation has been introduced in [START_REF] Bialynicki-Birula | Nonlinear wave mechanics[END_REF] within the area of the nonlinear wave mechanics, and since then it appears as a model in various science topics such as nuclear physics, quantum mechanics, quantum optics and geophysics (see, e.g. [START_REF] Hefter | Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics[END_REF], [START_REF] Yasue | Quantum mechanics of nonconservative systems[END_REF], [START_REF] Buljan | Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media[END_REF], [START_REF] Martino | Logarithmic Schrödinger-like equation as a model for magma transport[END_REF], [START_REF] Van Geleuken | Numerical investigation of the logarithmic Schrödinger model of quantum decoherence[END_REF]). In the physical case the logarithmic Schrödinger equation is homogeneous. Here, we have included a non homogeneous term f to (1.1) in order to show that its presence does not influence the results we obtain and in order to have higher flexibility in the construction of artificial problems with known regular exact solution, which could be useful in testing the implementation and the asymptotic behaviour of our numerical method. That allows us to adopt the formal assumption that the problem above admits a unique solution which is sufficiently smooth for our purposes. At this point, we would like to note that according to the bibliography it is not certain that high regularity of the initial condition is always propagated (see Section 2.3 in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] and Remark 2.1 in [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF]).

For mathematical results related to the problem above, we refer the reader to [START_REF] Cazenave | Équations d' evolution avec non linéarité logarithmique[END_REF] and [START_REF] Guerrero | Global H 1 solvability of the 3D logarithmic Schrödinger equation[END_REF] on the existence and uniqueness of a solution to the Cauchy problem, to [START_REF] Cazenave | Stable solutions of the logarithmic Schrödinger equation[END_REF], [START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF] and [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] on the asymptotic behaviour of solutions to the Cauchy problem, to [START_REF] D'avenia | On the logarithmic Shcroödinger equation[END_REF] on the existence and multiplicity of standing wave solutions to the Cauchy problem, to [START_REF] Hayashi | A note on the nonlinear Schrödinger equation in a general domain[END_REF] on existence and uniqueness of a solution over a general domain, to [START_REF] Carles | Logarithmic Schrödinger equation with quadratic potential[END_REF] on the asymptotic behaviour of the solution to the Cauchy problem under the presence of a quadratic potential and to [START_REF] Barbu | The stochastic logarithmic Schrödinger equation[END_REF] for existence and uniqueness of a solution to a stochastic version of the logarithmic Schrödinger equation. More references could be found in the bibliography of the aforementioned works.

Recently the problem of constructing approximations of the solution to the logarithmic Schrödinger equation has been addressed in [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF] and [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF], where a numerical method is applied along with the substitution of g(z) by the regular function g ε (z) = z ln(ε + z ) where ε is a positive parameter close to zero. However, the convergence results presented are pessimistic, because the parameter ε influences the error bounds obtained in an irregular way. In particular, for a linearly implicit finite difference method formulated in [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF], it is shown that the exponential constant, which is an outcome of the application of the discrete Gronwall argument, is of the form exp(C T ln(ε) 2 ) for the error estimate in the discrete L ∞ t (L 2 x ) norm (see Theorem 3.1 in [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF]). According to the convergence analysis developed, an O(ε) error bound, is achieved by adopting an O( √ ε exp(-C T ln(ε) 2 )) size for the time step and the space width. However, for ε = 10 -2 and C T = 1, we obtain √ ε exp(-C T ln(ε) 2 ) ≃ 6 10 -11 , which seems to be an unrealistic size for the time-step and the mesh-width to expect an accuracy of about two digits. For a time-discrete Lie-Trotter splitting method proposed in [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF], the convergence analysis arrives at an O(ε

+ ln(ε) τ 1 2 ) or O(ε + ε -1 τ ) error bound in the discrete in time L ∞ t (L 2 
x ) norm, depending on the time regularity of the solution, where τ is the time step (see Theorem 1 and Remark 3 in [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF]). Thus, under the optimal choice ε = τ 1 2 , one concludes, in both cases, an O(τ 1 2 ) error bound. Analogous results are obtained in [START_REF] Cheng | Regularized splitting spectral method for space-fractional logarithmic Schrödinger equation[END_REF] for a fractional logarithmic Schrödinger equation. It is evident, that further investigation is required to arrive at a better understanding of how the choice of the method interacts with the regularization of the nonlinear term in the error estimation process.

The bibliography cultivates the impression that the presence of the logarithmic function in the nonlinear term g is a source of singularity resulting in difficulties in the numerical handling of the problem, which is not confirming by results from numerical experiments (see, e.g. Section 6). We would like to stress that in a computer implementation of a numerical method approximating the solution to the logarithmic Schrödinger equation, the user has to define function g exactly as it is described in (1.4), otherwise an overflow signal will possibly pop-up, which could be considered as a false signal for the existence of a singularity. Our opinion is that a numerical method approximating the solution to the logarithmic Schrödinger equation must have its stability properties aligned to the (CH) property (1.5) of the logarithmic term.

In the paper at hands, we apply the Crank-Nicolson method for time-discretization along with a second order finite difference method for space-discretization skipping the use of the finite element method as an attempt to avoid the numerical integration of the logarithmic term. Since the Crank-Nicolson method is a B-stable Runge-Kutta method (see, e.g. [START_REF] Hairer | Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems[END_REF]), we are able to build-up a stability argument based on the (CH) property (1.5) that keeps the Gronwall exponential term free of ε. The convergence analysis shows that the method can achieve an almost second order convergence in the discrete L ∞ t (L 2 x ) norm, with or without using g ε as a regularization of g. In particular, we show that there exists a constant C > 0, independent of ε, τ , h 1 and h 2 , such that

max 0≤n≤N U n -u n 0,H + τ 1 2 ln(τ ) -1 2 U n -u n 1,H ≤ C τ 2 + τ 2 ln(τ ) + h 2 1 + h 2 2 if ε = 0,
and

