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Abstract: Spectral singularities at non-zero frequencies play an impor-
tant role in investigating cyclic or seasonal time series. The publication [2]
introduced the generalized filtered method-of-moments approach to simul-
taneously estimate singularity location and long-memory parameters. This
paper continues studies of these simultaneous estimators. A wide class of
Gegenbauer-type semi-parametric models is considered. Asymptotic nor-
mality of several statistics of the cyclic and long-memory parameters is
proved. New adjusted estimates are proposed and investigated. The theo-
retical findings are illustrated by numerical results. The methodology in-
cludes wavelet transformations as a particular case.
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1. Introduction

Time series with cyclic long-memory behaviours attracted increasing atten-
tion in recent years, see [2, 3, 4, 5, 15] and the references therein. It was
due to importance of such time series in finance, hydrology, cosmology, in-
ternet modelling, and other applications to data with non-seasonal cyclicities,
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see [3, 4, 6, 13, 18, 32]. At the same time, various statistics of cyclic long-
memory processes have complex asymptotic behaviour that has not yet been
fully understood and investigated, see [21, 23, 24, 28].

To link characterizations of the long-memory phenomena in temporal and
spectral domains researchers usually employ Abelian and Tauberian theorems.
These results establish connections between asymptotics of covariance func-
tions at the infinity and singularities of the corresponding spectral densities,
see [24, 25]. The most frequent definition of long-memory in the literature is a
hyperbolic-type decay of a non-integrable covariance function. While this classi-
cal long-memory dependence is often related to unboundedness of spectral den-
sities at the origin, spectral singularities at nonzero frequencies can also result
in hyperbolic-type oscillating non-integrable covariance functions. Such spectral
representations can be used to simultaneously model cyclicity and long-memory.

Cyclical long-memory time series are much more difficult to investigate and
there were relatively few publications on this topic compared to classical models
with the only singularity at the origin. Several least squares and likelihood-based
approaches have been proposed to estimate parameters of singularity poles,
see [3, 4, 5, 9, 12, 17, 19, 20, 30]. Unfortunately, for the majority of these ap-
proaches incorrect specifications of a statistical model can result in inconsistent
estimates of the parameters. The empirical studies in [11, 32] demonstrated
various issues of the traditional estimators and that wavelet-based approach
can give results that are equivalent to ordinary least squares and maximum
likelihood estimates under the assumption of knowing the explicit form of the
spectrum. However, for the cases when the model is not fully specified, wavelets
can provide better estimates.

To avoid repetitions, we refer the readers to very detailed motivation, discus-
sion and various examples in [2].

This paper investigates time series which spectral density f(·) has the follow-
ing semiparametric form

f(λ) =
h(λ)

|λ2 − s20|
2α , λ ∈ R.

The parameter s0 determines cyclic behaviour while α is a long-memory
parameter. For example, the Gegenbauer model [17] has a spectral density of
this form.

Figure 1 shows a realization of such time series together with its estimated
spectral density and covariance function. In this example a spectral density
with a sharp spike at its singularity location was chosen. It clear demonstrates
that the spectral density has a singularity at a non-zero frequency and the
corresponding covariance function indicates some cyclic behaviour. The wavelet
coefficients of this time series are shown in the fourth subplot. Unfortunately,
contrary to perfect cyclic signals or spectral densities with singularity at the
origin, it is more difficult to use the wavelet approach for estimating cyclicity
and long-memory parameters simultaneously. An even more challenging problem
is a development of statistical inference for these parameters.
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Fig 1. Cyclic long-memory time series

The publication [2] proposed a new methodology for simultaneous estima-
tion of cyclic and long-memory parameters. It used filter transformations of
functional time series. The approach included wavelet transformations as a par-
ticular case. The strong consistency of the proposed estimators was proved.

This paper further develops the approach from [2]. Now we obtain asymp-
totic normality of the proposed estimators. It requires very careful investiga-
tions of quadratic functionals of filter coefficients and their increments. Obtain-
ing asymptotic properties of wavelet-based statistics is a difficult problem and
there are only few general results about their asymptotic normality. The devel-
oped methodology and the obtained results can also find applications for other
wavelet-based statistics.

In addition, for the case when empirical values of the statistics are outside
the feasible region, we propose new adjusted estimators and investigate their
properties. It is shown that these estimators have same asymptotic distributions
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as the corresponding ones in [2], but are computationally simpler.
The article is organized as follows. Section 2 gives basic definitions and in-

troduces a semi-parametric model and filter transforms studied in this paper.
Various asymptotic properties of quadratic functionals of filter transforms are
derived in Section 3. Section 4 proves asymptotic normality of two auxiliary
statistics of the semiparametric model, which are based on quadratic function-
als of filter transforms and their increments. Section 5 proposes and investigates
adjusted simultaneous estimators of the location and long-memory parameters.
Numerical studies to support the theoretical findings are presented in Section 6.
Short conclusions and future research directions are given in Section 7.

All computations, plotting and simulations in this article were performed us-
ing the software R version 4.0.3 and Maple 17, Maplesoft. In particular, the
R packages waveslim [33] and MassSpecWavelet [16] were used to simu-
late realizations of cyclic long-memory processes and compute their wavelet
transforms in the numerical examples. A reproducible version of the code in
this paper is available in the folder “Research materials” from the website
https://sites.google.com/site/olenkoandriy/.

2. Definitions and assumptions

This section introduces classes of functional time series and their filter trans-
forms that are used in the paper. The notations are consistent with ones in [2],
where the authors proposed simultaneous filter estimators of parameters of cyclic
long-memory processes.

In the following {aj}j∈N denotes an arbitrary unboundedly strictly monotone
increasing sequence of positive real numbers. {mj}j∈N is a sequence of positive
integers, such that limj→+∞mj = +∞. {bjk}(j,k)∈N×Z stands for an infinite
array of real numbers.

The symbols
a.s.−−→ and

d−→ will be used for almost sure convergence and con-
vergence in distribution respectively.

Let X(t), t ∈ R, be a measurable mean-square continuous real-valued sta-
tionary zero-mean Gaussian stochastic process on a probability space (Ω,F , P ),
with the covariance function

B(r) := Cov(X(t), X(t′)) =

∫
R
eiu(t−t

′)F (du), t, t′ ∈ R,

where r = t− t′ and F (·) is a non-negative finite measure on R.

Definition 1. The random process X(t), t ∈ R, possesses an absolutely contin-
uous spectrum if there exists a non-negative function f(·) ∈ L1(R) such that

F (u) =

∫ u

−∞
f(λ)dλ, u ∈ R.

The function f(·) is called the spectral density of the process X(t).

https://sites.google.com/site/olenkoandriy/
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The process X(t), t ∈ R, with an absolutely continuous spectrum has the
following isonormal spectral representation

X(t) =

∫
R
eitλ
√
f(λ)dW (λ),

where W (·) is a complex-valued Gaussian orthogonal random measure on R.
For a real-valued process X(t) the function f(·) is even and the random

measureW (·) satisfies the conditionW ([λ1, λ2]) =W ([−λ2,−λ1]) for any λ2 >
λ1 > 0, see [29, §6].

The following assumption in the spectral domain introduces the semipara-
metric model investigated in this paper.

Assumption 1. Let the spectral density f(·) of X(t) admit the following rep-
resentation

f(λ) =
h(λ)

|λ2 − s20|2α
, λ ∈ R,

where s0 > 1, α ∈ (0, 1/2) and h(·) is an even non-negative bounded function
that is four times continuously differentiable. Its derivatives of order i satisfy
h(i)(0) = 0, i = 1, 2, 3, 4. Also, h(0) = 1, h(·) > 0 in some neighborhood of
λ = ±s0, and for all ε > 0 it holds∫

R

h(λ)

(1 + |λ|)ε
dλ <∞.

Stochastic processes with spectral densities satisfying Assumption 1 exhibit
cyclic long memory. The boundedness of h(·) guarantees that their spectral
densities have singularities only at the locations ±s0. Covariance functions of
such processes are unintegrable and have hyperbolically decaying oscillations
when α ∈ (0, 1/2) , see [4]. For example, the Gegenbauer random processes
satisfy Assumption 1, see [17].

