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STABILITY REGIONS OF SYSTEMS WITH COMPATIBILITIES,

AND UBIQUITOUS MEASURES ON GRAPHS

JOCELYN BEGEOT, IRÈNE MARCOVICI AND PASCAL MOYAL

Abstract. This paper addresses the ubiquity of remarkable measures on

graphs, and their applications. In many queueing systems, it is necessary
to take into account the compatibility constraints between users, or between

supply and demands, and so on. The stability region of such systems can then

be seen as a set of measures on graphs, where the measures under consideration
represent the arrival flows to the various classes of users, supply, demands, etc.,

and the graph represents the compatibilities between those classes. In this pa-

per, we show that these ‘stabilizing’ measures can always be easily constructed
as a simple function of a family of weights on the edges of the graph. Second,

we show that the latter measures always coincide with invariant measures of

random walks on the graph under consideration.

1. Introduction

Queueing models with compatibilities have recently gained an increasing interest,
both from a theoretical and from an applied standpoint. In the original skill-based
routing problems, customers and servers are bound by compatibilities constraints,
and it is the role of the routing algorithm to determine which customer should
be matched to which server upon arrival, see e.g. [29], and the recent survey
[13]. However, in many applications customers and servers may play symmetric
role, such as in peer-to-peer applications, jobs search, dating websites, housing
programs, organ transplant allocations, supply and demands, and so on. In all
such applications, the system is basically just an interface used by the elements, to
be matched, and to depart the system by pairs.

To account for this variety of applications, in [12] (see also [1]), a variant of
skill-based systems was introduced, commonly referred to as ‘Bipartite matching
models’ (BM): couples customer/server enter the system at each time point, and
servers come and go into the system exactly as customers. A (bipartite) graph,
representing the class of users, supplies, demands, etc., determines the compatibility
between customers and servers. Each time a couple customer/server is formed,
the latter leaves the system right away. The matching policy addressed in these
seminal works is ‘First Come, First Served’ (FCFS). Interestingly, the stationary
state in such cases is shown to enjoy a remarkable product form (see [3]), that can
be generalized to a wider class of systems with compatibilities, such as matching
queues implementing the so-called FCFS-ALIS (Assign the Longest Idling Server)
service discipline - see e.g. [2], or [4] for an overview of various extensions of
BM models or redundancy models. Let us also mention other approaches to such
bipartite models, such as fluid and diffusion limits for systems with compatibility
probabilities [9], applications to taxi hubs [8] and ride sharing [26]. The original
settings of [12, 1] have then been generalized to the case of non independent arrivals
and other matching policies (extended bipartite matching model - see [10, 24]).

To take into account applications such as assemble-to-order systems, dating web-
site, car sharing and cross-kidney transplants, a variant of this model has been more
recently introduced, in which arrivals are made one by one, and the compatibility
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graph is general, i.e. not necessarily bipartite: this is the so-called General sto-
chastic matching model (GM), introduced in [22]. [23] shows that the GM model
under the First Come, First Matched matching policy also enjoys a product form in
steady form. Then, GM was studied along various angles, among which, fluid lim-
its of a continuous-time variant [25], optimization [27] or optimal control [18, 11],
matching models on hypergraphs [28], on graphs with self-loops [6], or models with
reneging, see [7, 20, 5]. Recently, GM models have been shown to share remarkable
similarities with order-independent loss queues, see [14].

For all these models, the stability regions are expressed as a set of measures on
nodes representing the arrival rates to each class of users, such that the system
is positive recurrent. (These measures are probability measures for discrete-time
models, and arrival intensities for continuous-time models.) As will be specified
below, the conditions on these measures typically take the form of a constraint
on the arrival rates to all subsets of nodes, to be less than the arrival rates to
the subset of the neighboring nodes - a condition that is reminiscent of the Hall
condition for the existence of a perfect matching on a graph, see [19]. In this work,
our aim is to characterize exactly these sets of measures. While in such systems, the
typical procedure is to construct an optimal control (a Markovian matching policy,
for instance) that is able to optimize a given criterion given the arrival rates (that
are thus seen as a constraint to the problem), hereafter we somehow reverse this
procedure: having fixed a control that is able to achieve stability (the ‘First Come
First Matched’ policy for general matching models, the ‘Match the Longest’ policy
for bipartite models), we make explicit, the construction procedure of a set of arrival
rates rendering the system stable. This aim is natural for practical purposes: being
able to explicitly construct a set of arrival rates rendering the considered system
stable, provides the feasible admission controls for a given graph topology, and a
given Markovian control of the system.

We obtain two remarkable results: (i) we show that in many cases, the ‘stabi-
lizing’ arrival rates of the considered system can always be constructed as a simple
weighted measure on the edges of the graphs and (ii) we deduce from this, that
a stabilizing set of arrival rates always coincide with an invariant measure of a
random walk on the graph. As a by-product of the first point, for some graph
topologies we are able to determine uniquely the matching rates of the various
edges, independently on the matching policy.

Beyond its practical interest for admission control, this ubiquity of the stabi-
lizing measures of matching models draws an insightful correspondance between
stochastic matching models and random walks on graphs which, we believe, opens
the way for an interesting avenue of research.

This paper is organized as follows. After some preliminaries in Section 2, in
Section 3 we present our main results, establishing various representations of the
stabilizing measures of matching models in the cases of non-bipartite multigraphs, of
bipartite graphs, and of bipartite skill-based queueing systems, respectively. Proofs
for our three main results are provided respectively in Sections 4, 5 and 6. Last, in
Section 7 we show how our results can be applied, to show the insensitivity of the
matching rates to the matching policy of the considered matching model.

2. Preliminaries

2.1. General notations. We denote by R the set of real numbers, by R+ the
set of non-negative real numbers and by R∗+ the subset of positive real numbers.
Likewise, we denote by N the set of non-negative integers and by N∗ the subset of
positive integers. For a and b in N, we denote by Ja; bK the set [a; b] ∩ N. For any
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finite set A, we denote by |A| the cardinality of A and by P(A) the set of all the
subsets of A. For any set E, we denote by 1E the indicator function of E.

The set of positive measures having full support on A is denoted by M(A),
whereas the set of probability measures having full support on A is denoted by
M(A). For any µ ∈ M(A), we denote by µ̄ ∈ M(A), its normalized probability

measure, namely µ̄(.) = µ(.)
µ(A) . Let us also denote by M≥0(A), the set of positive

measures on A having support included in A.

2.2. Multigraphs. Hereafter, a multigraph is given by a couple G = (V, E), where
V is the (finite) set of nodes and E ⊂ V × V is the set of edges. All multigraphs
considered hereafter are undirected, that is, (u, v) ∈ E =⇒ (v, u) ∈ E , for all
u, v ∈ V. We write u−v or v−u for (u, v) ∈ E , and u 6−v (or v 6−u) else. Elements
of the form (v, v) ∈ E , for v ∈ V, are called self-loops. A multigraph having no
self-loop is simply a graph. With respect to the classical notion of multigraphs, we
assume hereafter that all the edges are simple.

For any multigraph G = (V, E) and any U ⊂ V, we denote

E(U) , {v ∈ V : ∃u ∈ U, u− v}
the neighborhood of U , and for u ∈ V, we write for short E(u) , E({u}).

An independent set of G is a non-empty subset I ⊂ V which does not include
any pair of neighbors, i.e.: ∀(i, j) ∈ I2, i 6−j. We let I(G) be the set of independent
sets of G. A graph G = (V, E) is said bipartite if the set of its vertex V can be
partitioned into two independent sets V1 and V2, namely, each edge connects an
element of V1 to an element of V2.

Throughout this paper, all considered (multi)graphs are connected, that is, for

any u, v ∈ V, there exists a subset {v0 , u, v1, v2, . . . , vp , v} ⊂ V such that
vi−vi+1, for any i ∈ J0; p − 1K. Moreover, we consider that they have at least two
nodes, i.e. |V| ≥ 2.

2.3. Weighted measures on a multigraph. For any multigraph G = (V, E), we
say that a family α = (αi,j)(i,j)∈E of real numbers is a family of weights on E if for
all (i, j) ∈ E , αi,j = αj,i > 0. Hereafter, a family of weights α on E will be seen as
an element of the set M(E), and for any such α and any edge e = (i, j) ∈ E , we
will write indifferently αe, αi,j or αj,i.

For any family of weights α ∈ M(E), we define the associated positive measure
(on nodes) µα ∈M(V), by

(1) µα(i) ,
∑
j∈E(i)

αi,j , i ∈ V,

and the associated probability distribution µ̄α := µα ∈M(V), by

(2) µ̄α(i) =

∑
j∈E(i)

αi,j∑
l∈V

∑
j∈E(l)

αl,j
, i ∈ V.