max 0≤n≤N U n -u n 0,H + τ 1 2 ln(ε) -1 2 U n -u n 1,H ≤ C ε + τ 2 + τ 2 ln(ε) + h 2 1 + h 2 2 if ε > 0, where ⋅ 0,H is a discrete L 2 (Ω) norm, ⋅ 1,H is a discrete H 1 (Ω)
norm τ is the time-step, h 1 and h 2 are the mesh-length of a uniform partition of [a 1 , a 2 ] and [b 1 , b 2 ], respectively. Thus, ε does not influence the choice of τ , h 1 , h 2 , and the method can achieve its maximum rate of convergence by setting ε = τ β with β ≥ 2. Our results show that, given that the solution to the problem is regular enough, it is possible to derive second order error estimates for a numerical method applied to the problem at hand without suffering from the regularization parameter ε (cf. Remarks 4 and 5 in [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF]). We would like to stress that the results we obtain are not directly applied in the case of real evolution equations with logarithmic nonlinearity, since the left hand side in (1.5) becomes zero on real line (see, e.g. [START_REF] Paraschis | Backward Euler finite difference approximations of a logarithmic heat equation over a 2D rectangular domain[END_REF]).

We would like to fill out our references list, by mentioning the work [START_REF] Li | Numerical solution of the regularized logarithmic Schrödinger equation on unbounded domains[END_REF] for the use of the Crank-Nicolson method to approximate the solution to the logarithmic Schrödinger equation with artificial boundary conditions without providing rigorous error estimates for the numerical approximation error, and the works [START_REF] Scott | Solution of the logarithmic Schrödinger equation with a Coulomb potential[END_REF] and [START_REF] Shertzer | Solution of the 3D logarithmic Schrödinger equation with a central potential[END_REF] for the numerical approximation of the time independent logarithmic Schrödinger equation.

We close the Introduction by giving a brief overview of the paper. In Section 2, we introduce notation, we provide some auxiliary results, we formulate the numerical method and we discuss the existence and uniqueness of the numerical approximations. In Section 3, we estimate the consistency error. Section 4 is dedicated to the convergence analysis of the proposed method and in Section 5 we discuss the application of the fixed point iterations method in computing the numerical approximation. Finally, we expose results from numerical experiments in Section 6.

The Crank-Nicolson Finite Difference Method

2.1. Notation and Preliminaries. Let N be the set of all positive integers. For given N ∈ N, we consider a uniform partition of the time interval [0, T ] with time-step τ ∶= T N , nodes t n ∶= n τ for n = 0, . . . , N , and intermediate nodes

t n+ 1 2 = t n + τ 2 for n = 0, . . . , N -1. Also, for given J 1 , J 2 ∈ N, we consider a uniform partition of [a 1 , a 2 ] with mesh-width h 1 ∶= a2-a1
J1+1 and nodes x 1,i ∶= a 1 +i h 1 for i = 0, . . . , J 1 +1, and a uniform partition of [b 1 , b 2 ] with mesh-width h 2 ∶= b2-b1 J2+1 and nodes x 2,j ∶= b 1 +j h 2 for j = 0, . . . , J 2 + 1. To simplify the notation, we set

I ∶= {(i, j) ∶ i = 0, . . . , J 1 + 1, j = 0, . . . , J 2 + 1}, I ○ ∶= {(i, j) ∶ i = 1, . . . , J 1 , j = 1, . . . , J 2 }, ∂I ∶= I I ○ . Then, we introduce the discrete matrix space X H ∶= (V α ) α∈I ∈ C (J1+2)×(J2+2) ∶ V α = 0 ∀α ∈ ∂I , a discrete Laplacian operator ∆ H ∶ X H ↦ X H by (∆ H V ) (i,j) ∶= V (i-1,j) -2 V (i,j) +V (i+1,j) h 2 1 + V (i,j-1) -2 V (i,j) +V (i,j+1) h 2 2 ∀ (i, j) ∈ I ○ , ∀ V ∈ X H
and the operator

I H ∶ C(D, C) ↦ X H by (I H [z]) α ∶= z(x 1,α1 , x 2,α2
) for all α ∈ I ○ and z ∈ C(D, C). Finally, we simplify the notation, by setting u n ∶= I H [u(t n , ⋅)] for n = 0, . . . , N , and by defining, for any W ∈ X H and g ∈ C(C, C), the vector g(W ) ∈ X H by (g(W )) α ∶= g(W α ) for all α ∈ I ○ .

We provide X H with the discrete inner product (⋅, ⋅) 0,H given by (

V, Z) 0,H ∶= h 1 h 2 ∑ α∈I ○ V α Z α for V, Z ∈ X H , and we shall denote by ⋅ 0,H its induced norm, i.e. v 0,H ∶= [(V, V ) 0,H ] 1 2 for V ∈ X H . Also, we equip X H with a discrete L ∞ norm ⋅ ∞,H defined by W ∞,H ∶= max α∈I ○ W α for W ∈ X H and with a discrete H 1 -type norm ⋅ 1,H given by V 1,H ∶= ⎡ ⎢ ⎢ ⎢ ⎣ h 1 h 2 J 2 j=1 J 1 i=0 V (i+1,j) -V (i,j) h1 2 + h 1 h 2 J 1 i=1 J 2 j=0 V (i,j+1) -V (i,j) h2 2 ⎤ ⎥ ⎥ ⎥ ⎦ 1 2 ∀ V ∈ X H .
Later, we will make use of the, easy to verify, discrete integration by part result

(2.1) (∆ H V, V ) 0,H = -V 2 1,H ∀ V ∈ X H of the symmetry of ∆ H (2.2) (∆ H V, V ) 0,H = (V, ∆ H V ) 0,H ∀ V ∈ X H
and of the following inverse inequality

(2.3) V ∞,H ≤ 1 √ h1 h2 V 0,H ∀ V ∈ X H .
Below, we show some basic properties of the regularized function g ε .