Remark 1. This paper investigates cyclic long-memory functional time series
with spectral singularities at nonzero frequencies s0. Differences between the
cases of spectral singularities at the origin and other locations were discussed in
detail in [4]. For spectral densities satisfying Assumption 1, even the range of
admissible values of α depends on s0. Namely, for the case of s0 > 0 to get an
integrable spectral density the parameter αmust be in the interval (0, 1/2), while
for s0 = 0 its range is (0, 1/4). To study cyclic behaviour, values of s0 separated
from zero are considered. Without loss of generality, it can be assumed that
s0 > 1. Indeed, if a time series exhibits periodic behaviour with a period T,
then the corresponding frequency s0 = 1/T. By changing the time unit, the
parameter s0 can be made greater than 1.

For an arbitrary ε > 0, after minor straightforward adjustments, the obtained
theoretical results and their proofs are also valid for the case of s0 > ε.

Real-valued functions ψ(t) ∈ L1(R), t ∈ R, are used to introduce filter trans-

forms of the process X(t). The Fourier transform ψ̂ is defined, for each λ ∈ R, as
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ψ̂(λ) =
∫
R e

−iλtψ(t)dt. It follows from properties of ψ(·) that ψ̂(·) is a bounded
even function.

Assumption 2. Let supp ψ̂ ⊂ [−A,A], A > 0, and ψ̂(·) is of bounded variation
on [−A,A].

This assumption is technical and can be replaced by a sufficiently fast de-
cay rate of ψ̂(·) at infinity. For example, the simulation studies in Example 3
demonstrated that the Gaussian-type decay rate seems sufficient for the validity
of the obtained results.

Definition 2. The filter transform of the process X(t) is the array of centred
real-valued Gaussian random variables {δjk}(j,k)∈N×Z defined as

δjk :=
1

√
aj

∫
R
ψ

(
t− bjk
aj

)
X(t)dt =

√
aj

∫
R
eibjkξ

ψ̂(ajξ)
√
h(ξ)

|ξ2 − s20|α
dW (ξ). (1)

Definition 2 provides equivalent expressions of the filter transform in the
spectral and time domains.

Remark 2. The paper considers the classical model of long-range dependence,
which is most widely used in the literature. It is stated in terms of asymptotics
of covariance or spectral functions. Therefore, it is mainly applied to Gaussian
processes. As asymptotic properties of the proposed statistics are based on the
integral functionals δjk of the process, the assumption of Gaussianity is crucial
in the proofs. It would be interesting to investigate modifications of the results
for other classes of stochastic processes, for example, for the Hermite classes,
which are subordinated to the Gaussian one. If it is possible, in the general case
one can expect non-central limit theorems.

It is easy to see that

Var(δjk) = aj

∫
R

∣∣ψ̂(ajξ)∣∣2h(ξ)
|ξ2 − s20|2α

dξ. (2)

To guarantee that at each level j ∈ N the sequence {bjk}k∈Z does not have
concentration points and covers all spectral range the following assumption is
rather standard in the literature.

Assumption 3. For all j ∈ N and for every (k, l) ∈ Z2 it holds

|bjk − bjl| ≥ γj |k − l|, (3)

where {γj}j∈N is a sequence of positive real numbers.

To get exact asymptotic behaviours of the considered statistics few versions
of this assumption will be more precisely specified later.

A very detailed motivation, discussion, and various particular examples, that
include wavelet transforms and Gegenbauer processes as special important cases,
can be found in [2].



Ayache et al./CLT for cyclic long-memory processes 7

3. Preliminary results

This section derives some properties of the filter transforms and their variances
that will be used in the following sections to obtain the CLT for simultaneous
estimators of cyclic long-memory parameters.

Let

δ
(2,mj)
j :=

mj∑
k=1

δ2jk, j ∈ N. (4)

Theorem 1. Assume that

lim
j→+∞

aj ln(mj)

γjm
1/2
j

= 0. (5)

Then, when j → +∞, the random variables

Yj :=
δ
(2,mj)
j − E(δ(2,mj)

j )√
Var(δ

(2,mj)
j )

(6)

converge in distribution to a standard Gaussian random variable.

To derive Theorem 1 we will use the following three lemmas. The first lemma
is obtained by applying the Taylor-Lagrange formula, the second one is a rather
known result and the third statement was proved in [2].

Let the function Iζ(·), ζ ∈ R, be defined for x ∈
[
− (2A)−1, (2A)−1

]
as

Iζ(x) :=
∫
R
eiζη

|ψ̂(η)|2h(xη)(
s20 − x2η2

)2α dη. (7)

Lemma 1. If Assumptions 1 and 2 hold true, then Iζ(x) is four times contin-
uously differentiable with respect to x, and there is a finite constant c1 > 0 (not
depending on ζ and x) such that, for all ζ ∈ R and |x| ≤ (2A)−1, it holds∣∣∣∣Iζ(x)−s−4α

0

∫
R
eiζη|ψ̂(η)|2 dη−2αs−4α−2

0

∫
R
eiζηη2|ψ̂(η)|2 dη ·x2

∣∣∣∣ ≤ c1 x
4. (8)

Proof of Lemma 1. Note that Iζ(·) is a real-valued function since ψ̂(·) and h(·)
are even real-valued functions. It follows from (7), Assumptions 1 and 2 that

Iζ(x) =
∫ A

−A
eiζη

|ψ̂(η)|2h(xη)(
s20 − x2η2

)2α dη =

∫ A

−A
eiζη|ψ̂(η)|2f(ηx) dη.

To use the Taylor formula for Iζ(x) when x ∈
[
−(2A)−1, (2A)−1

]
one notes

that x ∈
[
−(2A)−1, (2A)−1

]
and η ∈ [−A,A] imply |ηx| ≤ 1/2 and s20 − η2x2 >

3/4 since s0 > 1. As by Assumption 1 the function h(·) is four times contin-
uously differentiable, hence f(·) has four continuous derivatives with respect
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to x on
[
−(2A)−1, (2A)−1

]
for any fixed η in [−A,A]. To prove that Iζ(·) is

four times continuously differentiable, it is enough to show that the correspond-
ing integrand and its first four derivatives with respect to x are dominated by
integrable functions that do not depend on x.

First, for the integrand in (7) we get∣∣∣eiζη|ψ̂(η)|2f(ηx)∣∣∣ ≤ (4

3

)2α

|ψ̂(η)|2 sup
y∈[−1/2,1/2]

|h(y)|,

where the right hand side is bounded and therefore integrable on [−A,A].
The nth derivative of the function f(ηx) with respect to x satisfies∣∣∣∣ ∂n∂xn f(ηx)

∣∣∣∣ =
∣∣∣∣∣
n∑
k=0

(
n

k

)
ηn−k h(n−k)(xη)

∂k

∂xk
(
(s20 − η2x2)−2α

)∣∣∣∣∣
≤

n∑
k=0

(
n

k

)
An−k sup

y∈[−1/2,1/2]

∣∣h(n−k)(y)∣∣ ∣∣∣∣ ∂k∂xk ((s20 − η2x2)−2α
)∣∣∣∣ .

For k in {1, 2, 3, 4} we provide very simple convenient bounds for the derivatives
in the last expression, which will be useful later:∣∣∣∣ ∂∂x ((s20 − η2x2)−2α

)∣∣∣∣ = ∣∣∣∣ 4αη2x

(s20 − η2x2)2α+1

∣∣∣∣ ≤ 4α
A

2

(
4

3

)2α+1

≤ 2A, (9)

∣∣∣∣ ∂2∂x2 ((s20 − η2x2)−2α
)∣∣∣∣ = ∣∣∣∣4αη2 (4α+ 1)η2x2 + s20

(s20 − η2x2)2α+2

∣∣∣∣
≤ 4αA2

(
4

3

)2α+2(
4α+ 1

4
+ s20

)
≤ 10A2s20, (10)∣∣∣∣ ∂3∂x3 ((s20 − η2x2)−2α

)∣∣∣∣ = ∣∣∣∣8α(2α+ 1)η4x
(4α+ 1)η2x2 + 3s20
(s20 − η2x2)2α+3

∣∣∣∣ ≤ 4α(2α+1)A3

×
(
4

3

)2α+3(
4α+ 1

4
+ 3s20

)
≤ 4A3

(
4

3

)4(
3

4
+ 3s20

)
≤ 48A3s20, (11)∣∣∣∣ ∂4∂x4 ((s20 − η2x2)−2α

)∣∣∣∣ = ∣∣∣∣ (16α(α+ 1) + 3)η4x4 + 6(4α+ 3)s20η
2x2 + 3s40

(s20 − η2x2)2α+4

×8α(2α+1)η4

∣∣∣∣∣ ≤ 8α(2α+1)A4

(
4

3

)2α+4(
16α(α+ 1) + 3

16
+

6(4α+ 3)