The (probability) measures µα and µ̄α, α ∈M(E), will be called hereafter weighted
measures.
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2.4. Stochastic processes of interest on a multigraph.

2.4.1. Random walks. We say that a stochastic matrix P = (P (i, j))(i,j)∈V2 defines
a random walk on the edges of the multigraph G = (V, E) if P (i, j) = 0 as soon as
(i, j) 6∈ E . We say furthermore that the random walk is reversible if the associated
Markov chain admits a reversible invariant measure.

Given a family of weights (αi,j)(i,j)∈E , we introduce the corresponding weighted
random walk, defined by the stochastic matrix Pα, with

Pα(i, j) =
αi,j∑

l∈E(i) αi,l
, i ∈ V, j ∈ E(i).

It is then immediate that µα is a stationary measure for the associated Markov
chain. Consequently, as the Markov chain is clearly irreducible on V, µ̄α is the
unique stationary probability.

2.4.2. General stochastic matching model. We consider the matching model intro-
duced in [22] (and generalized in [6] for multi-graphs) for which we recall the main
definitions, assumptions and stability results. For more details, see [22] (for models
on general graphs without self-loop), and [6] for the same model with self-loops.
Consider a connected multigraph G = (V, E). Nodes of G, i.e. elements of V, rep-
resent classes of items. We say that two items of respective classes i and j ∈ V are
compatible if (i, j) ∈ E , that is, i and j are neighbors in G. Items enter the system
one by one in discrete time, and, for all n ∈ N∗, we denote by Vn ∈ V the class of
the item entering the system at time n. The sequence {Vn}n∈N∗ is supposed to be

IID, of common distribution µ̄ ∈M(V).
Then, upon the arrival of an element, say, of class i, we investigate whether

there is in line a compatible element with the incoming item. If this is the case,
then the incoming i-item is matched with one of these elements (if there are more
than one), following a fixed criterion called matching policy, and the two matched
elements leave the system right away. The matching policy is denoted by Φ, and
depends only on the arrival dates of the stored items, their classes, and possibly of
a random draw that is independent of everything else - we then say that the policy
is admissible. For instance, for the First Come, First Matched policy Φ = fcfm,
the oldest compatible item in line is chosen as the match of i. See [22, 6] for other
examples of admissible matching policies. The system is then fully characterized
by the triple (G,Φ, µ̄).

For any fixed connected multigraph G, any fixed admissible matching policy Φ
and any fixed probability measure µ̄, the system can be represented by the Markov
chain

{
WΦ,µ
n

}
n∈N, valued in a space denoted by W. For any connected multigraph

G = (V, E) and any admissible matching policy Φ, we define the stability region
associated to G and Φ as the set of measures

stab(G,Φ) ,
{
µ̄ ∈M (V) :

{
WΦ,µ̄
n

}
n∈N is positive recurrent

}
.

2.4.3. Continuous-time matching model. A continuous-time matching model asso-
ciated to the triple (G,Φ, µ), for µ ∈ M(V), is defined exactly as its diecrete-time
analog, except that arrivals to each node i are given by a Poisson process of intensity
µ(i), independently of everything else.

2.4.4. Extended bipartite stochastic matching model. In this section, we briefly re-
call the main definitions and results regarding the so-called extended bipartite
matching model, as introduced in [10]. This model is a variant of the general sto-
chastic matching model introduced in Section 2.4.2. For more details, the reader is
referred to [10].
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We are given a connected bipartite graph G = (V1 ∪ V2, E). As above, elements
of V1 and V2 represent classes of items, and we say that two items i ∈ V1 and
j ∈ V2 are compatible if there is an edge between i and j. In an extended bipartite
matching model, exactly one element of class in V1, and one element of class in V2,
enter the system at each time point, in other words the arrivals are done two-by-two.
The sequence {Vn}n∈N∗ represents the couples of classes of incoming items; namely,

for any n ∈ N∗, Vn = (i, j) for i ∈ V1 and j ∈ V2, means that an element of class i
and an element of class j enter the system together at time n. The family {Vn}n∈N∗
is supposed to be IID, of generic distribution µ̃ on V1 × V2 with marginals µ̃1 and
µ̃2 respectively. We write µ̃ = (µ̃1, µ̃2) a such distribution. Then, upon the arrival
of each couple, say of a couple (i, j), we first investigate whether there is in line an
element of class in V1 that is compatible with the incoming j-item. If this is the
case, then the incoming j-item is matched with one of these elements (if there are
more than one), that is chosen following a given matching policy Φ, and the two
elements leave the system right away. Then we apply the exact same procedure to
the incoming i-item. If one of the two incoming item did not find a match while
the other did, then the element is stored in the buffer. If none of the two did find a
match in the buffer, then, either the two incoming items are compatible and then
they are matched and leave the system right away, or they are not and they are both
stored in the buffer. Again, the matching policy Φ is supposed to be admissible, i.e.
to depend only on the arrival dates of the stored items, their classes, and possibly of
a random draw independent of everything else. For instance, for Φ = fcfm (’First
Come, First Matched’), the oldest compatible item in line is chosen, or, for Φ = ml
(’Match the Longest’), an item of the compatible class having the largest number
of elements in line is chosen, ties being broken uniformly at random. See again [10]
for other examples. Altogether, the system is again fully characterized by the triple
(G,Φ, µ̃).

For a fixed connected bipartite graph G, a fixed admissible matching policy
Φ and a fixed probability measure µ̃, the bipartite matching model associated to
(G,Φ, µ̃) can be fully represented by a Markov chain

{
Y Φ,µ̃
n

}
n∈N, that is valued in

a state space that we denote by Y. For any bipartite G = (V1 ∪ V2, E) and any
admissible Φ, we define the stability region associated to G and Φ as the set of
measures

stabb(G,Φ) ,
{
µ̃ ∈M (V1 × V2) :

{
Y Φ,µ̃
n

}
n∈N is positive recurrent

}
.

3. Results

3.1. General case. Our main theorem below presents several equivalences. Most
of them were already known, but in order to emphasize on the ubiquitous nature of
the measures described in this result, we gather all the results in a single theorem.

Theorem 1. Let G = (V, E) be a connected multigraph that is not a bipartite graph,
and let µ ∈M(V). The following properties are equivalent.

(i) The measure µ is invariant for a reversible random walk on the edges of
the multigraph G.

(ii) The measure µ is a weighted measure, that is, there exist weights (αi,j)(i,j)∈E
such that for all i ∈ V, µ(i) = µα(i).

(iii) The measure µ satisfies: for any non-empty subset U of V with U 6= V,
µ (U) < µ (E (U)) .

(iv) The measure µ satisfies: for any independent set I of V, µ (I) < µ (E (I)) .
(v) The measure µ̄ belongs to stab(G, fcfm), that is: if items arrive ac-

cording to the distribution µ̄, then the general stochastic matching model
(G, fcfm, µ̄, ) is stable.
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(vi) The continuous time-general stochastic matching model (G, fcfm, µ) is sta-
ble.

Theorem 1 is proven in Section 4. For any given connected multigraph G =
(V, E), defining the sets

W(G) , {µα : α ∈M(E)} ⊂ M(V),

N (G) , {µ ∈M (V) : ∀U ∈ P(V) \ {∅,V}, µ (U) < µ (E (U))} .

the equivalence (ii) ⇐⇒ (iii) can be reformulated as

(3) N (G) =W(G), for any G that is not a bipartite graph.

This result has an immediate practical interest for admission control, in the wide
class of systems described above: it makes precise the exact set of arrival rates (or
probabilities) for which the corresponding system can be stabilizable, and provides
a simple way of constructing such arrival rates, and so to calibrate the admission
control of the corresponding arrivals into the system. For this, it is necessary and
sufficient to set any family α of weights on the edges of G, and then to set µ ∈ N (G)
(resp., µ̄ ∈ N (G)) in function of α according to (1) (resp., (2)). Moreover, an
explicit representation of the family of weights α such that µ = µα, is provided
in the proof of Theorem 1, as a simple function of the matching rates of a related
stochastic matching model, see Corollary 2 and (12).

3.2. Bipartite case. Clearly, N (G) is empty whenever G is bipartite, of bipar-
tition, say, V = V1 ∪ V2. Indeed, for any µ in the latter, we we would have
µ(V1) = µ (E(V2)) > µ (V2), and symmetrically µ(V2) > µ(V1). Specifically, from
Proposition 4.2 in [6] and the equivalence (iii) ⇐⇒ (iv), we obtain that the set
N (G) is non-empty if and only if G is not a bipartite graph.