Lemma 2.1. For ε ≥ 0, it holds that

(2.4) sup z∈C g(z) -g ε (z) ≤ ε.
Proof. When ε = 0, (2.4) holds trivially. Now, let ε > 0 and z ∈ C {0}. Using the mean value theorem there exists ξ ∈ ( z , ε + z ) such that ln(ε + z ) -ln( z ) = ε ξ . Thus, we obtain

g(z) -g ε (z) = z ln(ε + z ) -ln( z ) = z ε ξ ≤ ε. (2.5)
Observing that g(0) = g ε (0) = 0 and using (2.5), we, easily, arrive at (2.4). Lemma 2.2. For c > e and ε ∈ (0, 1 2c ), we have

(2.6) g ε (z) -g ε (w) ≤ 2 ln(ε) z -w ∀ z, w ∈ Γ c ,
where

Γ c ∶= {v ∈ C ∶ v ≤ c}.
Proof. Let z, w ∈ Γ c with w ≤ z . Applying the mean value theorem, we conclude that ln

(ε + z ) - ln (ε + w ) = ξ -1 ( z -w ), where ξ ∈ [ε + w , ε + z ]
. Now, we use the latter equality to obtain

g ε (z) -g ε (w) ≤ z -w ln(ε + z ) + w ln (ε + z ) -ln (ε + w ) ≤ z -w max { ln(ε) , ln(ε + c)} + w ξ z -w ≤ z -w max { ln(ε) , ln(2c)} + w ξ ≤ z -w ln(ε) + w ε+ w ≤ z -w [ ln(ε) + 1] ≤ 2 z -w ln(ε) ,
and, thus, (2.6) follows. Since (2.6) is symmetric with respect to z and w, it holds also when w > z .

2.2. The (εCNFD) method. For ε ≥ 0, the ε-Crank-Nicolson finite difference (εCNFD) method is implicit, requiring, at every time step, the solution of a nonlinear system of algebraic equation and its structure is as follows:

Step 1:

Set (2.7) U 0 ∶= I H [u 0 ] ∈ X H .
Step 2:

For n = 0, . . . , N -1, find U n+1 ∈ X H such that (2.8) U n+1 -U n τ = i ∆ H U n +U n+1 2 + i λ g ε U n +U n+1 2 + I H f (t n+ 1 2 , ⋅) ,
where g ε ∶ C → C (see, e.g. [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF]) is a regularization of g given by g ε (z) ∶= z ln(ε + z ) for z ∈ C.

Remark 2.1. When ε = 0, the (εCNFD) method is the usual Crank-Nicolson method (cf., e.g., [START_REF] Akrivis | On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation[END_REF]).

Remark 2.2. In the homogeneous case, i.e. when f ≡ 0, it is well-known that the solution u has the following conservation property

(2.9) Ω u(t, x) 2 dx = Ω u 0 (x) 2 dx ∀ t ∈ [0, T ],
which is entitled as 'conservation of the mass' or 'conservation of the charge' (see, e.g., [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF], [START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF]).

Then, we take the (⋅, ⋅) 0,H -inner product of both sides of (2.8) with (U n+1 + U n ), use (2.1) and keep the real part of both sides of the equality obtained, we arrive at

U n+1 2 0,H = U n 2 0,H for n = 0, . . . , N -1, since g ε (z) z ∈ R for z ∈ C. Thus, we conclude that U n 0,H = u 0 0,H for n = 0, . . . , N
, which is a discrete analogue of (2.9).

2.3.

Existence and uniqueness of the (εCNFD) approximations. First, we investigate the existence of the (εCNFD) approximations, by employing the following lemma (see [START_REF] Akrivis | On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation[END_REF]).

Lemma 2.3. Let (C, H, (⋅, ⋅) H ) be a complex finite dimensional inner product space, ⋅ H be the associated norm and µ ∶ H ↦ H be a continuous operator. If there exists a positive constant σ > 0 such that Re[(µ(z), z) H ] ≥ 0 for all z ∈ H with z H = σ, then there exists w ∈ H such that µ(w) = 0 and w H ≤ σ. Proposition 2.1. For ε ≥ 0, there exist (U n ) N n=1 ⊂ X H satisfying (2.8). Proof. First, we observe that U 0 ∈ X H exists by construction. Let us assume that, for some κ ∈ {0, . . . , N -1}, the approximation U κ exists, and let us define a continuous nonlinear operator

µ κ ∶ X H ↦ X H by µ κ (V ) ∶= V -i τ 2 ∆ H (V ) -i τ 2 λ g ε (V ) + Z κ ∀ V ∈ X H , where Z κ ∶= -U κ -τ 2 I H f (t κ+ 1 2 , ⋅) . It is easily seen that the existence of an approximation U κ+1 ∈ X H is equivalent to µ κ U κ+1 +U κ 2
= 0, and thus, it is sufficient to show the existence of a root for µ κ . Let V ∈ X H with V 0,H = σ. Using (2.1) and the Cauchy-Schwarz inequality, we obtain

Re [(µ κ (V ), V ) 0,H ] = Re V 2 0,H + i τ 2 V 2 1,H -i τ 2 λ (g ε (V ), V ) 0,H + (Z κ , V ) 0,H = V 2 0,H + τ 2 λ Im (g ε (V ), V ) 0,H + Re [(Z κ , V ) 0,H ] = V 2 0,H + Re [(Z κ , V ) 0,H ] ≥ V 0,H ( V 0,H -Z κ 0,H ) ≥ σ (σ -Z κ 0,H ) .
Adopting the choice σ = Z κ 0,H , we obtain Re [(µ κ (V ), V ) 0,H ] ≥ 0. Then, under the light of Lemma 2.3 with H = X H and (⋅, ⋅) H = (⋅, ⋅) 0,H , there exists W ∈ X H such that W 0,H ≤ σ and µ κ (W ) = 0, which ends the proof.

Working towards to ensure the uniqueness of the (εCNFD) approximations, we will make use of the following lemma.