4
s20 + 3s40

)

≤ 8A4

(
4

3

)5(
15

16
+

15

2
s20 + 3s40

)
≤ 400A4s40. (12)

Therefore the function in the integral defining Iζ(·) and its first four deriva-

tives are dominated by an integrable function (|ψ̂|2 multiplied by a large enough



Ayache et al./CLT for cyclic long-memory processes 9

constant). Thus Iζ(·) is C4
([
−(2A)−1, (2A)−1

])
and its derivatives can be com-

puted by differentiation under the integral sign. For n in {1, 2, 3, 4} it holds

dn

dxn
Iζ(x) =

n∑
k=0

(
n

k

)∫ A

−A
eiζη|ψ̂(η)|2 ηn−k h(n−k)(xη) ∂k

∂xk
(
(s20 − η2x2)−2α

)
dη

(13)
and the Taylor-Lagrange expansion provides∣∣∣∣Iζ(x)−Iζ(0)−I ′

ζ(0)x−I
′′

ζ (0)
x2

2!
−I(3)

ζ (0)
x3

3!

∣∣∣∣ ≤ sup
y∈[−(2A)−1,(2A)−1]

|I(4)
ζ (y)| x4

4!
,

(14)
where

Iζ(0) =
1

s4α0

∫ A

−A
eiζη|ψ̂(η)|2 dη,

since h(0) = 1.
By Assumptions 1 the derivatives h(l)(0) = 0 for l ∈ {1, 2, 3, 4}, thus

dn

dxn
Iζ(0) =

∫ A

−A
eiζη|ψ̂(η)|2 ∂n

∂xn
(
(s20 − η2x2)−2α

)∣∣∣∣∣
x=0

dη.

By (9) and (11) for n = 1 and n = 3 the derivatives ∂n

∂xn

(
(s20 − η2x2)−2α

)
vanish

at x = 0. Moreover, the expression for the second derivative in the estimate (10)
gives

d2

dx2
Iζ(0) =

4α

s4α+2
0

∫ A

−A
eiζη|ψ̂(η)|2η2 dη.

It follows from the estimates (9)-(12) that for each k = 0, ..., 4 the deriva-

tive | ∂
k

∂xk (s
2
0 − η2x2)−2α| is bounded by 400Aks40. Hence, by (13), for all x ∈

[−(2A)−1, (2A)−1]∣∣∣∣ d4dx4 Iζ(x)
∣∣∣∣ ≤ sup

y∈[−1/2,1/2]
n∈{0,...,4}

|h(n)(y)|
4∑
k=0

(
4

k

)∫ A

−A
|ψ̂(η)|2An−k(400Aks40) dη

≤ 6400 s40A
4 sup
y∈[−1/2,1/2]
n∈{0,...,4}

|h(n)(y)|
∫ A

−A
|ψ̂(η)|2 dη =: c2.

Finally, the estimate (14) becomes∣∣∣∣Iζ(x)− 1

s4α0

∫ A

−A
eiζη|ψ̂(η)|2 dη − 4α

s4α+2
0

∫ A

−A
eiζη|ψ̂(η)|2 η2 dη · x

2

2!

∣∣∣∣ ≤ c2
4!

· x4,

which completes the proof.
The following lemma is an immediate corollary of the Gershgorin circle the-

orem.
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Lemma 2. Let U = (uij)1≤i,j≤n be a square matrix of order n with complex
elements. If ρ(U) is the spectral radius of U , that is

ρ(U) := max
{
|λ| : λ is an eigenvalue of U

}
,

then

ρ(U) ≤ min
{

max
1≤i≤n

n∑
j=1

|uij | , max
1≤j≤n

n∑
i=1

|uij |
}
.

Lemma 3. [2] Let Assumptions 1 and 2 hold true. Then there exists a finite
constant c3 such that, for every j ∈ N such that aj ≥ 2A and for all (k, l) ∈ Z2,
one has ∣∣Cov(δjk, δjl)∣∣ ≤ c3

(
1l{k=l} + 1l{k ̸=l} aj |bjk − bjl|−1

)
. (15)

Proof of Theorem 1. Note that δ
(2,mj)
j is the squared Euclidian norm of the

centred Gaussian vector δ⃗
(mj)
j := (δj1, . . . , δjmj ). Therefore, δ

(2,mj)
j has the

same distribution as
∑mj

k=1 λjk ε
2
jk, where λj1, . . . , λjmj

are the non-negative

eigenvalues of the covariance matrix of δ⃗
(mj)
j and εj1, . . . , εjmj

are independent
standard Gaussian random variables. Thus, using a version of the Lindeberg
condition (see for instance [14] or Lemma 2 in [22]), it turns out that for proving
the theorem it is enough to show that

lim
j→+∞

max1≤k≤mj λjk√
Var

(
δ
(2,mj)
j

) = 0. (16)

To derive (16) let us first prove that there is a positive constant c4 (not depend-
ing on j), such that for all large enough j,

Var(δ
(2,mj)
j ) ≥ c4mj . (17)

Using (2), (4) and the change of variable η = ajξ, one gets

Var(δ
(2,mj)
j ) =

mj∑
k=1

mj∑
l=1

Cov(δ2jk, δ
2
jl) = 2

mj∑
k=1

mj∑
l=1

Cov2(δjk, δjl) (18)

≥ 2

mj∑
k=1

Var2(δjk) = 2mj

(
aj

∫
R

∣∣ψ̂(ajξ)∣∣2h(ξ)
|ξ2 − s20|2α

dξ
)2

= 2mj

(∫
R

∣∣ψ̂(η)∣∣2h(a−1
j η)

|a−2
j η2 − s20|2α

dη
)2
. (19)

Moreover, it follows from (8) that

lim
j→+∞

∫
R

∣∣ψ̂(η)∣∣2h(a−1
j η)

|a−2
j η2 − s20|2α

dη = s−4α
0

∫
R

∣∣ψ̂(η)∣∣2 dη > 0. (20)



Ayache et al./CLT for cyclic long-memory processes 11

Then, (17) results from (20) and the lower bound on Var(δ
(2,mj)
j ) in (19).

Next, by Lemma 2 for all j ∈ N it holds

max
1≤k≤mj

λjk ≤ max
1≤k≤mj

mj∑
l=1

∣∣Cov(δjk, δjl)∣∣. (21)

Moreover, by (3) and (15), for each fixed large enough j and for every k ∈
{1, . . . ,mj}, one has

mj∑
l=1

∣∣Cov(δjk, δjl)∣∣ ≤ c3

(
1 + aj

mj∑
l=1, l ̸=k

|bjk − bjl|−1
)

≤ c3

(
1 +

aj
γj

mj∑
l=1, l ̸=k

|k − l|−1
)
≤ c3

(
1 +

2aj
γj

mj∑
l=1

l−1
)

≤ c3

(
1 +

2aj
γj

+
2aj
γj

∫ mj

1

y−1 dy
)
≤ c3

(
1 +

2aj
(
1 + ln(mj)

)
γj

)
. (22)

Recall that the constant c3 does not depend on (j, k, l). Finally, putting together
(5), (17), (21), (22), and the fact that limj→+∞mj = +∞, one gets (16).

To obtain the exact asymptotic variance of δ
(2,mj)
j , the next Assumption spec-

ifies asymptotic behaviours of the increments of the sequences {bjk}(j,k)∈N×Z.

Assumption 3’. For all j ∈ N and for every (k, l) ∈ Z2 it holds

bjk − bjl = γj(k − l),

where {γj}j∈N is a sequence of positive real numbers such that

lim
j→+∞

aj
γj

= c ∈ (0,+∞) and lim
j→+∞

m2
j

(
γj
aj

− 1

c

)
= 0.

Remark 3. For example, Assumption 3’ is satisfied for the sequence {γj}j∈N
with γj = aj for all j ≥ j0 ∈ N.