In fact, as is observed in the Introduction, the case where G = (V, E) is a
bipartite graph is relevant in various applications. Hereafter, for a bipartite graph
G = (V1 ∪V2, E) and a measure µ ∈M(V), let us define the measures µ̃1 ∈M(V1)
and µ̃2 ∈M(V2), by

(4) µ̃1(i) =
µ(i)

µ(V1)
, i ∈ V1 and µ̃2(j) =

µ(j)

µ(V2)
, j ∈ V2,

and by µ̃, the probability measure of M(V1 × V2) having first (resp., second) mar-
ginal µ̃1 (resp., µ̃2). We have the following counterpart of Theorem 1 in the bipartite
case,

Theorem 2. Let G = (V, E) be a bipartite graph, and let µ ∈M(V). The following
properties are equivalent.

(i) The measure µ is invariant for a reversible random walk on the edges of G.
(ii) The measure µ is a weighted measure, that is, there exist weights (αi,j)(i,j)∈E

such that for all i ∈ V, µ(i) = µα(i).
(iii) We have µ (U) < µ (E (U)) for any non-empty subset U of V that is different

from V,V1 and V2.
(iv) The measure µ̃ belongs to stab(G,ml), that is: if couple of items arrive

according to the distribution µ̃, then the extended bipartite matching models
(G,ml, µ̃) is stable.

(v) The continuous-time bipartite matching queue of arrival intensities µ on
servers and service intensities µ on customer nodes, of service discipline
FCFS-ALIS, is stable.
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Define, for any connected bipartite graph G = (V1 ∪ V2, E), the set

(5) Nb(G) ,

{
µ ∈M (V) :

{
∀U ∈ P(V) \ {∅,V,V1,V2}, µ (U) < µ (E (U))
µ(V1) = µ(V2)

}
.

Then, similarly to (3) the equivalence (ii) ⇐⇒ (iii) can be reformulated as

(6) Nb(G) =W(G), for any bipartite graph G,

a result that, again, can be easily exploited to the admission control of bipartite
stochastic matching models, and matching queues: it is necessary and sufficient
to set any family α of weights on the edges of G, µα ∈ Nb(G) in function of α
according to (1), and then to deduce µ̃α from µα as in (4) to obtain an extended
bipartite matching model that is stabilizable by the policy ml, or a matching queue
that is stabilizable by FCFS-ALIS. Moreover, as above an explicit representation
of the family of weights α is provided as a simple function of the matching rates
of the related extended bipartite model, see (15), and Corollary 3. The proof of
Theorem 2 is provided in Section 5.

3.3. Asymmetric case. In many applications, it is relevant to create an asymme-
try between two sets of nodes. For a connected graph G = (V, E), let V1 ∪ V2 be a
(non-trivial) partition of V, and consider now the following set of measures,

NV1
(G) = {µ ∈M(V) : ∀U1 ∈ P(V1) \ {∅}, µ(U1) < µ(E(U1))} .

The condition µ ∈ NV1
(G) is shown to be sufficient for the stability of a general

stochastic matching model on a graph, ruled by a Max-Weight policy, in which
nodes having classes in V2 have a finite lifetime in the system, see Theorem 3.2 in
[20]. As will be demonstrated below, it also coincides with the stability region of
a wide range of applications to skill-based queueing systems. The following result
states that it can also be represented, and explicitly constructed, using weighted
measures on G,

Theorem 3. For any connected graph G = (V, E) and any non-trivial partition
V1 ∪ V2 of V, the set NV1

(G) coincides with the set

W≺,V2
(G) ,

{
µ ∈M(V) : ∃α ∈M(E) s.t.

{
∀i ∈ V1, µ

α(i) = µ(i)
∀j ∈ V2, µ

α(j) < µ(j)

}
.

In Section 6, two different proofs of Theorem 3 are given. One using Theorem 1
whereas the other is self-content and involves the so-called max-flow/min-cut the-
orem used in flow network theory. Whenever the restriction of the measure to the
subset V2 is fixed (say, equal to γ), the following result immediately follows,

Corollary 1. For any connected graph G = (V, E) and any non-trivial partition
V1 ∪ V2 of V, for any γ ∈M+(V2), the sets

NV1,γ(G) , {µ ∈M(V1) : ∀U1 ∈ P(V1) \ {∅}, µ(U1) < γ(E(U1))}
and {

µ ∈M(V1) : ∃α ∈M(E) s.t.

{
∀i ∈ V1, µ

α(i) = µ(i)
∀j ∈ V2, µ

α(j) < γ(j)

}
coincide.

We now focus again on the case where the graph G = (V, E) is bipartite, of
bipartition V = V1 ∪ V2. Consider a “multi-class and multi-pool queue” defined as
follows: V1 represents the set of classes of customers, and V2 the set of types of
parallel servers pools. For each servers pool j ∈ V2, let us denote by sj ∈ N∗ the
number of indistinguishable servers in j. To simplify the model under study, let
us assume that each server can only serve one customer at a time. (Notice that
this assumption is violated in various practical cases, see for instance [17] and [21].)
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To each class i ∈ V1 of customers, such elements enter the system according to a
Poisson point process of intensity µ(i) > 0. Any customer can potentially be served
by more than one class of servers, and the bipartite graph G = (V = V1 ∪ V2, E)
represents the compatibilities between classes of servers and of customers. We
suppose that the service times of customers of class i ∈ V1, whenever served by
server of class j ∈ V2, is exponentially distributed of parameter γ((i, j)) > 0. We
set γ((i, j)) = 0 if (and only if) (i, j) 6∈ E . For details regarding this class of skill-
based queueing systems, see e.g. [13]. In that case, it is shown in [29] that for any
measure γ ∈M+(E) and any (sj)j∈V2

∈ (N∗)|V2|, the set of measures

ÑV1,γ,s(G)

,

µ ∈M(V1) : ∃π ∈M+(E) s.t.


∀i ∈ V1, µ(i) =

∑
j∈V2

γ((i, j))sjπ((i, j))

∀j ∈ V2,
∑
i∈V1

π((i, j)) < 1


is maximal for stability, in the sense that no system can reach ergodicity unless

µ ∈ ÑV1,γ,s(G), within a set of admission controls (deciding the classes of servers the
incoming customers are assigned to) and service policies (determining the classes
of customers the available servers chose to serve) termed SBR policies, see [13].

Moreover, it is also shown in [29] that the system is stable for any µ ∈ ÑV1,γ,s(G)
whenever the so-called Maximum Pressure Policy mpp is implemented - such a
policy is then termed throughput optimal. Moreover, in that case, for any (i, j) ∈ E ,
π((i, j)) can be interpreted as the proportion of time in which servers of pool j
serve class i customers, in steady state. First observe the following immediate
characterization of the maximal stability region as a set of weighted measures on
V1,

Proposition 1. Let G = (V1∪V2, E) be a connected bipartite graph. Then, for any

measure γ ∈M+(E) and any (sj)j∈V2 ∈ (N∗)|V2|, we have

ÑV1,γ,s(G) =

{
µ ∈M(V1) : ∃α ∈M(E) s.t.

{ ∀i ∈ V1, µα(i) = µ(i)
∀j ∈ V2,

∑
i∈E(j)

αi,j
γ((i,j)) < sj

}
.

Proof. For the left inclusion, it suffices to set αi,j = γ((i, j))sjπ((i, j)) for all i ∈ V1

and j ∈ V2. As for the right inclusion, just set

π((i, j)) =
αi,j

γ((i, j))sj
1{i−j}, i ∈ V1, j ∈ V2.

�

In the particular case where service times depend only on the classes of servers
and not on the classes of customers they serve (i.e., γ((i, j)) = γ(j) for all (i, j) ∈ E),
by gathering Corollary 1 and Proposition 1, we immediately obtain the following
characterization of the maximal stability region

Proposition 2. Let G = (V1 ∪ V2, E) be a connected bipartite graph, γ ∈M+(V2)

and (sj)j∈V2
∈ (N∗)|V2|. Let γ̂ ∈ M+(V2) and γ̃ ∈ M+(E) be respectively defined

by γ̂(j) , sjγ(j) for all j ∈ V2, and by γ̃((i, j)) , γ(j) for all (i, j) ∈ E. Then, the

maximal stability region ÑV1,γ̃,s(G), the set NV1,γ̂(G), and the set{
µ ∈M(V1) : ∃α ∈M(E) s.t.

{
∀i ∈ V1, µα(i) = µ(i)
∀j ∈ V2, µα(j) < sjγ(j)

}
coincide.