Lemma 2.4. For ε ≥ 0, it holds that

(2.10) Im (g ε (V ) -g ε (W ), V -W ) 0,H ≤ V -W 2 0,H ∀ V, W ∈ X H .
Proof. Recalling that (see, e.g., Lemma 1.1.1 in [START_REF] Cazenave | Équations d' evolution avec non linéarité logarithmique[END_REF] and Lemma 2.4 in [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF])

(2.11) Im [(g ε (z) -g ε (w)) (z -w)] ≤ z -w 2 ∀ z, w ∈ C, ∀ ε ≥ 0,
the inequality (2.10), easily, follows.

Below, assuming that τ is small enough, we provide the uniqueness of the (εCNFD) approximations.

Proposition 2.2. For ε ≥ 0 and τ ∈ 0, 1 2 λ , there exists unique

(U n ) N n=1 ⊂ X H satisfying (2.8).
Proof. Proposition 2.1 yields the existence of (U n ) N n=1 ⊂ X H satisfying (2.8). Let κ ∈ {0, . . . , N -1} and W ∈ X H such that (2.12)

W -U κ τ = i ∆ H W +U κ 2 + i λ g ε W +U κ 2 + I H f (t κ+ 1 2 , ⋅) .
Subtracting (2.12) from (2.8) (with n = κ), we obtain (2.13)

U κ+1 -W τ = i ∆ H U κ+1 -W 2 + i λ g ε U κ+1 +U κ 2 -g ε W +U κ 2
.

Taking the (⋅, ⋅) 0,H -inner product of both sides of (2.13) with (U κ+1 -W ), using (2.1) and keeping the real parts, we obtain

U κ+1 -W 2 0,H = -2 λ τ Im g ε U κ+1 +U κ 2 -g ε W +U κ 2 , U κ+1 -W 2 0,H
, which, after applying (2.10), yields

(2.14) U κ+1 -W 2 0,H ≤ 2 τ λ U κ+1 -W 2 0,H .
Using the assumption that 2τ λ < 1, from (2.14), obviously, follows that W = U κ+1 .

Consistency

3.1. Time-discretization consistency error. For n = 0, . . . , N -1 and ε ≥ 0, we define r n ε ∈ X H by (3.1)

u n+1 -u n τ = I H i ∆u(tn+1,⋅)+∆u(tn,⋅) 2 + i λ g ε u(tn+1,⋅)+u(tn,⋅) 2 + f (t n+ 1 2 , ⋅) + r n ε .
Using (1.1) and (3.1), we obtain

(3.2) r n ε = ξ n + ρ n ε , n = 0, . . . , N -1, where ξ n ∶= I H u(tn+1,⋅)-u(tn,⋅) τ -u t (t n+ 1 2 , ⋅) -i I H ∆u(tn+1,⋅)+∆u(tn,⋅) 2 -∆u(t n+ 1 2 , ⋅) and ρ n ε ∶= -i λ I H g ε u(tn+1,⋅)+u(tn,⋅) 2 -g(u(t n+ 1 2 , ⋅)) .
Applying the Taylor formula, we, easily, obtain the following estimate

(3.3) ξ n ∞,H ≤ C τ 2 max D ∆u tt + max D u ttt , n = 0, . . . , N -1.
In the sequel, in order to estimate ρ n ε , we consider the following cases with respect to ε. Case 1: ε = 0. First, we split the error term ρ n 0 into three parts as follows

ρ n 0 ∞,H ≤ λ I H g u(tn+1,⋅)+u(tn,⋅) 2 -g τ 2 u(tn+1,⋅)+u(tn,⋅) 2 ∞,H + λ I H g τ 2 u(tn+1,⋅)+u(tn,⋅) 2 -g τ 2 (u(t n+ 1 2 , ⋅)) ∞,H + λ I H g τ 2 (u(t n+ 1 2 , ⋅)) -g(u(t n+ 1 2 , ⋅))
∞,H

, n = 0, . . . , N -1.

Then, we use (2.4) (with ε = τ 2 ), (2.6) (with c = e + max D u , ε = τ 2 and τ ∈ 0, 1 2c ), and the Taylor formula to get

ρ n 0 ∞,H ≤ C τ 2 + ln(τ 2 ) u(tn+1,⋅)+u(tn,⋅) 2 -u(t n+ 1 2 , ⋅) ∞,H ≤ C τ 2 + τ 2 ln(τ ) max D u tt , n = 0, . . . , N -1. 
(3.4)

Finally, from (3.2), (3.3) and (3.4), we obtain

(3.5) max 0≤n≤N-1 r n 0 ∞,H ≤ C TC1 τ 2 1 + max D ∆u tt + max D u ttt + τ 2 ln(τ ) max D u tt .
Case 2: ε > 0. First, we split the error term ρ n ε into two parts as follows

ρ n ε ∞,H ≤ λ I H g ε u(tn+1,⋅)+u(tn,⋅) 2 -g ε (u(t n+ 1 2 , ⋅)) ∞,H + λ I H g ε (u(t n+ 1 2 , ⋅)) -g(u(t n+ 1 2 , ⋅)) ∞,H
, n = 0, . . . , N -1.

Then, we use (2.4), (2.6) (with c = e + max D u and ε ∈ 0, 1 2c ), and the Taylor formula to get

ρ n ε ∞,H ≤ C ε + ln(ε) u(tn+1,⋅)+u(tn,⋅) 2 -u(t n+ 1 2 , ⋅) ∞,H ≤ C ε + τ 2 ln(ε) max D u tt , n = 0, . . . , N -1. 
(3.6) Thus, (3.2), (3.3) and (3.6) yield

(3.7) max 0≤n≤N-1 r n ε ∞,H ≤ C TC2 ε + τ 2 max D ∆u tt + max D u ttt + τ 2 ln(ε) max D u tt .
3.2. Space discretization consistency error. For ε ≥ 0 and n = 0, . . . , N -1, let s n ε ∈ X H be given by (3.8)

u n+1 -u n τ = i ∆ H u n+1 +∆ H u n 2 + i λ g ε u n+1 +u n 2 + I H f (t n+ 1 2 , ⋅) + s n ε .
Then, subtracting (3.8) from (3.1), we obtain

s n ε -r n ε = i 2 I H [∆u(t n+1 , ⋅) + ∆u(t n , ⋅)] -∆ H (u n+1 ) + ∆ H (u n
) , n = 0, . . . , N -1. After using the Taylor formula with respect to the space variables (see, e.g. [START_REF] Knabner | Numerical Methods for Elliptic and Parabolic Partial Differential Equations[END_REF]), we conclude (3.9) max 0≤n≤N-1

s n ε -r n ε ∞,H ≤ C SC h 2 1 max D ∂ 4 x1 u + h 2 2 max D ∂ 4 x2 u .