Lemma 4. Let Assumption 3’ hold true and

lim
j→+∞

mja
−8
j = 0. (23)

Then, the sequence of positive real numbers
{
Var(δ

(2,mj)
j )/mj

}
j∈N converges to

a finite and strictly positive limit when j → +∞. More precisely,

lim
j→+∞

Var(δ
(2,mj)
j )

mj
= V1 := 4cπs−8α

0

∫ cπ

−cπ

∣∣∣∑
n∈Z

∣∣ψ̂(η + 2ncπ)
∣∣2∣∣∣2 dη. (24)
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Proof of Lemma 4. Using (1), (7), (18), Assumption 3’, and the change of
variable η = ajξ one obtains

Var(δ
(2,mj)
j )

mj
=

2

mj

mj∑
k=1

mj∑
l=1

I2
γj(k−l)/aj (a

−1
j ), j ∈ N,

where I2
ζ (·) is the squared function Iζ(·) defined in (7).

Let us denote by Fj(·) a bounded function defined on [−πaj/γj , πaj/γj ] as

Fj(η) :=
∑
n∈Z

∣∣ψ̂(η + 2nπaj/γj)
∣∣2.

Let {µj(k)}k∈Z be the sequence of the Fourier coefficients of Fj . These coef-

ficients are real-valued since ψ̂(·) is even. Using the fact that η 7→ eiγjkη/aj

is, for each fixed k ∈ Z, a 2πaj/γj-periodic function of η and the dominated
convergence theorem, one gets

µj(k) :=

∫ πaj/γj

−πaj/γj
eiγjkη/aj

(∑
n∈Z

∣∣ψ̂(η+2nπaj/γj)
∣∣2) dη =

∫
R
eiγjkη/aj

∣∣ψ̂(η)∣∣2 dη.
(25)

Now, let us show that there is a finite constant c4 such that, for all j large
enough, one has

m
−1/2
j

∣∣∣∣( mj∑
k=1

mj∑
l=1

I2
γj(k−l)/aj (a

−1
j )
)1/2

−
( mj∑
k=1

mj∑
l=1

s−8α
0 µ2

j (k − l)
)1/2∣∣∣∣

≤ c4

(
mja

−8
j + a−4

j

)1/2
. (26)

By the triangle inequality it holds∣∣∣∣( mj∑
k=1

mj∑
l=1

I2
γj(k−l)/aj (a

−1
j )
)1/2

−
( mj∑
k=1

mj∑
l=1

s−8α
0 µ2

j (k − l)
)1/2∣∣∣∣

≤
( mj∑
k=1

mj∑
l=1

∣∣Iγj(k−l)/aj (a−1
j )− s−4α

0 µj(k − l)
∣∣2)1/2. (27)

Next, observe that it follows from (8), (25) and the inequalities 0 < α < 1/2
and s0 > 1, that for all j large enough and for all (k, l) ∈ Z2 it holds∣∣∣∣Iγj(k−l)/aj (a−1

j )− µj(k − l)

s4α0

∣∣∣∣2 ≤

(∣∣∣∣Iγj(k−l)/aj (a−1
j )−

∫
R e

iγj(k−l)η/aj |ψ̂(η)|2 dη
s4α0

− 2α

s4α−2
0

∫
R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη · a−2

j

∣∣∣∣+ ∣∣∣ ∫
R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη

∣∣∣a−2
j

)2
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≤ 2

∣∣∣∣Iγj(k−l)/aj (a−1
j )− s−4α

0

∫
R
eiγj(k−l)η/aj |ψ̂(η)|2 dη − 2αs−4α−2

0 a−2
j

×
∫
R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη

∣∣∣∣2 + 2
∣∣∣ ∫

R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη

∣∣∣2a−4
j

≤ 2c21a
−8
j + 2

∣∣∣ ∫
R
eiγj(k−l)η/ajη2|ψ̂(η)|2 dη

∣∣∣2a−4
j , (28)

where c1 is the constant from (8).
By (27) and (28) to derive (26) it is sufficient to show that∑
k∈Z

∣∣∣ ∫
R
eiγjkη/ajη2|ψ̂(η)|2 dη

∣∣∣2 =
∑
k∈Z

∣∣∣ ∫ πaj/γj

−πaj/γj
eiγjkη/aj

∑
n∈Z

(η + 2nπaj/γj)
2

×
∣∣ψ̂(η + 2nπaj/γj)

∣∣2 dη∣∣∣2 < +∞.

This inequality holds by Plancherel’s identity as
{∫

R e
iγjkη/ajη2|ψ̂(η)|2 dη

}
k∈Z

is the sequence of the Fourier coefficients of the bounded on [−πaj/γj , πaj/γj ]
function

∑
n∈Z(η + 2nπaj/γj)

2
∣∣ψ̂(η + 2nπaj/γj)

∣∣2.
Next, let us define F0(·) as

F0(η) :=
∑
n∈Z

∣∣ψ̂(η + 2ncπ)
∣∣2, η ∈ [−cπ, cπ], (29)

where c is the same positive constant as in Assumption 3’. F0(·) is a bounded
function on [−cπ, cπ].

Let us now show that

lim
j→+∞

1

mj

mj∑
k=1

mj∑
l=1

µ2
j (k − l) = 2cπ

∫ cπ

−cπ
|F0(η)|2 dη. (30)

Note that

1

mj

mj∑
k=1

mj∑
l=1

µ2
j (k − l) =

1

mj

mj∑
k=1

k−1∑
q=k−mj

µ2
j (q)

and for the sequence {µ0(k)}k∈Z of the Fourier coefficients of F0 it holds

1

mj

∣∣∣∣∣∣
mj∑
k=1

k−1∑
q=k−mj

µ2
j (q)−

mj∑
k=1

k−1∑
q=k−mj

µ2
0(q)

∣∣∣∣∣∣ ≤ C

mj

mj∑
k=1

k−1∑
q=k−mj

|µj(q)− µ0(q)|

(31)

as µj(q) and µ0(q) are bounded by
∫
R
∣∣ψ̂(η)∣∣2 dη.

Using the expressions for Fourier coefficients and Assumption 2, we get that
for k = 1, ...,mj

k−1∑
q=k−mj

|µj(q)− µ0(q)| ≤
k−1∑

q=k−mj

∫ A

−A

∣∣∣∣ei γjqηaj − ei
qη
c

∣∣∣∣ ∣∣ψ̂(η)∣∣2 dη
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≤ C ′
k−1∑

q=k−mj

∫ A

−A

∣∣∣∣sin(qη2
(
γj
aj

− 1

c

))∣∣∣∣ dη
≤ C ′

mj∑
q=−mj

∫ A

−A

∣∣∣∣sin(qη2
(
γj
aj

− 1

c

))∣∣∣∣ dη.
Hence, it follows from the inequality | sin(x)| ≤ |x| and Assumption 3’ that

k−1∑
q=k−mj

|µj(q)− µ0(q)| ≤ C ′′m2
j

∣∣∣∣γjaj − 1

c

∣∣∣∣→ 0, j → +∞. (32)

Thus, by (31), (32) and the Cesàro mean convergence theorem one gets

1

mj

∣∣∣∣∣∣
mj∑
k=1

k−1∑
q=k−mj

µ2
j (q)−

mj∑
k=1

k−1∑
q=k−mj

µ2
0(q)

∣∣∣∣∣∣→ 0, j → 0. (33)

Now, by Plancherel’s identity

1

mj

mj∑
k=1

k−1∑
q=k−mj

µ2
0(q) =

+∞∑
q=−∞

µ2
0(q)−

1

mj

mj∑
k=1

+∞∑
q=k

µ2
0(q)−

1

mj

mj∑
k=1

k−mj−1∑
q=−∞

µ2
0(q)

= 2cπ

∫ cπ

−cπ
|F0(η)|2 dη −

1

mj

mj∑
k=1

+∞∑
q=k

µ2
0(q)−

1

mj

mj∑
k′=1

−k′∑
q=−∞

µ2
0(q). (34)

Next, observe that the sequence
{∑+∞

q=k µ
2
0(q)

}
k∈N converges to zero. Conse-

quently by the Cesàro mean convergence theorem one gets

lim
j→+∞

1

mj

mj∑
k=1

+∞∑
q=k

µ2
0(q) = 0. (35)

Using the same arguments, one obtains that

lim
j→+∞

1

mj

mj∑
k′=1

−k′∑
q=−∞

µ2
0(q) = 0. (36)

Putting together (33), (34), (35) and (36) it follows that (30) holds true.
Finally, combining (30) with (23), (26) and (29) one obtains (24).