STABILITY REGIONS 9

4. Proof of Theorem 1

We now turn to the proof of our main result, is the case where G is not a bipartite
graph.

4.1. Proof of Theorem 1. Fix a connected multigraph G that is not a bipartite
graph.

(i) ⇐⇒ (ii). It is a folk result: to prove the implication (ii) =⇒ (i), one can
consider the weighted random walk associated to the weights (αi,j)(i,j)∈E , and con-
versely, if µ is a reversible invariant measure for the random walk of matrix P ,
then we can set αi,j = µ(i)P (i, j) = µ(j)P (j, i) and check that µ is the weighted
measure associated to the family of weights (αi,j)(i,j)∈E .

(iii) ⇐⇒ (iv). Implication (iii) =⇒ (iv) is trivial. We now prove the converse
implication, that generalizes Lemma 1 in [22] from graphs to multigraphs. Let
G = (V, E) be a connected multigraph and µ be a measure on V satisfying µ (I) <
µ (E (I)) for any independent set I of G, and fix a subset U ∈ P(V)\{∅,V}. Denote

in this proof US , U ∩ VS and UN , U ∩ VcS , where VS is the set of nodes of V
having a self-loop. We get that

µ (E(U))− µ(U) = µ(E(U)∩ US) + µ(E(U)∩ UN ) + µ(E(U)∩ Uc)− µ(US)− µ(UN ).

But by the very definition of a self-loop, we get that E(U)∩US = US , and thus the
latter equality can be rewritten as

(7) µ (E(U))− µ(U) = µ(E(U) ∩ Uc)− µ (UN ∩ (E(U))
c
) .

But any element in the neighborhood of UN ∩ (E(U))
c

is in particular an element
of E(U), and also an element of Uc as no element of U can share an edge with an
element of (E(U))

c
. Therefore, we get that

(8) E (UN ∩ (E(U))
c
) ⊂ E(U) ∩ Uc.

If UN ∩ (E(U))
c 6= ∅, it is clearly an independent set, so we get that

µ (UN ∩ (E(U))
c
) < µ (E (UN ∩ (E(U))

c
)) .

Gathering this with (7) and (8), we conclude that

µ (E(U))− µ(U) > 0,

which completes the proof, since the case UN ∩ (E(U))
c

= ∅ is solved by (7), the
fact that U  V and the connectivity of G.

(iv) ⇐⇒ (v). This equivalence is precisely Theorem 1 in [6].

(v) ⇐⇒ (vi). The equivalence between the stability of discrete-time and continuous-
time general stochastic matching models was shown in Theorem 1 in [25].

(ii) =⇒ (iv). The implication (ii) =⇒ (iv) was observed in Lemma 11 in [14], in
the context of graphs. We can easily extend that proof to multigraphs, as follows.
Let G = (V, E) be a connected multigraph that is not a bipartite graph. For any
subset X ⊂ V, denote by AX ⊂ E the set of edges of the graph having at least one
extremity in X (including self-loops (i, i) for i ∈ X ). Let α ∈M+(E) be a family of
weights, and fix an independent set I ∈ I(G). Then, first observe that AI  AE(I).
Indeed, for any (a1, a2) ∈ AI , we have either a1 ∈ I and thus a2 ∈ E(I), or the
other way around, and in both cases, (a1, a2) ∈ AE(I). Therefore, we have that
AI ⊂ AE(I). On another hand, as G is connected and non-bipartite, there exists
an edge e connecting an element of E(I) to an element of Ic, otherwise we would
have E(E(I)) = I and, since I ∈ I(G), (I, E(I)) would form a bipartition of G. In
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particular, as I is an independent set, we have that e ∈ AE(I) ∩ (AI)
c
, entailing

that AI  AE(I). We obtain that

(9) µα(I) =
∑
i∈I

∑
e∈Ai

αe =
∑
e∈AI

αe <
∑

e∈AE(I)

αe ≤
∑
i∈E(I)

∑
e∈Ai

αe = µα(E(I)),

where the second equality holds due to the fact that the set I is independent.

(iv) =⇒ (ii). Let G = (V, E) be a connected multigraph that is not a bipartite
graph. We will show that the set of measures satisfying (iv) is included in the set
of weighted measures with positive or null weights. By taking the interior on each
side of the inclusion (the set corresponding to (iv) being already open), we will
obtain the implication (iv) =⇒ (ii).

Let µ ∈ M+(V) be a measure. We will reason by contraposition and show that
if µ is not a weighted measure with positive or null weights, then there exists an
independent set I of G such that µ (I) ≥ µ (E (I)).

Let A be the matrix indexed by V × E such that for (v, e) ∈ V × E , Av,e = 1 if
the vertex v is an extremity of the edge e, and Av,e = 0 otherwise. Introduce the
vector b = (µ(v))v∈V , and for a given family of weights α ∈ M+(E) introduce the
vector xα = (αe)e∈E . With these notations, the measure µ is the weighted measure
associated to the family of weights α if and only if Axα = b.

The rest of the proof will rely on Farkas’ Lemma [15], that asserts that one and
only one of the following linear systems has a solution:

(1) the system Ax = b of unknown a column vector x indexed by V satisfying
x ≥ 0 ;

(2) the system tAy ≥ 0 of unknown a column vector y indexed by E satisfying
tby < 0.

Let us consider the matrix tA, indexed by E × V. On the line indexed by the
edge e,

- if e is not a self-loop, there are exactly two occurrences of the value 1, at
the positions corresponding to the two extremities of e,

- if e is a self-loop, there is exactly one occurrence of the value 1, at the
position corresponding to the vertex having the self-loop e.

It follows that the equation tAy ≥ 0 is equivalent to:

- for any edge e = (i, j) which is not a self-loop, y(i) + y(j) ≥ 0,
- for any self-loop e = (i, i), y(i) ≥ 0.

Let us assume that µ is not a weighted measure, that is, that the system Ax =
b, x ≥ 0 has no solution. Then, by Farkas’ lemma, the system tAy ≥ 0, tby < 0 has
at least one solution, which means that there exists a vector y satisfying tAy ≥ 0,
and such that

∑
i∈V µ(i)y(i) < 0.

Let us choose a solution y of the system such that |y| takes as few different values
as possible.

• If |y| takes a single value c, then we must have c > 0. Let V+ , {i ∈ V :

y(i) = c} and V− , {i ∈ V : y(i) = −c}. In view of the constraints that y
must satisfy on the edges, one can check that V− is an independent set, and
that E(V−) ⊂ V+. Furthermore, the condition

∑
i∈V µ(i)y(i) < 0 implies

that µ(V+) < µ(V−), so that µ(E(V−)) < µ(V−). Thus, the measure µ does
not satisfy (iv).

• Otherwise, let p be the largest value that |y| takes, and let q be the second

largest value. We introduce the sets Vp+ , {i ∈ V : y(i) = p} and Vp− ,
{i ∈ V : y(i) = −p}. Again, the constraints on the edges imply that Vp− is
an independent set, and we have E(Vp−) ⊂ Vp+, so that µ(E(Vp−)) ≤ µ(Vp+).
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– Let us first assume that µ(Vp+) ≤ µ(Vp−). Then, Vp− is an independent
set such that µ(E(Vp−)) ≤ µ(Vp−), so that µ does not satisfy (iv).

– Let us now assume that µ(Vp+) > µ(Vp−). Then, let us modify y by
giving the value q to all the vertices of Vp+ and the value −q to all
the vertices of Vp−. One can check that the new vector y′ then defined
still satisfy the constraints on the edges and that the new value of the
sum

∑
i∈V µ(i)y(i) has decreased by (p − q)(µ(Vp+) − µ(Vp−)), so that

it is still negative. We have thus a contradiction with the fact that |y|
takes as few different values as possible.

Gathering the above, we have that (i) ⇐⇒ (ii), (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒
(vi), and (ii) ⇐⇒ (iv). Therefore, the proof of Theorem 1 is complete.

4.2. An alternative proof of (v) =⇒ (ii) using matching rates. We now
provide an alternative proof of the implication (v) =⇒ (ii), relying on the matching
rates of a related stochastic matching model. As will be shown in Section 7.1, we
can deduce from this characterization, interesting properties of the matching models
at stake, among which, invariance properties of the matching rates with respect to
the matching policy.

Definition 1. For a general matching model associated to any fixed (G,Φ, µ̄), for
any fixed time n ≥ 1 and any fixed i and j in V, we set

Mn[i, j] , Number of matchings (i, j) performed up to time n included,

where the above is set as null a.s. if (i, j) 6∈ E. Then, the matching rate of i with j
(or equivalently, of j with i) up to n is defined as the proportion Mn[i, j]/n.