Convergence

We are now ready to derive an L ∞ t (L 2 x ) error estimate for the (εCNFD) method in the theorem below. m=0 be (εCNFD) approximations specified by (2.7)-(2.8). If ε = 0 and τ ∈ 0, 1 2c , then there exists a constant C 1,CNV > 0 independent of τ , h 1 and h 2 , such that

(4.1) max 0≤m≤N u m -U m 0,H ≤ C 1,CNV τ 2 + τ 2 ln(τ ) + h 2 1 + h 2 2 .
If ε, τ ∈ 0, 1 2c , then there exists a constant C 2,CNV > 0 independent of τ , h 1 , h 2 and ε, such that

(4.2) max 0≤m≤N u m -U m 0,H ≤ C 2,CNV ε + τ 2 + τ 2 ln(ε) + h 2 1 + h 2 2 .
Proof. To simplify the notation, we set e m ∶= u m -U m for m = 0, . . . , N . In the sequel, we will use the symbol C to denote a generic constant that is independent of τ , h 1 , h 2 and ε, and may changes value from one line to the other. Subtract (2.8) from (3.8), to obtain the error equation

(4.3) e n+1 -e n = i τ ∆ H e n+1 +e n 2 + i τ λ g ε u n+1 +u n 2 -g ε U n+1 +U n 2 + τ s n ε
for n = 0, . . . , N -1. Take the (⋅, ⋅) 0,H -inner product of both sides of (4.3) with (e n+1 + e n ), use (2.1) and keep the real parts of the equality obtained to get

(4.4) e n+1 2 0,H -e n 2 0,H = K n 1 + K n 2 , n = 0, . . . , N -1, where K n 1 ∶= τ Re (s n ε , e n+1 + e n ) 0,H , K n 2 ∶= -2 λ τ Im g ε u n+1 +u n 2 -g ε U n+1 +U n 2
, e n+1 +e n 2 0,H .

For n = 0, . . . , N -1, using the Cauchy-Schwarz inequality and (3.9), we have

K n 1 ≤ τ s n ε 0,H e n+1 + e n 0,H ≤ τ ( s n ε -r n ε 0,H + r n ε 0,H ) e n+1 + e n 0,H ≤ C τ h 2 1 + h 2 2 + max 0≤n≤N-1 r n ε ∞,H e n+1 0,H + e n 0,H (4.5) 
and

(4.6) K n 2 ≤ λ τ 2 e n+1 0,H + e n 0,H 2 .
Combining, (4.4), (4.5) and (4.6), we conclude that

1 -λ τ 2 e n+1 0,H ≤ 1 + λ τ 2 e n 0,H + C τ h 2 1 + h 2 2 + max 0≤n≤N-1 r n ε ∞,H , n = 0, . . . , N -1. (4.7) Since τ ∈ 0, 1 2c , we conclude that 1 -λ τ 2 -1 < 4 3 and 1 + λ τ 2 1 -λ τ 2 -1
≤ (1 + 4 3 λ τ ). The latter inequalities along with (4.7) easily yield that

e n+1 0,H ≤ 1 + 4 3 λ τ e n 0,H + Ĉ τ h 2 1 + h 2 2 + max 0≤n≤N-1 r n ε ∞,H , n = 0, . . . , N -1.
Next, we sum with respect to n, from 0 up to m -1, to obtain

e m 0,H ≤ e 0 0,H + Ĉ T h 2 1 + h 2 2 + max 0≤n≤N-1 r n ε ∞,H + 4 3 λ τ m-1 n=0 e n 0,H , m = 1, . . . , N. (4.8)
Using that e 0 = 0 and applying a standard discrete Gronwall argument on (4.8) (see, e.g. Lemma 8.14 in [START_REF] Plato | Concise Numerical Mathematics[END_REF]), we arrive at max 0≤n≤N e n 0,H ≤ Ĉ T e

4 λ T 3 h 2 1 + h 2 2 + max 0≤n≤N-1
r n ε ∞,H , (4.9) which, along with the consistency bounds (3.5) and (3.7), establishes (4.1) and (4.2), respectively. Remark 4.1. According to the error estimate (4.2), the (εCNFD) method has an almost second order convergence with respect to τ after choosing ε = τ 2 . Thus, the use of the ε-regularization g ε of g does not affect the asymptotic complexity of the (εCNFD) method, which determined by the values of N , J 1 and J 2 .

Remark 4.2. The error estimate (4.1) establishes an almost second order convergence of the usual Crank-Nicolson finite differences that corresponds to the value ε = 0. This is an indication that the regularization of the logarithmic term is not necessary for this method.

Let us now provide an L ∞ t (H 1 x ) error estimate for the (εCNFD) method without requiring additional regularity for the solution u to the problem. 

(4.10) C 1,CNV h -1 2 1 h -1 2 2 τ 2 + τ 2 ln(τ ) + h 2 1 + h 2
2 ≤ e, where C 1,CNV is the constant in (4.1), then there exists a constant C 1,HCV > 0 independent of τ , h 1 and h 2 , such that

(4.11) max 0≤m≤N u m -U m 1,H ≤ C 1,HCV τ -1 2 ln(τ ) 1 2 τ 2 + τ 2 ln(τ ) + h 2 1 + h 2 2 .
If ε, τ ∈ 0, 1 2c and

(4.12) C 2,CNV h -1 2 1 h -1 2 2 ε + τ 2 + τ 2 ln(ε) + h 2 1 + h 2
2 ≤ e, where C 2,CNV is the constant in (4.2) then there exists a constant C 2,HCV > 0 independent of τ , h 1 , h 2 and ε, such that

(4.13) max 0≤m≤N u m -U m 1,H ≤ C 2,HCV τ -1 2 ln(ε) 1 2 ε + τ 2 + τ 2 ln(ε) + h 2 1 + h 2 2 .
Proof. For simplicity, we keep the notation and the notation convection of the proof of Theorem 4.1.