4. Asymptotic normality of two auxiliary statistics

This section proves asymptotic normality of two auxiliary statistics of the semi-
parametric model defined by Assumption 1. They are two functions of the pa-
rameters s0 and α. The results will be used in the following sections to derive
and investigate simultaneous estimators of s0 and α.
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Let us set

δ
(2,mj)

j :=
δ
(2,mj)
j

mj
=

1

mj

mj∑
k=1

δ2jk, j ∈ N, (37)

where δjk is given in Definition 2.
The following theorem introduces the first statistics and derives its asymp-

totic normality.

Theorem 2. Let the array {bjk}(j,k)∈N×Z satisfy Assumption 3’ and

lim
j→+∞

mja
−4
j = 0. (38)

Then, when j goes to +∞, the random variables

Y j :=
√
mj

(
δ
(2,mj)

j − s−4α
0

∫
R
|ψ̂(η)|2 dη

)
(39)

converge in distribution to a centred Gaussian random variable Y with the vari-
ance Var(Y ) = V1 given by (24).

Remark 4. If the array {bjk}(j,k)∈N×Z satisfies Assumption 3’, then the con-
dition (5) of Theorem 1 holds true for any {mj}j∈N.

Proof of Theorem 2. By Theorem 1, when j goes to +∞, the random variables√
V1 Yj converge in distribution to a centred Gaussian random variable Y whose

variance equals V1.Moreover, by (6) and (37) the random variable
√
V1 Yj equals

√
V1 Yj =

√√√√V1 ×
mj

Var
(
δ
(2,mj)
j

) √
mj

(
δ
(2,mj)

j − E
(
δ
(2,mj)

j

))
,

and, by Lemma 4, it holds

lim
j→+∞

√√√√V1 ×
mj

Var
(
δ
(2,mj)
j

) = 1.

Thus, when j goes to +∞, the random variables
√
mj

(
δ
(2,mj)

j − E
(
δ
(2,mj)

j

))
converge in distribution to Y . To show that the sequence

{
Y j
}
j∈N shares the

same property, it is enough to prove that

lim
j→+∞

√
mj

(
E
(
δ
(2,mj)

j

)
− s−4α

0

∫
R
|ψ̂(η)|2 dη

)
= 0. (40)

It follows from from (2), (7) and (37) that E
(
δ
(2,mj)

j

)
= I0(a−1

j ). Thus, using

Lemma 1 and (38) one obtains (40).
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Let {Mj}j∈N be a sequence of positive integers defined as

Mj :=

[
mj

(a−2
j+1 − a−2

j+2)
2

]
, (41)

where [·] denotes the integer part function.

Remark 5. By (41) the sequence {Mj}j∈N satisfies

Mj =

[
mj(aj+1aj+2)

4

(a2j+2 − a2j+1)
2

]
≥
[
mja

4
j+1

]
→ +∞ .

Assumption 3*. For all j ∈ N and for every (k, l) ∈ Z2 it holds

bjk − bjl = γj(k − l),

where {γj}j∈N is a sequence of positive real numbers such that

lim
j→+∞

aj
γj

= c ∈ (0,+∞) and lim
j→+∞

m2
ja

8
j

(
γj
aj

− 1

c

)
= 0.

Remark 6. For example, Assumption 3* is satisfied if for all j ≥ j0 ∈ N it
holds γj = aj .

Now we introduce the second auxiliary statistics

∆δ
(2,Mj)

j+1 :=
δ
(2,Mj)

j+1 − δ
(2,Mj)

j+2

a−2
j+1 − a−2

j+2

via increments of δ
(2,Mj)

j and prove its asymptotic normality.

Theorem 3. Assume that the following conditions hold:

1. There exists B ∈ (0, A) such that ψ̂ vanishes on the interval [−B,B], that
is

supp ψ̂ ⊆
{
ξ ∈ R : B ≤ |ξ| ≤ A

}
. (42)

2. Assumption 3* holds true and for some j0 ∈ N the sequence {aj}j∈N
satisfies

aj+1

aj
≥ A

B
> 1 , for all j ≥ j0. (43)

3. The sequence {mj}j∈N satisfies (38).

Then, when j goes to +∞, the random variables

Zj :=
√
mj

(
∆δ

(2,Mj)

j+1 − 2αs−4α−2
0

∫
R
η2|ψ̂(η)|2 dη

)
(44)

converge in distribution to a centred Gaussian random variable Z with the vari-
ance Var(Z) = 2V1.
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Remark 7. Notice that (42) and (43) imply that supp ψ̂(aj ·)
⋂

supp ψ̂(aj+1·)
is a Lebesgue negligible set for all sufficiently large j ∈ N.

Proof of Theorem 3. First notice that it follows from (1) and Remark 7 that
Cov(δ(j+1)k, δ(j+2)l) = 0 for all (k, l) ∈ {1, . . . ,Mj}2 and sufficiently large j ∈ N,
which means that the centred Gaussian vectors δ⃗

(Mj)
j+1 := (δ(j+1)1, . . . , δ(j+1)Mj

)

and δ⃗
(Mj)
j+2 := (δ(j+2)1, . . . , δ(j+2)Mj

) are independent. Therefore, the two random
variables

δ
(2,Mj)
j+1 :=

Mj∑
k=1

δ2(j+1)k and δ
(2,Mj)
j+2 :=

Mj∑
k=1

δ2(j+2)k

are independent.
By Remark 5 the sequence {Mj}j∈N approaches +∞ when j increases. Hence,

by Assumption 3* condition (5) is satisfied ifmj is replaced byMj−1 or byMj−2.
Therefore, by Theorem 1, when j goes to +∞, the random variables

Z1,j :=
δ
(2,Mj)
j+1 − E(δ(2,Mj)

j+1 )√
Var

(
δ
(2,Mj)
j+1

)
converge in distribution to a standard Gaussian random variable, and that the
random variables

Z2,j :=
δ
(2,Mj)
j+2 − E(δ(2,Mj)

j+2 )√
Var

(
δ
(2,Mj)
j+2

)
share the same property.

Next, using (38), (41) and (43), one gets that

lim
j→+∞

Mj

a8j+1

= lim
j→+∞

 mj

a4j+1

· (aj+2/aj+1)
4(

(aj+2/aj+1)
2 − 1

)2
 = 0

as the function x4

(x2−1)2 is bounded from above for x ∈ [A/B,+∞). The same is

also true for Mj/a
8
j+2 since aj+2 ≥ aj+1.

Therefore, by Lemma 4

lim
j→+∞

√
Var

(
δ
(2,Mj)
j+1

)
√
Mj

=
√
V1 and lim

j→+∞

√
Var

(
δ
(2,Mj)
j+2

)
√
Mj

=
√
V1.

Thus, when j goes to +∞, the sequence

Z ′
1,j :=

√
Var

(
δ
(2,Mj)
j+1

)
√
Mj

Z1,j =
δ
(2,Mj)
j+1 − E(δ(2,Mj)

j+1 )√
Mj
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converges in distribution to a centred Gaussian random variable with variance
V1, and the sequence

Z ′
2,j :=

√
Var

(
δ
(2,Mj)
j+2

)
√
Mj

Z2,j =
δ
(2,Mj)
j+2 − E(δ(2,Mj)

j+2 )√
Mj

shares the same property. Therefore, using the fact that for sufficiently large j

these two sequences are independent and the equalities E(δ(2,Mj)
j+1 ) =MjI0(a−1

j+1)

and E(δ(2,Mj)
j+2 ) =MjI0(a−1

j+2), one gets that the random variables

Z ′
1,j − Z ′

2,j =
δ
(2,Mj)
j+1 − δ

(2,Mj)
j+2√

Mj

−
√
Mj

(
I0(a−1

j+1)− I0(a−1
j+2)

)
=

√
Mj

(
δ
(2,Mj)

j+1 − δ
(2,Mj)

j+2 −
(
I0(a−1

j+1)− I0(a−1
j+2)

))
converge in distribution to a centred Gaussian random variable with the variance
2V1, when j → +∞.

By (41) the sequence of

Z
′
j :=

√
mj

(
a−2
j+1 − a−2

j+2)
−1√

Mj

(
Z ′
1,j − Z ′

2,j

)
=

√
mj

(
δ
(2,Mj)

j+1 − δ
(2,Mj)

j+2

a−2
j+1 − a−2

j+2

−
I0(a−1

j+1)− I0(a−1
j+2)

a−2
j+1 − a−2

j+2

)
shares the same property.