In the sequel, for any fixed couple (G,Φ), any i ∈ V and any j ∈ E(i), we set

(10) Ai→j , {states of W s.t. an incoming i-item gets matched with a j-item}.

Lemma 1. For any stable general matching model associated to (G,Φ, µ̄) and any
(i, j) ∈ E, the asymptotic matching rates satisfy

Mn[i, j]

n

a.s.−−−−−→
n→+∞

ΘΦ,µ̄[i, j],

where

(11) ΘΦ,µ̄[i, j] , µ̄(i)ΠΦ,µ̄
W (Ai→j) + µ̄(j)ΠΦ,µ̄

W (Aj→i) 1{i 6=j},

and ΠΦ,µ̄
W represents the unique stationary distribution of the chain

{
WΦ,µ̄
n

}
n∈N.

Proof. Fix an edge (i, j) ∈ E with i 6= j. Then, we have a.s.

Mn[i, j]

n
=

1

n

n∑
k=1

1{a match (i, j) is performed at time k}

=
1

n

n∑
k=1

[
1{Vk=i}1{WΦ,µ

k−1∈Ai→j} + 1{Vk=j}1{WΦ,µ
k−1∈Aj→i}

]
=:

1

n

n−1∑
k=0

fi,j

(
WΦ,µ
k , Vk+1

)
.

Moreover, for all k ∈ N, WΦ,µ̄
k and Vk+1 are independant, and

{
WΦ,µ̄
k

}
k∈N

is an

ergodic Markov chain of stationary distribution ΠΦ,µ̄
W . Thus,

{(
WΦ,µ̄
k , Vk+1

)}
k∈N

is an ergodic Markov chain on W×V, whose unique stationary distribution is given
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by ΠΦ,µ̄ , ΠΦ,µ̄
W ⊗ µ̄. As fi,j is bounded by 1, it is integrable with respect to ΠΦ,µ̄

and the ergodic theorem for Markov chains gives that a.s.,

lim
n→+∞

(
1

n

n−1∑
k=0

fi,j

(
WΦ,µ̄
k , Vk+1

))
=

∑
w∈W

∑
v∈V

fi,j(w, v)ΠΦ,µ̄(w, v)

=
∑
w∈W

1{w∈Ai→j}Π
Φ,µ̄
W (w)

∑
v∈V

1{v=i}µ̄(v)

+
∑
w∈W

1{w∈Aj→i}Π
Φ,µ̄
W (w)

∑
v∈V

1{v=j}µ̄(v)

= µ̄(i)ΠΦ,µ̄
W (Ai→j) + µ̄(j)ΠΦ,µ̄

W (Aj→i) ,

and the computation is the same without the second term, in the case i = j. �

By combining the result above and the strong law of large numbers, we get the
following,

Lemma 2. For any stable general matching model associated to (G,Φ, µ), we have

(12) µ̄(i) =
∑
j∈V

(
1 + 1{j=i}

)
ΘΦ,µ̄[i, j], for all i ∈ V.

Proof. Consider an item i ∈ V and denote, for all n ∈ N∗, by An(i) and Dn(i) the
number of arrivals and the number of departures up to time n (included) of i-items,
respectively. By the strong law of large numbers, we have

An(i)

n
=

1

n

n∑
k=1

1{Vk=i}
a.s.−−−−−→

n→+∞
µ(i).

Moreover, Lemma 1 entails that

Dn(i)

n
=

2Mn[i, i]

n
+

∑
j∈V\{i}

Mn[i, j]

n

a.s.−−−−−→
n→+∞

2ΘΦ,µ̄[i, i] +
∑

j∈V\{i}

ΘΦ,µ̄[i, j] = ΘΦ,µ̄[i, i] +
∑
j∈V

ΘΦ,µ̄[i, j].

Comparing to the two limits above, it remains to prove that

An(i)−Dn(i)

n

a.s.−−−−−→
n→+∞

0.

For this, observe that we have a.s., for all n ≥ 1,

(13)
∣∣WΦ,µ̄

n

∣∣
i

= An(i)−Dn(i) +
∣∣∣WΦ,µ̄

0

∣∣∣
i
,

where |w|i denotes the number of occurrences of i in the word w.
Let us suppose that, on some event Ω′ ⊂ Ω with P(Ω′) > 0, we have

lim
n→+∞

An(i)−Dn(i)

n
6= 0.

Fix a realization ω ∈ Ω′. First, if

lim
n→+∞

An(i)(ω)−Dn(i)(ω)

n
> 0,

from (13), there would exist a rank M(ω) such that
∣∣WΦ,µ

n (ω)
∣∣
i
> 0 for all n ≥

M(ω). Likewise, if we have that

lim
n→+∞

An(i)(ω)−Dn(i)(ω)

n
< 0,
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then in view of (13), for some M(ω) we would have that
∣∣WΦ,µ̄

n (ω)
∣∣
i
< 0 for all

n ≥ M(ω). All in all, we get that Ω′ ⊂ lim infn→∞
{
ω ∈ Ω :

∣∣WΦ,µ̄
n (ω)

∣∣
i
6= 0
}

, an

absurdity in view of the recurrence of
{
WΦ,µ̄
n

}
n∈N. This concludes the proof. �

We deduce the following result, from which the implication (v) =⇒ (ii) of
Theorem 1 directly follows,

Corollary 2. For any connected multigraph G = (V, E) and any admissible match-
ing policy Φ, we have

stab(G,Φ) ⊂ {µ̄α : α ∈M(E)} =W1(G).

Specifically, we have that

µ̄ ∈ stab(G,Φ) =⇒ µ̄ = µ̄αΦ,µ,

where

(14)
αΦ,µ̄ : E −→ R∗

(i, j) 7−→ αΦ,µ̄((i, j)) ,
(
1 + 1{i=j}

)
ΘΦ,µ̄[i, j],

for ΘΦ,µ̄ defined by (11).

Proof. Let fix a connected multigraph G = (V, E) and a matching policy Φ. Let
µ̄ ∈ stab(G,Φ) (if the set is empty, the result is trivial), in a way that the general
stochastic matching model associated to (G,Φ, µ) is stable. Then, for the family
of weights αΦ,µ̄ ∈M(E) defined by (14), recalling (2) and in view of Lemma 2, we
have that for all i ∈ V,

µαΦ,µ̄(i) =

ΘΦ,µ̄[i, i] +
∑
j∈V

ΘΦ,µ̄[i, j]

∑
l∈V

(
ΘΦ,µ̄[l, l] +

∑
j∈V

ΘΦ,µ̄[l, j]

) =
µ̄(i)∑

l∈V
µ̄(l)

= µ̄(i),

which concludes the proof. �

5. Proof of Theorem 2

5.1. Matching rates of extended bipartite matching models. Before we
could turn to the proof of Theorem 2, it will be useful to adapt the arguments
of Section 4.2 to bipartite graphs. For this, we first define the matching rates in
extended bipartite stochastic matching models, as follows,

Definition 2. For any bipartite matching model associated to a triple (G = (V1 ∪
V2, E),Φ, µ̃), for any fixed time n ≥ 1 and any fixed couple (i, j) ∈ V1 × V2, we set

Mb
n[i, j] , Number of matchings (i, j) performed up to time n included,

where the above is set as null a.s. if (i, j) 6∈ E. Then, the matching rate of i with j
up to n is defined as the proportion Mb

n[i, j]/n.

As above, for any fixed bipartite graph G = (V1 ∪ V2, E) and any admissible Φ,
for any i ∈ V1 and j ∈ V2, we define the following sets:

Ab
i→j , {buffers s.t. an incoming i-item gets matched with a stored j-item} ,

Ab
i↔j , {buffers s.t. an incoming (i, j)-couple gets matched together}.

(Observe that the latter sets are non-empty only if (i, j) ∈ E , and that the second
one does not depend on Φ.) The following result, whose proof is analog to that
of Lemma 1, makes precise the asymptotic matching rates in a stable bipartite
matching model,
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Proposition 3. Consider a bipartite matching model associated to the triple (G =
(V1 ∪ V2, E),Φ, µ̃) such that µ̃ ∈ stabb(G,Φ). Then, for any (i, j) ∈ E, we have
that

Mb
n[i, j]

n

a.s.−−−−−→
n→+∞

ΘΦ,µ̃
b [i, j]

, µ̃((i,V2 \ {j}))Π̃Φ,µ̃
W

(
Ab
i→j
)

+ µ̃((V1 \ {i}, j))Π̃Φ,µ̃
W

(
Ab
j→i
)

+ µ̃((i, j))Π̃Φ,µ
W

(
Ab
i↔j
)
,

where Π̃Φ,µ̃
W represents the unique stationary probability distribution of the positive

recurrent Markov chain
{
Y Φ,µ̃
n

}
n∈N.