Taking the (⋅, ⋅) 0,H -inner product of both sides of (4.3) with (e n+1 -e n ), using (2.1) and (2.2), and, finally, keeping the imaginary parts of the equality obtained we arrive at

(4.14) e n+1 2 1,H -e n 2 1,H = Z n 1 + Z n 2 , n = 0, . . . , N -1, where Z n 1 ∶= 2 Im (s n ε , e n+1 -e n ) 0,H , Z n 2 ∶= 2 λ Re g ε u n+1 +u n 2 -g ε U n+1 +U n 2
, e n+1 -e n 0,H .

Summing with respect to n, from 0 up to m -1, and using that e 0 = 0, from (4.14) we obtain

e m 2 1,H = m-1 n=0 (Z n 1 + Z n s ), m = 0, . . . , N -1,
which, obviously, yields the following error bound

(4.15) max 0≤m≤N e m 2 1,H ≤ T τ -1 max 0≤n≤N-1 ( Z n 1 + Z n 2 ).
Assuming that τ ∈ 0, 1 2c and ε = 0 or ε ∈ 0, 1 2c , we combine (2.3) with (4.10) and (4.1), or, with (4.12) and (4.2), to conclude

max 0≤n≤N-1 U n ∞,H ≤ max 0≤n≤N-1 u n ∞,H + max 0≤n≤N-1 U n -u n ∞,H ≤ max D u + e < c. (4.16)
Also, using the Cauchy-Schwarz inequality and (3.9), it follows that

Z n 1 ≤ 2 s n ε 0,H e n+1 -e n 0,H ≤ 4 max 0≤n≤N e n 0,H ( s n ε -r n ε 0,H + r n ε 0,H ) ≤ C max 0≤n≤N e n 0,H h 2 1 + h 2 2 + max 0≤n≤N-1 r n ε ∞,H ≤ C h 2 1 + h 2 2 + max 0≤n≤N-1 r n ε ∞,H 2 , n = 0, . . . , N -1,
which, along with (4.9), yields (4.17)

Z n 1 ≤ C h 2 1 + h 2 2 + max 0≤n≤N-1 r n ε ∞,H 2 
, n = 0, . . . , N -1.

Case I. Let us assume that ε = 0 and τ ∈ 0, 1 2c . Using (2.4), (2.6) and (4.16), we get

Z n 2 ≤ 4 λ max 0≤n≤N e n 0,H g u n+1 +u n 2 -g τ 2 u n+1 +u n 2 0,H + g τ 2 u n+1 +u n 2 -g τ 2 U n+1 +U n 2 0,H + g τ 2 U n+1 +U n 2 -g U n+1 +U n 2 0,H ≤ C max 0≤n≤N e n 0,H τ 2 + ln(τ ) max 0≤n≤N e n 0,H ≤ C τ 4 + (1 + ln(τ ) ) max 0≤n≤N e n 2 0,H ≤ C τ 4 + ln(τ ) max 0≤n≤N
e n 2 0,H , n = 0, . . . , N -1, which, along with (4.9), yields

(4.18) Z n 2 ≤ C τ 4 + ln(τ ) h 2 1 + h 2 2 + max 0≤n≤N -1 r n 0 ∞,H 2 
, n = 0, . . . , N -1. Now, we combine (4.17) (with ε = 0), (4.18) and (3.5), to get

(4.19) max 0≤n≤N-1 ( Z n 1 + Z n 2 ) ≤ C ln(τ ) h 2 1 + h 2 2 + τ 2 + τ 2 ln(τ ) 2 .
Case II. Let us assume that ε, τ ∈ 0, 1 2c . Applying the Cauchy-Schwarz inequality, (2.6) and (4.16), we get

Z n 2 ≤ 4 λ max 0≤n≤N e n 0,H g ε u n+1 +u n 2 -g ε U n+1 +U n 2 0,H ≤ C ln(ε) max 0≤n≤N
e n 2 0,H , n = 0, . . . , N -1, which, along with (4.9), yields

(4.20) Z n 2 ≤ C ln(ε) h 2 1 + h 2 2 + max 0≤n≤N -1 r n ε ∞,H 2 , n = 0, . . . , N -1.
Hence, under the light of (4.17 

( Z n 1 + Z n 2 ) ≤ C ln(ε) h 2 1 + h 2 2 + ε + τ 2 + τ 2 ln(ε) 2 .
Finally, we obtain (4.11) as an outcome of (4.15) and (4. [START_REF] Hefter | Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics[END_REF], and (4.13) by combining (4.15) and (4.21). 

Computing the (εCNFD) Approximations

At every time step, the corresponding (εCNFD) approximation is defined, according to (2.8), as the solution of a nonlinear system of algebraic equations, which one has to approximate in a computer implementation of the method. This can be done by applying the fixed point iterations method, which we discuss and analyze below.

Let c = e + λ + max D u , ε = τ 2 or ε = 0, and τ ∈ 0, 1 4c . Then, Propositions 2.1 and 2.2 yield the existence and uniqueness of the (εCNFD) approximations and the error estimates (4.1) (when ε = 0) and (4.2) (when ε = τ 2 ) hold. Also, let us assume that

max{C 1,CNV , C 2,CNV } h -1 2 1 h -1 2 2 2 τ 2 + 2τ 2 ln(τ ) + h 2 1 + h 2
2 ≤ e where C 1,CNV and C 2,CNV are the constants in (4.1) and (4.2), respectively. Then, using (2.3) and (4.1) (when ε = 0) or (4.2) (when ε = τ 2 ), we, easily, conclude that