Thus, it turns out that for deriving the theorem it is enough to show that

lim
j→+∞

√
mj

(
I0(a−1

j+1)− I0(a−1
j+2)

a−2
j+1 − a−2

j+2

− 2αs−4α−2
0

∫
R
η2|ψ̂(η)|2 dη

)
= 0. (45)

Using Lemma 1 one gets that∣∣∣∣I0(a−1
j+1)− I0(a−1

j+2)−
(
2αs−4α−2

0

∫
R
η2|ψ̂(η)|2 dη

)
(a−2
j+1 − a−2

j+2)

∣∣∣∣
≤
∣∣∣∣I0(a−1

j+1)− s−4α
0

∫
R
|ψ̂(η)|2 dη −

(
2αs−4α−2

0

∫
R
η2|ψ̂(η)|2 dη

)
a−2
j+1

∣∣∣∣
+

∣∣∣∣I0(a−1
j+2)− s−4α

0

∫
R
|ψ̂(η)|2 dη −

(
2αs−4α−2

0

∫
R
η2|ψ̂(η)|2 dη

)
a−2
j+2

∣∣∣∣
≤ c1

(
a−4
j+1 + a−4

j+2

)
,

where c1 is the constant in (8). Thus,

√
mj

∣∣∣∣I0(a−1
j+1)− I0(a−1

j+2)

a−2
j+1 − a−2

j+2

− 2αs−4α−2
0

∫
R
η2|ψ̂(η)|2 dη

∣∣∣∣ ≤ c1
√
mj(a

−4
j+1 + a−4

j+2)

a−2
j+1 − a−2

j+2

.

(46)
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Finally, combining (38), (43) and (46) one gets

√
mj(a

−4
j+1 + a−4

j+2)

a−2
j+1 − a−2

j+2

=

√
mj

a2j+1

· 1 + (aj+1/aj+2)
4

1− (aj+1/aj+2)
2 → 0, j → +∞,

which confirms (45) and finishes the proof.

Remark 8. For example, the sequence {aj}j∈N with aj = aj , j ∈ N, and
a ≥ A/B satisfies the assumptions of Theorem 3.

Note that under the conditions of Theorem 3, for sufficiently large j ∈ N,
the random variable Y j defined in (39) is independent of Zj defined by (44). It

is easy to see as the centred Gaussian random vectors δ⃗
(mj)
j := (δj1, . . . , δjmj

),

δ⃗
(Mj)
j+1 := (δ(j+1)1, . . . , δ(j+1)Mj

) and δ⃗
(Mj)
j+2 := (δ(j+2)1, . . . , δ(j+2)Mj

) are inde-
pendent. Therefore, the following result follows from Theorems 2 and 3.

Corollary 1. When j goes to +∞, the random vectors (Y j , Zj) converge in
distribution to the random vector (Y , Z) with the bivariate centred Gaussian

distribution N
((

0
0

)
,

(
V1 0
0 2V1

))
.

5. Asymptotic normality of adjusted estimators

In this section the axillary statistics δ
(2,mj)

j and ∆δ
(2,Mj)

j+1 are used for deriv-
ing adjusted statistics to estimate the parameters of interest. The central limit
theorem is proved for the proposed adjusted statistics.

By (39), (44) and Corollary 1, under the assumptions of Theorem 3 one has

√
mj

 δ
(2,mj)

j − s−4α
0

∫
R |ψ̂(η)|2 dη

∆δ
(2,Mj)

j+1 − 2αs−4α−2
0

∫
R η

2|ψ̂(η)|2 dη

 d−→N
(
0,

(
V1 0
0 2V1

))
, (47)

when j → +∞.
This two-dimensional central limit theorem gives the fluctuation rate for the

corresponding law of large number proven in [2] δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη

 a.s.−−−→Φ(s0, α) :=
(
s−4α
0 , αs−4α−2

0

)
, (48)

when j → +∞.
Let us consider the function g : [−1,+∞) → [−1/e,+∞) defined as g(t) =

tet. This is an increasing continuous one-to-one function. Its inverse function is
LambertW that is continuous, defined on [−1/e,+∞) with values in [−1,+∞)
and satisfies

LambertW(y) eLambertW(y) = y i.e. eLambertW(y) =
y

LambertW(y)
,
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with the convention that 0/0 = 1.
As stated in [2], the vector-valued function Φ : (1,+∞)×(0, 1/2) → D defined

in (48) is a continuous one-to-one function taking values in

D =

{
(y1, y2) ∈ R2 : 0 < y1 < 1 and 0 < y2 <

y21
2

}
.

Its inverse function Φ−1 : D → (1,+∞)× (0, 1/2) is continuous and given by

Φ−1(y1, y2) =

(
exp

(
1

2
LambertW

(
−y1 ln(y1)

2y2

))
,

y2
y1

exp

(
LambertW

(
−y1 ln(y1)

2y2

)))
.

Let us define the following continuous vector-valued truncating function T de-
fined for ε ∈ (0, 1), (y1, y2) ∈ R2, and taking values in D

T (y1, y2, ε) =
(
T1(y1, ε) , T2(y1, y2, ε)

)
∈ D,

where

T1(y1, ε) := max(ε,min(y1, 1− ε)) =


ε, if y1 ≤ ε,

y1, if ε ≤ y1 ≤ 1− ε,

1− ε, if y1 > 1− ε,

T2(y1, y2, ε) := max

(
ε2/4,min

(
y2,

(
T1(y1, ε)

)2
2

− ε2/4

))

=


ε2/4, if y2 ≤ ε2/4,

y2, if ε2/4 ≤ y2 ≤
(
T1(y1,ε)

)2
2 − ε2/4,(

T1(y1,ε)
)2

2 − ε2/4, if y2 >

(
T1(y1,ε)

)2
2 − ε2/4.

For values outside the feasible region D, some typical mappings by the truncat-
ing function T are sketched in Figure 2.

Note that for each (y1, y2) ∈ D there is a small enough ε > 0 such that
T (y1, y2, ε) = (y1, y2) because D is an open set. Assumption 1 on the parameters
ensures that (s0, α) ∈ (1,+∞)× (0, 1/2) and therefore Φ(s0, α) ∈ D.

Definition 3. The adjusted statistic for the parameter (s0, α) is

(̂s0, α)j := Φ−1

T

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη
,

1

mj

) .

Note that for some observations the values

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη

)
may

not be in the feasible region D. Therefore, the truncation T was needed to
guarantee that Φ−1 acts only on values from D.
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ε 1− ε 1(0,0)

D
(y1, y2)

T (y1, y2, ε)

y1

y2

Fig 2. Plot of (y1, y2) and the corresponding truncated values

Remark 9. As for sufficiently large j the vector

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη

)
falls in D, then (̂s0, α)j and the corresponding adjusted statistic in [2] coincide
almost surely. At the same time the new statistic requires only the simple trun-
cation T compared to more complex reflections with respect to the boundary of

D in [2]. Therefore, for small j the adjusted statistic (̂s0, α)j is computationally
simpler than the one in [2].

Now we are ready to formulate the main result.

Theorem 4. Under the conditions of Theorem 3, the adjusted statistic (̂s0, α)j
is a strongly consistent asymptotically normal estimator of the parameter (s0, α).