We can then adequate the arrival rates to the cumulative matching rates of the
nodes. The following result can be proven similarly to Lemma 2,

Lemma 3. For a bipartite matching model associated to any (G = (V1∪V2, E),Φ, µ̃),
such that µ̃ = (µ̃1, µ̃2) ∈ stabb(G,Φ), we have that

(15)


µ̃1(i) =

∑
j∈E(i)

ΘΦ,µ̃
b [i, j], for all i ∈ V1;

µ̃2(i) =
∑

j∈E(i)

ΘΦ,µ̃
b [i, j], for all i ∈ V2.

Let us introduce two following probability distributions,

Definition 3. For any fixed connected bipartite graph G = (V1 ∪ V2, E) and any
fixed family of weights α ∈ M(E), we define the conditional probability measures
µ̃α1 ∈ M(V1) and µ̃α2 ∈M(V2) as follows: for any i ∈ V,

µ̃α1 (i) ,

∑
j∈E(i)

αi,j∑
l∈V1

∑
j∈E(l)

αl,j
, i ∈ V1 and µ̃α2 (i) ,

∑
j∈E(i)

αi,j∑
l∈V2

∑
j∈E(l)

αl,j
, i ∈ V2.

As (V1,V2) realize a bipartition of V, we can deduce that

(16) ∀i ∈ V1, µ̄
α(i) =

µ̃α1 (i)

2
and ∀j ∈ V2, µ̄

α(j) =
µ̃α2 (j)

2
,

and thus

(17) µ̄α(V1) = µ̄α(V2) =
1

2
and µα(V1) = µα(V2) =

µα(V)

2
.

Corollary 3. Let G = (V1 ∪ V2, E) be a connected bipartite graph. Then, for any
admissible matching policy Φ, we get that

stabb(G,Φ) ⊂
{
µ̃ = (µ̃α1 , µ̃

α
2 ) ∈M(V1 × V2) : α ∈M+(E)

}
.

Proof. Fix a connected bipartite graph G = (V1∪V2, E) and an admissible policy Φ,
and let µ̃ = (µ̃1, µ̃2) ∈ stabb(G,Φ), so that the bipartite matching model associated

to (G,Φ, µ̃) is stable. Let us also define the family of weights αΦ,µ̃
b ∈M+(E), by

(18)
αΦ,µ̃
b : E −→ R∗

(i, j) 7−→ ΘΦ,µ̃
b [i, j].

From Lemma 3, for all i ∈ V1 we have that

µ̃
αΦ,µ̃

b
1 (i) =

∑
j∈E(i)

ΘΦ,µ̃
b [i, j]∑

l∈V1

∑
j∈E(l)

ΘΦ,µ̃
b [l, j]

=
µ̃1(i)∑

l∈V1

µ̃1(l)
= µ̃1(i).

So we have µ̃1 = µ̃
αΦ,µ̃

b
1 , and likewise µ̃2 = µ

αΦ,µ̃
b

2 , which concludes the proof. �
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5.2. Proof of Theorem 2. We can now turn to the proof of Theorem 2. Let
G = (V = V1 ∪ V2, E) be a connected bipartite graph. First observe that the
equivalence (i) ⇐⇒ (ii) proven in Theorem 1 is not peculiar to the non-bipartite
case, and remains valid in the present context. To complete the proof, we then show
that (iii) ⇐⇒ (iv), (iv) ⇐⇒ (v), and then (ii) =⇒ (iii) and (iv) =⇒ (ii).

(iii) ⇐⇒ (iv). We first show that

(19) Nb(G) =

µ ∈M (V) :

 ∀U1 ∈ P(V1) \ {∅,V1}, µ (U1) < µ (E (U1))
∀U2 ∈ P(V2) \ {∅,V2}, µ (U2) < µ (E (U2))
µ(V1) = µ(V2)

 .

The left inclusion being trivial, let us focus on the converse. Let µ be an element
of the right-hand set, and let U be a non-empty set that is strictly included in V
and different from V1 and V2. Let us first observe that it cannot be the case that
U ∩ V1 = V1 and U ∩ V2 = V2, otherwise U would coincide with V. Thus, assuming
for instance that U ∩ V2 is strictly included in V2 (the other case is symmetric),
we have that µ (U ∩ V2) < µ (E (U ∩ V2)). On the other hand, we also have that
µ (U ∩ V1) < µ (E (U ∩ V1)) whenever U ∩V1 is strictly included in V1, while, in the
case where U ∩ V1 = V1, we get that

µ (U ∩ V1) = µ(V1) = µ(V2) = µ(E(V1)) = µ (E (U ∩ V1)) .

We obtain in all cases that

µ(U) = µ (U ∩ V1) + µ (U ∩ V2) < µ (E (U ∩ V1)) + µ (E (U ∩ V2))

= µ (E (U) ∩ V2) + µ (E (U) ∩ V1) = µ(E (U)),

hence µ is an element of NB(G), which completes the proof of (19). In particular,
Assertion (iii) is equivalent to saying that µ belongs to the right-hand set of (19).

Now, from Theorem 7.1 of [10] we have that

(20) stabb(G,ml) = Ñb(G),

where

Ñb(G) ,

{
µ̃ = (µ̃1, µ̃2) ∈M (V1 × V2) :

{
∀U1 ∈ P(V1)\{∅,V1}, µ̃1 (U1) < µ̃2 (E (U1))
∀U2 ∈ P(V2)\{∅,V2}, µ̃2 (U2) < µ̃1 (E (U2))

}
.

and we conclude by observing that µ ∈ Nb(G) is equivalent to µ̃ ∈ Ñb(G).

(iv) ⇐⇒ (v). In view of the characterization (19), the equivalence (iv) ⇐⇒ (v)
is shown in Theorem 1 in [2].

(ii) =⇒ (iii). Fix α ∈ M(E), and recall that for any subset X ⊂ V, we denote
by AX ⊂ E the set of edges of the graph having at least one extremity in X . It
suffices to show that µα belongs to the right-hand side of (19). For this, fix a
set U1 ∈ P(V1)\{∅,V1}. As in the proof of (ii) =⇒ (iv) in Theorem 1, it is
immediate that AU1 ⊂ AE(U1). On another hand, by the connectivity of G, there
exists an edge e connecting an element of E(U1) to an element of Uc1 ∩V1, otherwise
we would have E(E(U1)) = U1 and, since U1 ∈ I(G), (U1, E(U1)) would form a
bipartition of G, which is absurd since U1 6= V1. So we have that AU1

 AE(U1).
Since U1 is an independent set, the same inequalities as in (9) hold and we have
that µα(U1) < µα(E(U1)).

By a symmetric argument, we also have that µα(U2) < µα(E(U2)), for any set
U2 ∈ P(V2)\{∅,V2}. Using (17), this shows that µα ∈ Nb(G).
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(iv) =⇒ (ii). Fix a measure µ̃ ∈ stabb(G,ml). Gathering Corollary 3 for Φ = ml
with (20), we obtain that

(21) Ñb(G) ⊂
{
µ̃ = (µ̃α1 , µ̃

α
2 ) ∈M(V1 × V2) : α ∈M+(E)

}
.

For any µ ∈ Nb(G), we get that µ̃ ∈ Ñb(G), so in view of (21), we obtain that
µ̃1 = µ̃α1 and µ̃2 = µ̃α2 , for some α ∈ M+(E). In view of (16), and the fact that
µ ∈ Nb(G), we get that µ = µ(V)µα, which amounts to writing that µ = µα̌ where

α̌ = µ(V)
µα(V)α, and so the proof is concluded.

6. Proof of Theorem 3

6.1. Proof using Theorem 1. We start with the following result,

Proposition 4. For any connected graph G = (V, E) and any non-trivial partition
V1 ∪ V2 of V, we have

NV1(G) =W(Ĝ),

where Ĝ = (V, Ê) is the multigraph obtained from G by adding a self-loop at any
element of V2.

Proof of Proposition 4. In view of Theorem 1, it suffices to show that

(22) NV1
(G) = N (Ĝ).

The right inclusion in (22) is immediate: if we let µ ∈ N (Ĝ), and fix a non-empty
subset U1 ⊂ V1, then as V2 6= ∅, we get that U1 ( V and thus we readily obtain
that

µ(U1) < µ(Ê(U1)) = µ(E(U1)),

where the second equality follows from the definition of Ê . Hence, µ ∈ NV1
(G).