(5.1) max 0≤n≤N U n ∞,H ≤ c.
Let n ⋆ ∈ C 1 (R, R) (see [START_REF] Paraschis | Backward Euler finite difference approximations of a logarithmic heat equation over a 2D rectangular domain[END_REF]) be an odd auxiliary function defined by

n ⋆ (s) ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ s, if s ∈ [0, c], q(s), if s ∈ (c, 2c], 2 c, if s > 2c, ∀ s ≥ 0,
where q ∈ P 3 [c, 2 c] is a polynomial satisfying: q(c) = c, q ′ (c) = 1, q(2c) = 2c and q ′ (2c) = 0. Obviously it holds that n ⋆ (s) = s when s ≤ c, and we can show (see [START_REF] Paraschis | Backward Euler finite difference approximations of a logarithmic heat equation over a 2D rectangular domain[END_REF]) that

(5.2) sup R n ⋆ ≤ 2 c, sup R n ′ ⋆ ≤ 4 3 .
We extend n ⋆ on C, by setting n ⋆ (z) ∶= n ⋆ (Re(z)) + i n ⋆ (Im(z)) for z ∈ C. Then, in view of (5.2), it holds that

n ⋆ (z) ≤ √ 2 sup R n ⋆ ≤ 2 √ 2 c < 4 c, n ⋆ (z) -n ⋆ (w) ≤ sup R n ′ ⋆ z -w ≤ 4 3 z -w ∀ z, w ∈ C. (5.3) 
Let n = 0, . . . , N -1. Then, we introduce an operator Φ ε,n ∶ X H ↦ X H given by

Φ ε,n (V ) ∶= (I H -i τ 2 ∆ H ) -1 U n + i λ τ 2 g ε (n ⋆ (V )) + τ 2 I H f (t n+ 1 2 , ⋅) ∀ V ∈ X H ,
where I H ∶ X H ↦ X H is the identity operator. Under the light of (5.1), we have n ⋆

U n+1 +U n 2 = U n+1 +U n 2 and thus U n+1 +U n 2 is a fixed point of Φ ε,n , i.e. U n+1 +U n 2 = Φ ε,n U n+1 +U n 2 .
Let us, first, consider the case ε = τ 2 . Since, it holds that (5.4) (2.6) and (5.3), to obtain

(I H -i τ 2 ∆ H ) -1 V 0,H ≤ V 0,H ∀ V ∈ X H , we use
Φ τ 2 ,n (V ) -Φ τ 2 ,n (W ) 0,H ≤ τ λ 2 (I H -i τ 2 ∆ H ) -1 [g τ 2 (n ⋆ (V )) -g τ 2 (n ⋆ (W ))] 0,H ≤ τ λ 2 g τ 2 (n ⋆ (V )) -g τ 2 (n ⋆ (W )) 0,H ≤ 2 τ λ ln(τ ) n ⋆ (V ) -n ⋆ (W ) 0,H ≤ 8 3 τ λ ln(τ ) V -W 0,H ∀ V, W ∈ X H .
(5.5)

Under the condition 8 λ 3 τ ln(τ ) ≤ 1 2 , (5.5) yields that the operator Φ τ 2 ,n is a contraction map on X H , which results in the convergence of the corresponding fixed point iterations method. Now, we consider the case ε = 0. Using (5.4), (2.4), (2.6) and (5.2), we get

Φ 0,n (V ) -Φ 0,n (W ) 0,H ≤ τ λ 2 (I H -i τ 2 ∆ H ) -1 [g(n ⋆ (V )) -g(n ⋆ (W ))] 0,H ≤ τ λ 2 g(n ⋆ (V )) -g(n ⋆ (W )) 0,H ≤ τ λ 2 2 D 1 2 τ 2 + g τ 2 (n ⋆ (V )) -g τ 2 (n ⋆ (W )) 0,H ≤ λ D 1 2 τ 3 + 8 3 τ λ ln(τ ) V -W 0,H ∀ V, W ∈ X H , (5.6) 
where D is the area of D. Let us impose the condition 8 λ 3 τ ln(τ ) ≤ 1 2 and define the sequence (Ψ ) ∞ =0 ⊂ X H by Ψ 0 = U n and Ψ +1 ∶= Φ 0,n (Ψ ) for ∈ N 0 . Using (5.6) and that U n +U n+1 2 is a fixed point of Φ 0,n , we obtain

Ψ +1 -U n+1 +U n 2 0,H ≤ λ D 1 2 τ 3 + 1 2 Ψ -U n+1 +U n 2 0,H ∀ ∈ N 0 ,
which, after applying an induction argument, yields

Ψ +1 -U n+1 +U n 2 0,H ≤ λ D 1 2 τ 3 ′ =1 1 2 ′ + 1 2 +1 Ψ 0 -U n+1 +U n 2 0,H ∀ ∈ N 0 .
By stopping the computation when 1 2 +1 ≤ τ 3 , we have

Ψ +1 -U n+1 +U n 2 0,H ≤ 2 λ D 1 2 + 1 2 U n+1 -U n 0,H τ 3 ,
and thus we arrive at an O(τ 3 ) approximation of the average U n+1 +U n 2 . In actual computations, we have observed that the fixed point iterations method (choosing as an initial guess the approximation of the previous time step) converges without using the cut-off function n ⋆ (see Section 6).

Numerical Results

The (εCNFD) method has been implemented in Python 3.7.0 programs, where we solve the nonlinear systems of algebraic equations by applying the iterative fixed point method along with the GMRES method for solving the corresponding linear systems by calling the subroutine gmres of the library scipy.sparse.linalg.