When j goes to +∞, the random vectors
√
mj

(
(̂s0, α)j − (s0, α)

)
have the

asymptotic bivariate centred Gaussian distribution N (0, Vs0,α) with the covari-
ance matrix Vs0,α given by

Vs0,α :=
cπs20

∫ cπ
−cπ

∣∣∣∑n∈Z
∣∣ψ̂(η + 2ncπ)

∣∣2∣∣∣2 dη
4α2(1 + 2 ln s0)2

(
(Vs0,α)11 (Vs0,α)12
(Vs0,α)12 (Vs0,α)22

)
, (49)

where

(Vs0,α)11 :=
(1− 4α ln s0)

2(∫
R |ψ̂(η)|2 dη

)2 +
8s40(ln s0)

2(∫
R η

2|ψ̂(η)|2 dη
)2 ,

(Vs0,α)12 :=
(1− 4α ln s0)α(4α+ 2)s−1

0(∫
R |ψ̂(η)|2 dη

)2 − 8αs30 ln s0(∫
R η

2|ψ̂(η)|2 dη
)2 ,
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(Vs0,α)22 :=
α2(4α+ 2)2s−2

0(∫
R |ψ̂(η)|2 dη

)2 +
8α2s20(∫

R η
2|ψ̂(η)|2 dη

)2 .
Proof of Theorem 4. The feasible region D is an open set. Therefore, it follows
from (48) that, for any δ > 0 and for almost all ω ∈ Ω, there is J(ω, δ) large

enough such that for j ≥ J the random vector

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη

)
belongs to the δ-neighbourhood of Φ(s0, α). Notice that 1/mj → 0 when j →
+∞. Hence, for almost all ω ∈ Ω there is J(ω) large enough such that for j ≥ J

the image under T (·, 1/mj) of the vector

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη

)
equals

to the vector itself.
Thus, for j → +∞

√
mj

∣∣∣∣∣∣T
(

δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη
,
1

mj

)

−

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη

)∣∣∣∣∣∣ a.s.−−−→ 0, (50)

where | · | is the Euclidean norm on R2. Note that (50) holds for any norm
and any normalising factor, not only

√
mj , because the difference almost surely

vanishes for j larger than some random J.
Hence, by (48) and (50)

T

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη
,

1

mj

)
a.s.−−−→Φ(s0, α), j → +∞,

which means that the vector T

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη
, 1
mj

)
is a strongly

consistent estimator of Φ(s0, α).
Moreover, by multivariate Slutsky’s lemma [31, Theorem 2.7(iv)] it follows

from (50) and the central limit theorem (47) that for j → +∞ it holds

√
mj

T

(
δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

,
∆δ

(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη
,

1

mj

)
− Φ(s0, α)

 d−→N (0, VV1
),

(51)
where

VV1 := V1

 1

(
∫
R |ψ̂(η)|2 dη)

2 0

0 1

2(
∫
R η

2|ψ̂(η)|2 dη)
2

 .
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The continuity of Φ−1 implies that the estimator (̂s0, α)j is strongly consistent

(̂s0, α)j
a.s.−−−→(s0, α), j → +∞.

As the central limit theorem in (51) can be rewritten as

√
mj

(
Φ
(
(̂s0, α)j

)
− Φ(s0, α)

)
d−−→N (0, VV1), j → +∞,

then to obtain the asymptotic distribution of the estimator (̂s0, α)j around the
parameter of interest (s0, α) one can use the delta method with the inverse
function Φ−1.

To justify it one has to check that Φ−1 is differentiable at the point Φ(s0, α).
By the inverse function theorem, the derivative D(Φ−1)(Φ(s0, α)) exists if the
Jacobian DΦ of the function Φ(·, ·) at the point (s0, α) is invertible. In this case

it holds D(Φ−1)(Φ(s0, α)) = (DΦ(s0, α))
−1
.

Notice that for any (s0, α) ∈ (1,+∞)× (0, 1/2) it holds

DΦ(s0, α) = s−4α−2
0

(
−4αs0 −4s20 ln s0

α(−4α− 2)s−1
0 1− 4α ln s0

)
. (52)

Thus, since s0 > 1,

det (DΦ(s0, α)) = s−8α−4
0 (−4αs0 − 8αs0 ln s0) = −4αs−8α−3

0 (1 + 2 ln s0) ̸= 0

and the Jacobian matrix is invertible.
Therefore, by the multivariate delta method (see, for example, [31, Theo-

rem 3.1])
√
mj

(
(̂s0, α)j

)
− (s0, α)

)
d−→N (0, Vs0,α), j → +∞,

where

Vs0,α := (DΦ(s0, α))
−1
VV1

(
(DΦ(s0, α))

−1
)T

. (53)

The covariance matrix given by (53) can be explicitly computed. It follows
from (52) that

(DΦ(s0, α))
−1

= − s4α+1
0

4α(1 + 2 ln s0)

(
1− 4α ln s0 4s20 ln s0
α(4α+ 2)s−1

0 −4αs0

)
.

Hence,

Vs0,α =
s8α+2
0 V1

16α2(1 + 2 ln s0)2

(
1− 4α ln s0 4s20 ln s0
α(4α+ 2)s−1

0 −4αs0

)

×

 1

(
∫
R |ψ̂(η)|2 dη)

2 0

0 1

2(
∫
R η

2|ψ̂(η)|2 dη)
2

(1− 4α ln s0 α(4α+ 2)s−1
0

4s20 ln s0 −4αs0

)
.

The straightforward matrix multiplication and application of (24) give (49),
which completes the proof.
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6. Numerical examples

This section provides some numerical examples to illustrate and specify the gen-
eral theoretical results from the previous sections. These examples also suggest
that the obtained results can be generalised to wider classes of wavelets and
processes.

The main theoretical results were obtained for general filter transforms and
involve some complex functionals of the filters. The following two examples
demonstrate that these results can be easily specialized for specific filters/wave-
lets and are feasibly computable.

Example 1. Let us consider the Shannon father wavelet

ψf (t) = sinc(πt) :=

{
sin (πt)
πt , t ̸= 0,

1, t = 0.

Its Fourier transform is

ψ̂f (η) = 1l[−π,π](η) :=

{
1, η ∈ [−π, π],
0, η /∈ [−π, π].

It is clear that Assumption 2 is satisfied. The corresponding integrals are∫
R

∣∣∣ψ̂f (η)∣∣∣2dη = 2π and

∫
R
η2
∣∣∣ψ̂f (η)∣∣∣2dη =

2

3
π2.

Let I(c) denote the integral

I(c) :=

∫ cπ

−cπ

∣∣∣∣∣∑
n∈Z

∣∣∣ψ̂f (η + 2ncπ)
∣∣∣2∣∣∣∣∣

2

dη =

∫ cπ

−cπ

∣∣∣∣∣∑
n∈Z

1l[−π,π](η + 2ncπ)

∣∣∣∣∣
2

dη.

Then, for c ≥ 1 one gets I(c) = 2π.
If c < 1, by solving the inequality cπ + 2n∗cπ ≤ π we obtain n∗ =

[
1−c
2c

]
.

Then, the solution of η∗ + 2(n∗ + 1)cπ = π is η∗ = π
(
1− 2c

(
1 +

[
1−c
2c

]))
.

Therefore, for η∗ < 0 it holds

I(c) =

∫ −η∗

η∗
(2n∗ + 1)2dη + 2

∫ η∗

−cπ
(2n∗ + 2)2dη

= −2η∗(2n∗ + 1)2 + 2(cπ + η∗)(2n∗ + 2)2

and for η∗ ≥ 0

I(c) =

∫ η∗

−η∗
(2n∗ + 3)2dη + 2

∫ −η∗

−cπ
(2n∗ + 2)2dη

= 2η∗(2n∗ + 3)2 + 2(cπ − η∗)(2n∗ + 2)2.
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Thus,

I(c) =

{
2π, c ≥ 1,

2 |η∗| (2n∗ + 2 + sign(η∗))2 + 2 (cπ − |η∗|) (2n∗ + 2)2, c < 1.

Hence, one can explicitly compute the covariance matrix Vs0,α in Theorem 4.
For example, the correlation of the components of the asymptotic vector equals

ρ =
1

4π2s0
(1− 4α ln s0)α(4α+ 2)− 18

π4αs0
3 ln s0√(

1
4π2 (1− 4α ln s0)

2
+ 18

π4 s04(ln s0)
2
)(

1
4π2s02α2(4α+ 2)2 + 18

π4α2s02
)

and is plotted in Figure 3a as a function of s0 and α. The plot shows that the
components are highly correlated if s0 is close to 1 and their correlation decreases
as s0 increases.

(a) Shannon father wavelet case (b) Meyer father wavelet case

Fig 3. Asymptotic correlation of ŝ0 and α̂.

Example 2. Let us consider the Meyer father wavelet [27]. It satisfies Assump-
tion 2 as its Fourier transform equals

ψ̂f (η) =


1, |η| ≤ 2π

3 ,

cos
(
π
2 ν
(

3|η|
4π − 1

))
, 2π

3 ≤ |η| ≤ 4π
3 ,

0, otherwise,

where the function ν(·) can be selected as

ν(x) =


0, x < 0,

x, x ∈ [0, 1],

1, x > 1.
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Its integrals are∫
R

∣∣∣ψ̂f (η)∣∣∣2dη = 2π and

∫
R
η2
∣∣∣ψ̂f (η)∣∣∣2dη =

8

9
π(π2 − 2). (54)

For example, for c > 4
3 one can easily compute that

I(c) =

∫ 4π/3

−4π/3

∣∣∣ψ̂f (η)∣∣∣4dη =
11

6
π,

which with (54) completely specifies the covariance matrix Vs0,α. The correspond-
ing correlation is shown in Figure 3b as a function of s0 and α.