We now turn to the left inclusion. Let µ ∈ NV1(G) and fix a set U ∈ P(V)\{∅,V}.
Denote in this proof, U1 , U ∩ V1 and U2 , U ∩ V2. Reasoning exactly as in the
argument leading to (7) and (8), we obtain that

µ(Ê(U))− µ(U) = µ(Ê(U) ∩ Uc)− µ(U1 ∩ (Ê(U))c);(23)

Ê(U1 ∩ (Ê(U))c) ⊂ Ê(U) ∩ Uc.(24)

Now, by the very definition of Ĝ we clearly have that

U1 ∩ (Ê(U))c = U1 ∩ (E(U))c and Ê(U1 ∩ (Ê(U))c) = E(U1 ∩ (E(U))c).

Consequently, if U1 ∩ (E(U))
c 6= ∅, as µ is an element of NV1(G) we get that

µ(U1 ∩ (Ê(U))c) = µ (U1 ∩ (E(U))
c
) < µ (E (U1 ∩ (E(U))

c
)) = µ(Ê(U1 ∩ (Ê(U))c)).

Gathering this with (23) and (24), we conclude that

µ(Ê(U))− µ(U) > 0,

which completes the proof of the left inclusion in (22), since the case U1∩(E(U))
c

= ∅
is solved by (23), the fact that U ( V and the connectivity of Ĝ. �

For any finite set A, for two measures µ, µ′ of M(A), and for a subset B ⊂ A,
we denote µ ≺B µ′ whenever µ(i) < µ′(i) for any i ∈ B, and µ(i) = µ′(i) for any
i ∈ A \B. For any V ′ ⊂ V, we define the set

W≺,V′(G) , {µ ∈M(V) : µα ≺V′ µ for some α ∈M(E)} .

We can now prove Theorem 3,
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Proof of Theorem 3. From Proposition 4, it is enough to show that

W(Ĝ) =W≺,V2
(G).

Regarding the left inclusion, for any µ ∈ W(Ĝ), letting α̂ ∈ M+(Ê) be such that
µ = µα̂, and α ∈ M+(E) be the restriction of α̂ to E we get that µ(i) = µα̂(i) =
µα(i) for all i ∈ V1, while for any i ∈ V2, we obtain

µ(i) = µα̂(i) = α̂i,i +
∑

j 6=i: j∈E(i)

α̂i,j >
∑

j 6=i: j∈E(i)

αi,j = µα(i),

hence µ ∈ W≺,V2
(G). As for the converse, let µ ∈ W≺,V2

(G), and α ∈ M+(E) be
such that µα ≺V2 µ. Then, setting α̂i,j = αi,j for all i 6= j and α̂i,i = µ(i)− µα(i)

for all i ∈ V2, we easily retrieve that µ = µα̂. Hence µ ∈ W(Ĝ), which completes
the proof. �

6.2. Bipartite case: proof using flow theory. Interestingly enough, in the
particular case where G is bipartite of bipartition V1 ∪ V2, Theorem 3 is in fact
reminiscent of a simple flow argument. Hereafter, we give an alternative and in-
dependent proof of this result in the bipartite case, using flow network theory, see
[16]. We start with the following result,

Proposition 5. For any connected bipartite graph G = (V = V1 ∪ V2, E) and any
measure µ ∈ N+

V1
(G), there exists a s − t flow graph associated to G, denoted by

→
G =

(→
V ,
→
E
)

, and a s− t flow of
→
G, denoted by f , such that:

(25)
∑
w∈
→
V

f(s, w) = µ(V1).

Proof of Proposition 5. Let consider a connected bipartite graph G = (V = V1 ∪
V2, E) and a measure µ ∈ N+

V1
(G).

It then allows to consider a measure δ ∈M(V2) such that:

(26)

{
∀U1 ∈ P(V1) \ {∅}, µ(U1) < δ(E(U1));
∀j ∈ V2, δ(j) < µ(j).

Now, let construct a s− t flow graph
→
G =

(→
V ,
→
E
)

associated to G as follows:

- set a ”source”, denoted by s, and add the edges between s and each vertex of V1;
- set a ”well”, denoted by t, and add the edges between each vertex of V2 and t;
- for all i ∈ V1 and j ∈ V2, let orient the edges from s to i, from j to t and from i
to j, for all edge (i, j) ∈ E ;
- let associate a capacity c(., .) to each edge as follows: for all i ∈ V1 and j ∈ V2,

we set c(s, i) , µ(i), c(j, t) , δ(j) and c(i, j) , +∞, for all edge (i, j) ∈ E .

In order to use the max-flow/min-cut theorem, we need the following result,

Lemma 4. By defining S̃ , {s} and T̃ ,
→
V \{s}, we have:

min
(S ,T )∈Cs,t

(→
G
)c(S ,T ) = c

(
S̃ , T̃

)
= µ(V1),

where Cs,t

(→
G
)

is the set of all the s− t cuts of
→
G.

Proof of Lemma 4. By considering a s − t cut (S ,T ) of
→
G and with the help

of (26), the proof consists in verifying that c
(
S̃ , T̃

)
≤ c(S ,T ) in each following

case:
- V1 ∩S = ∅ and V2 ∩S = ∅;
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- V1 ∩S 6= ∅ and [(V2 ∩T ) ∩ E(V1 ∩S ) 6= ∅ or (V2 ∩S ) ∩ E(V1 ∩T ) 6= ∅];
- V1 ∩S 6= ∅ and [(V2 ∩T ) ∩ E(V1 ∩S ) = ∅ and (V2 ∩S ) ∩ E(V1 ∩T ) = ∅];
- V2 ∩S 6= ∅ and [(V1 ∩T ) ∩ E(V2 ∩S ) 6= ∅ or (V1 ∩S ) ∩ E(V2 ∩T ) 6= ∅];
- V2 ∩S 6= ∅ and [(V1 ∩T ) ∩ E(V2 ∩S ) = ∅ and (V1 ∩S ) ∩ E(V2 ∩T ) = ∅]. �

The proof of Proposition 5 is then concluded by combining Lemma 4 with the
well-known max-flow/min-cut theorem. �

We are then able to retrieve the proof of Theorem 3 in the bipartite case,

Proof of Theorem 3 for G bipartite. Let us consider a connected bipartite graph
G = (V = V1 ∪ V2, E). In order to prove the first inclusion, we fix a measure

µ ∈ N+
V1

(G), and define the non-negative measure αf ∈M(E), by

∀(i, j) ∈ E , αfi,j , f(i, j),

where f is the flow of
→
G, given by Proposition 5. On the one hand, by the very

structure of
→
G and from (26), we have that

∀j ∈ V2, µ
αf (j) =

∑
i∈V1

αfi,j < µ(j).

On the other hand, it can be proven that

(27) ∀i ∈ V1, f(s, i) = µ(i).

Indeed, the inequality “≤” follows from the capacity constraint, whereas the con-
verse inequality follows by contradiction, using (25). It then follows from (27) and

by the very definition of αf , that

∀i ∈ V1, µ
αf (i) =

∑
j∈V2

αfi,j = µ(i).

In order to prove the converse inclusion, let us consider a measure µ ∈ W+
≺,V2

(G).

Then there exists a non-negative measure α ∈M≥0(E) such that

(28)

{
∀i ∈ V1, µ

α(i) = µ(i)
∀j ∈ V2, µ

α(j) < µ(j)
.

Let us consider a non-empty subset U1 ∈ P(V1)\{∅}. Then, by (28) and since
α ∈M≥0(E), we have that

µ(U1) = µα(U1) =
∑

j∈E(U1)

∑
i∈U1

αi,j ≤
∑

j∈E(U1)

∑
i∈V1

αi,j = µα(E(U1)) < µ(E(U1)),

which concludes the proof. �

7. About uniqueness of the matching rates

In Lemma 2 (resp., Lemma 3), we have proven that the arrival rates of stable
general (respectively, bipartite) stochastic matching models are given as explicit
functions of the matching rates of the various edges - see (12) (resp., (15)). Specifi-
cally, recalling (4), both systems of equations (12) and (15) can be rewritten under
the generic form

(S) µ̄(i) =
∑
j∈E(i)

αi,j , i ∈ V,

where the weights αi,j , i, j ∈ E , represent the matching rates in the various cases.
These weights depend on the matching policy, and are not unique in general. How-
ever, for various (multi-) graph geometries, they are uniquely defined (and thereby,
independent of of the matching policy), as we will show hereafter.
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In what follows, for a rooted tree G = (V, E , r) of root r having at least two
nodes, we denote by d := d(G), the depth of G. For any ` ∈ J1, dK, we let n` be the
number of elements of generation `, and label by `1, ..., `n` , the nodes of generation
` in an arbitrary manner. In that way, nodes d1, ..., dnd are the leaves of G. For
any ` ∈ J1, dK and i ∈ J1, n`K, we denote by f(`i), the father of node `i. Notice that
by construction, we have f(1i) = r for all i ∈ J1, n1K. Last, for any ` ∈ J1, dK and
i ∈ J1, n`K, we denote by S (`i) and D(`i), the sets of sons and of descendants of
`i, respectively. Notice that the above sets are empty if, and only if ` = d, i.e. `i is
a leaf.