We validate the code by computing the numerical approximation error in the discrete

L ∞ t (L 2 x ) norm E 0 (N, J 1 , J 2 ) = max 0≤n≤N U n -u n 0,H and in the L ∞ t (L ∞ x ) norm E ∞ (N, J 1 , J 2 ) = max 0≤n≤N U n -u n ∞,H
, when we are aware of the exact solution to the problem. Also, choosing ν ∈ N, a function f ∶ (0, +∞) → (0, +∞) 3 and (N, J 1 , J 2 ) = f(ν), we compute the experimental order of convergence with respect to ν, which corresponds to given values ν 1 and ν 2 of ν, by using the formula

ln [E(f(ν 1 )) E(f(ν 2 ))] ln(ν 2 ν 1 ), where E = E 0 or E ∞ . 6.1. Example 1. Let T = 1, Ω = [0, 1] × [0, 1], (N, J 1 , J 2 ) = f(ν) = (ν, ν, ν), ε ∈ {0, τ 3 , τ 2 }, ν ∈ 
{20, 40, 80, 160, 320} and λ = 1. The initial value u 0 and the load f are such that the function

u EX1 (t, x) = (1 + i) e -t sin(3 π x 1 ) sin(3 π x 2 )
to be the exact solution to the problem (1.1)-(1.4). We note that the artificial exact solution u EX1 has been designed in the way to be zero on the boundary of Ω and to change sign in the interior of Ω. On Table 1 and Table 2, we show the numerical approximation errors we computed and the corresponding experimental order of convergence. The results, clearly, confirm a second order experimental order of convergence with respect to ν, for all choices for ε and for both norms. Also, we observe that the smaller value for ε we choose, the smaller numerical errors we get. The efficiency of the numerical method for ε = 0 is a strong indication that the use of the regularization g ε may not be necessary. -12, 12], (N, J 1 , J 2 ) = f(ν) = (ν, ν, ν), ε = τ 2 , ν ∈ {40, 80, 160, 320}, f = 0, λ = 2 and initial condition

(εCNFD) method with ε = 0 Example 1 ν E 0 (f(ν)) Rate E ∞ (f(ν))
u 0 (x) ∶= π -1 2 exp -1 2 (x 2 1 + x 2 2 ) + i (x 1 + x 2 ) ∀ x ∈ Ω,
which is almost zero on the boundary of Ω. Letting w(t, ξ) ∶= π -1 4 exp -1 2 (ξ -2t) 2 + i ξ -i 1 2 (4 + ln(π)) t ∀ t ≥ 0, ∀ ξ ∈ R, be a uniformly moving Gausson in one space dimension case (see, e.g., [START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF], [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF]), u 0 is the value at t = 0 of the function

u G (t, x) = w(t, x 1 ) w(t, x 2 ) ∀ t ∈ [0, +∞), ∀ x ∈ R 2 ,
which is an exact solution to the logarithmic Schrödinger equation (1.1). It is easily seen that u G has almost compact support up to time t = 5 and thus we can consider that it is a solution to the problem (1.1)-(1.4) on D. In the numerical experiments we compute the error approximating u G and we post the results on Table 3. We observe, again, a second order experimental convergence and that the method is efficient for ε = 0. [START_REF] Cazenave | Équations d' evolution avec non linéarité logarithmique[END_REF][START_REF] Cazenave | Équations d' evolution avec non linéarité logarithmique[END_REF], (N, J 1 , J 2 ) = f(ν) = (ν, ν, ν), ε = 0, ν = 150, f = 0, λ = 1 and initial condition u 0 (x) = tanh(x 1 ) tanh(x 2 ) e -x 2 for x ∈ Ω (cf. [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF]). In Figure 1 we post snapshots of the absolute value of the numerical solution for various time levels and in Figure 2 we show snapshot of the real and the imaginary part of the numerical approximation for t = 1.5. It is clear that the fact that the solution takes zero values is not a source of singularity. -4.9741(-1) -80 9.9408(-3) 2.01 1.0538(-1) 2.23 160 2.4835(-3) 2.00 2.6368(-2) 1.99 320 6.2222(-4) 1.99 6.5854(-3) 2.00 Table 3. 

Conclusions

We propose the approximation of the solution to the logarithmic Schrödinger equation over a two dimensional rectangular domain by the (εCNFD) method described in Section 2.2. The B-stability property of the Crank-Nicolson method allows us to build-up a stability argument based on the (CH) property (2.11), which leads to an almost second order error estimate in the discrete L ∞ t (L 2 x ) norm, even in the case ε = 0, where no regularization of the logarithmic term g is imposed. In
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 1 Figure 1. Example 3: Snapshots of the absolute value of the numerical approximations for t = 0, t = 0.5, t = 1.0, t = 1.5.
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 2 Figure 2. Example 3: Snapshots of the real and imaginary part of the numerical approximations for t = 1.5.

Table 1 .

 1 (εCNFD) method with ε = τ 3

								(εCNFD) method with ε = τ 2
									Example 1
					Rate		ν	E 0 (f(ν)) Rate E ∞ (f(ν)) Rate
	20 2.2919(-2)	-	4.3590(-2)	-		20 2.2941(-2)	-	4.3628(-2)	-
	40 5.9250(-3) 1.95 1.1840(-2) 1.88		40 5.9307(-3) 1.95 1.1851(-2) 1.88
	80 1.5771(-3) 1.90 3.1454(-3) 1.91		80 1.5785(-3) 1.90 3.1482(-3) 1.91
	160 4.0169(-4) 1.97 8.0380(-4) 1.96		160 4.0205(-4) 1.97 8.0450(-4) 1.96
	320 1.0106(-4) 1.99 2.0219(-4) 1.99		320 1.0115(-4) 1.99 2.0237(-4) 1.99
					Example 1	
			ν	E 0 (f(ν)) Rate E ∞ (f(ν)) Rate
			20 2.2921(-2)	-	4.3591(-2)	-
			40 5.9252(-3) 1.95 1.1840(-2) 1.88
			80 1.5771(-3) 1.90 3.1455(-3) 1.91
			160 4.0169(-4) 1.97 8.0380(-4) 1.96
			320 1.0106(-4) 1.99 2.0219(-4) 1.99

Table 2 .

 2 6.2. Example 2. Let T = 2, Ω = [-12, 12] × [

the convergence analysis we handle the parameter ε as a discretization parameter by restricting its use to the estimation of the consistency error. That approach results in error estimation constants that are free of ε. Finally, a set of numerical experiments confirms the theoretical findings. Future work could target the construction of higher order numerical methods for the problem at hands, combining higher order B-stable Runge-Kutta methods with higher order space discretization techniques.