Comparing it with Figure 3a, one can conclude that filters from Examples 1
and 2 produce similar correlation structures of the components of the asymptotic
bivariate vector in Theorem 4. However, for the case of the Meyer father wavelet,
the components exhibit higher correlations than for the Shannon one.

Remark 10. Note that the results in this paper were derived for functional
time series with continuous time. For computer simulations and actual observa-
tions, one has to use discretized processes on finite grids. The obtained results
can be applied to time series with discrete time by using the standard approach
in applied functional data analysis. Namely, the continuous process is replaced
by its discretization on the intervals between observation moments. Then all
integrals in filter transforms can be written as weighted sums. Similarly, the
continuous wavelet transforms can be approximated by the corresponding dis-
crete versions. In the available literature, it is usually assumed as a matter of
fact that the corresponding discretization error is negligible with respect to the
estimation error. In many cases, it can be rigorously proven, see for example,
[1] and [8].

The following example continues simulation studies from [2]. Simulations
in [2] demonstrated consistency of the filter-based estimators of the cyclic and
long-memory parameters. In Example 3, we examine their asymptotic normal-
ity. Note that a wavelet ψ(·) with an unbounded support of ψ̂(·) will be used.

However, the tails of ψ̂(·) have the Gaussian-type decay. The example suggests
that the method also works for such filter transforms.

Example 3. In this example the Mexican hat wavelet was used as a filter. This
wavelet and its Fourier transform are defined by, see [26],

ψ(t) =
2√

3σπ
1
4

(
1−

(
t

σ

)2
)
e−

t2

2σ2 and ψ̂(η) =

√
8π

1
4σ

5
2

√
3

η2e−
σ2η2

2 .

The value σ = 1 was used for computations. The corresponding integrals are∫
R

∣∣∣ψ̂(η)∣∣∣2dη = 2 and

∫
R
η2
∣∣∣ψ̂(η)∣∣∣2dη = 10.
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The Fourier transform ψ̂(η) does not have a finite support, but has light tails
that rapidly approaches zero when η → +∞.

As X(t), t ∈ Z, we selected the Gegenbauer random process, see [17]. This
stochastic process is defined by the following difference equation

∆d
uX(t) = ε(t), |u| ≤ 1, 0 < d < 1/2,

where ε(t) is a zero-mean Gaussian white noise with the common variance
E(ε2(t)) = σ2

ε .
The fractional difference operator ∆d

u is given by

∆d
u = (1− 2uB +B2)d,

where B denotes the time backward-shift operator, i.e. BX(t) = X(t− 1).
To simulate realizations of X(t) we used truncated sums of the following

infinite moving average representation of the Gegenbauer random process

X(t) =

∞∑
n=0

C(d)
n (u)ε(t− n), t ∈ Z, (55)

with the coefficients given by the Gegenbauer polynomial

C(d)
n (u) =

[n/2]∑
k=0

(−1)k
(2u)n−2kΓ(d− k + n)

k!(n− 2k)!Γ(d)
,

where [n/2] is the integer part of n/2, and Γ(·) is the gamma function.
The chosen for simulations parameters values d = 0.1 and u = 0.3 correspond

to s0 and α inside of the admissible region D. The realizations of X(t) were
approximated by the truncated moving averages (55) with 100 terms. The selected
number of terms provided accurate approximations of trajectories, which also can

be theoretically justified by the decay rate of C
(d)
n (·) that does not exceed 1/n1−2d.

To compute the statistics δ
(2,mj)

j and ∆δ
(2,Mj)

j+1 the values aj = j, bjk = k, γj = 1,
and mj = a9j , j = 1, ..., 7, were used. In [2] these values were used to illustrate
convergence of the estimates to the true values of parameters.

Let us consider the first two normalised statistics

S1 :=
√
mj

 δ
(2,mj)

j∫
R |ψ̂(η)|2 dη

− s−4α
0


and

S2 :=
√
mj

 ∆δ
(2,Mj)

j+1

2
∫
R η

2|ψ̂(η)|2 dη
− αs−4α−2

0

.
Numerical studies to demonstrate the almost surely convergence of these statis-

tics to their true counterparts were conducted in [2]. Therefore, here we only
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present few such results for S1. Figure 4 demonstrates the convergence of S1

and its standard deviation for the values s0 = 1.266104 and α = 0.1, which cor-
responds to the selected parameters d = 0.1 and u = 0.3. Results for j = 1, . . . , 7

are presented. The boxplots of δ
(2,mj)

j − s−4α
0

∫
R |ψ̂(η)|2 dη show that the differ-

ence approaches to the asymptotic true value zero shown by the horizontal dashed
line. The sample standard deviations of S1 also converge to a constant value as
expected. Table 1 gives numerical values of the root mean square errors (RMSEs)
and standard deviations for the estimate S1. These results numerically confirm

the theoretical findings and demonstrate the convergence of the statistic δ
(2,mj)

j

to the true value s−4α
0

∫
R |ψ̂(η)|2 dη = 1.819878, when j increases.

0
2

4
6

Boxplot of δj⋅
(2)

− c2s0
−4α

1 2 3 4 5 6 7 1 2 3 4 5 6 7

0
.5

1
.0

1
.5

2
.0

2
.5

Sample standard deviation

Fig 4. Boxplot of δ
(2,mj)

j − s−4α
0

∫
R |ψ̂(η)|2 dη and the sample standard deviation of S1

j 1 2 3 4 5 6 7

RMSE(δ
(2,mj)

j ) 1.8669 1.0870 0.2995 0.1477 0.0874 0.0593 0.0435

sd(S1) 2.640 2.174 0.847 0.591 0.494 0.474 0.492

Table 1
RMSEs of δ

(2,mj)

j and standard deviations of S1

The following results confirm the asymptotic normality of the estimators. For
j = 7, Figures 5a and 5b show Q-Q plots of S1 and S2. These plots demonstrate
that these statistics have distributions close to Gaussian ones, which is also con-
firmed by the Shapiro-Wilk test for normality with the corresponding p-values

0.613 and 0.262. Moreover, the estimated correlation matrix

(
1 0.084

0.084 1

)
of these statistics and density ellipsoids in Figure 5c underpin the result in
(47) about asymptotically bivariate normal distribution with uncorrelated com-
ponents. Finally, Figure 5d gives density ellipsoids and realizations of the ran-
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dom vector
√
mj

(
(̂s0, α)j − (s0, α)

)
which suggest an asymptotically bivariate

normal distribution as in Theorem 4.

(a) Q-Q plot of S1 (b) Q-Q plot of S2

(c) Density ellipsoid of (S1, S2) (d) Density ellipsoid of
√
mj

(
(̂s0, α)j − (s0, α)

)
Fig 5. Realizations of normalised statistics

The simulation studies suggest that the theoretical results are likely valid for
wider classes of filters with light tails. They also demonstrate that the estimators
exhibit approximately normal behaviour even for relatively small values of j. A
separate publication will be devoted to comprehensive numerical studies.

7. Conclusion

The paper developed statistical inference of semiparametric models of functional
time series. It was proved that the generalized filtered method-of-moment esti-
mators of cyclic long-memory models are strongly consistent and asymptotically
normal. New adjusted simultaneous statistics were suggested and investigated.
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A rather general semiparametric class of models satisfies the assumptions of the
theorems. In particular, Gegenbauer-type processes belong to this class.

Some interesting areas for future investigations are:

– Applying the approach to the case of multiple singularities, see [3, 24];
– Adapting the methodology to models with other types of spectral singu-
larities;

– Extending the proposed approach to other classes of filters and wavelets;
– Investigating discretization errors for the case when X(t) is observed on a
finite grid, see [8, 10];

– Investigating the case of random fields, i.e. when the index set of X(t) is
multidimensional, see [7, 17, 24];

– Continuing simulation studies to empirically compare the proposed ap-
proach with least squares and likelihood-type methods, see [11, 18, 32].
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