Lemma 5. Let G = (V, E , r) be a rooted tree having at least two nodes, and µ̄ ∈
M(G). Then, the system of equations

(S∗) µ̄(i) =
∑
j∈E(i)

αi,j , i ∈ V \ {r}

admits the following unique solution on W(G):

(29) α`i,f(`i) = µ̄(`i) +
∑

kj∈D(`i)

(−1)k−`µ̄(kj), ` ∈ J1, dK, i ∈ J1, n`K,

where sums over empty sets are understood as null.

Proof. Regarding the leaves of G, it is immediate that we have

αdi,f(di) = µ̄(di), i ∈ J1, n`K.

The result then follows from a straightforward induction, by observing that (S∗) is
equivalent for such G, to

α`i,f(`i) = µ̄(`i)−
∑

(`+1)j∈S (`i)

α`i,(`+1)j , ` ∈ J1, dK, i ∈ J1, n`K.

�

From this, we first deduce the following result,

Proposition 6. Let G = (V, E) be a tree having at least two nodes, and µ̄ ∈M(G).
Then, the system (S) admits a unique solution in W(G) if, and only if µ̄(V1) =
µ̄(V2) = 1

2 , where V1 ∪ V2 is the bipartition of V. Otherwise there is no solution to
(S).

Proof. Fix a root r, and let V1 and V2 be respectively given as the sets of nodes at
even and odd generations, respectively. For such G, the system (S) is equivalent to
(S∗) together with the relation

µ̄(r) =

n1∑
i=1

αr,1i .

By connectedness, all nodes of G are descendants of the sons of r. Therefore, from
(29) we have that

µ̄(r) =

n1∑
i=1

µ̄(1i) +
∑

kj∈D(1i)

(−1)k−`µ̄(kj)


=

d∑
k=1;
k odd

nk∑
i=1

µ̄(ki)−
d∑

k=1;
k even

nk∑
i=1

µ̄(ki),(30)

which amounts to µ̄(V1) = µ̄(V2). Therefore, the system (S) admits the unique
solution given by (29) if µ̄(V1) = µ̄(V2), and no solution if not. �
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Proposition 7. Let G = (V, E) be a cycle, and µ̄ ∈M(G). Then,

(1) If G is of odd length, there exists a unique solution to (S).
(2) If G is of even length, and we denote by V1 ∪ V2 the bipartition of V, then

there are infinitely many solutions if µ̄(V1) = µ̄(V2) = 1
2 ; otherwise there is

no solution.

Proof. Let n be the size of the graph, and index the nodes of G by 1, ..., n. The

linear system (S) of unknown ~α =
(
α1,2 α2,3 α3,4 · · · αn−1,n αn,1

)′
can be written

under the form

A~α = ~µ,

for ~µ =
(
µ̄(1) µ̄(2) · · · µ̄(n)

)′
and A =



1 0 · · · 0 1
1 1 0 · · · 0
0 1 1 0 · · · 0
0 0 1 1 0 · · · 0

...
. . .

. . .
. . .

0 0 . . . 0 1 1


.

An immediate computation shows that detA = 1 + (−1)n+1. Thus the system (S)
admits the unique solution A−1~µ if n is odd. If n is even, then it is easily seen that
A has rank n− 1, and that the system is compatible if and only if

n∑
i=1;
i odd

µ̄(i) =

n∑
i=1;
i even

µ̄(i) =
1

2
,

and in that case there are infinitely many solutions. �

We deduce the following result,

Proposition 8. Let G = (V, E) be a graph consisting of a tree having at least two
nodes, and an additional edge, and let µ̄ ∈M(G). Then,

(1) If G is a non-bipartite graph (i.e. the additional edge forms a cycle of odd
length), then the system (S) admits a unique solution.

(2) If G is a bipartite graph (i.e. the additional edge forms a cycle of even
length), the system (S) admits infinitely many solutions in W(G) if, and
only if µ̄(V1) = µ̄(V2) = 1

2 . Otherwise, there is no solution to (S).
(3) If G is the additional edge is a self-loop, the the system (S) admits a unique

solution.

Proof. Adding an edge that is no self-loop to the tree G, generates a cycle C . If
the cycle is of even size, then the resulting graph is bipartite, while if the cycle is
of odd size we obtain a non-bipartite graph.

(1) First suppose that the resulting graph G is non-bipartite, and is not reduced
to an odd cycle (otherwise, assertion (1) of Proposition 7 applies). Then
G can be seen as the odd cycle C , to which are appended one or several
disconnected rooted trees. More precisely, denote by N the (odd) number
of nodes of C , and by r1, ..., rp the nodes of C that are of degree more
than then two, and by s1, ..., sN−p the nodes of C having degree 2, if any.
Then, for any l ∈ J1, pK, to the node rl is appended a rooted tree T l of
root rl. Lemma 5 yields that the weights associated to all edges of T l are
unique. In particular, denoting by al and bl the two neighbors of rl in C ,
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(29) implies that

(31) µ̄(rl) = αrl,al + αrl,bl +

dl∑
k=1;
k odd

nlk∑
i=1

µ̄(kli)−
dl∑
k=1;
k even

nlk∑
i=1

µ̄(kli),

using the same notations as in (30) for T l. This is true for any l ∈ J1, pK, so
the restriction to C of any solution α to (S) solves in particular the system

(S∗∗) µ̆(`) =
∑

j∈E(`)∩C

αl,j , ` ∈ C ,

where
µ̆(rl) = µ̄(rl)−

dl∑
k=1;
k odd

nlk∑
i=1

µ̄(kli) +
dl∑
k=1;
k even

nlk∑
i=1

µ̄(kli), l ∈ J1, pK,

µ̆(sl) = µ̄(sl), l ∈ J1, N − pK.

From (1) of Proposition 7, after normalizing µ̆ the solution to (S∗∗) is
unique, and so is the solution to (S) in view of the uniqueness of the solution
to (S∗) on each tree T l, l ∈ J1, pK, from Lemma 5.

(2) Suppose that the resulting graph G is bipartite, and is not reduced to an
even cycle (otherwise assertion (2) of Proposition 7 applies). Applying the
same construction as in case (1), we obtain again (31) for all l. Assertion
(2) of Proposition 7 shows that the resulting system (S∗∗) on C admits no
solution unless µ̆(V1) = µ̆(V2). But this is equivalent to µ̄(V1) = µ̄(V2), as
in each rooted tree T l of G, the nodes of the even generations belong to
the same subset of the bipartition as rl. So under that condition, (S∗∗) and
thereby (S), admit infinitely many solutions.

(3) If the additional edge is a self-loop on node r, then G can be seen as a
rooted tree of root r. Then, it is immediate in view of Lemma 5 that (S)
admits a unique solution, that from (29), is given by
α`i,f(`i) = µ̄(`i) +

∑
kj∈D(`i)

(−1)k−`µ̄(kj), ` ∈ J1, dK, i ∈ J1, n`K,

αr,r = µ̄(r)−
d∑

k=1;
k odd

nk∑
i=1

µ̄(ki) +
d∑

k=1;
k even

nk∑
i=1

µ̄(ki),

which completes the proof.

�

Let us now come back to the representation of solutions of (S) as asymptotic
matching rates for corresponding matching models.

Definition 4. Let G = (V, E) be a multigraph (resp., a bipartite graph). We say
that the matching rates are policy-invariant for G, if for any µ ∈ N (V) (resp., any

µ ∈ Nb(V)), the asymptotic matching rates ΘΦ,µ̄ (resp., ΘΦ,µ̃
b ) in the matching

model (G, µ̄,Φ) (resp., (G, µ̃,Φ)) do not depend on Φ as long as µ̄ ∈ Stab(G,Φ)
(resp., µ̃ ∈ Stabb(G,Φ)).

Recalling equations (12) and (15), and gathering Propositions 6, 7 and 8, we
readily obtain the following result,

Theorem 4. Matching rates are policy-invariant for G in the following cases:

• G is an odd cycle,
• G is a tree,
• G a tree with an additional edge forming an odd cycle,



22 BEGEOT, MARCOVICI, MOYAL

• G is a tree with an additional self-loop.
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