
HAL Id: hal-03450072
https://hal.science/hal-03450072v2

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TREGO: a Trust-Region Framework for Efficient Global
Optimization

Youssef Diouane, Victor Picheny, Rodolphe Le Riche, Alexandre Scotto Di
Perrotolo

To cite this version:
Youssef Diouane, Victor Picheny, Rodolphe Le Riche, Alexandre Scotto Di Perrotolo. TREGO: a
Trust-Region Framework for Efficient Global Optimization. Journal of Global Optimization, 2022,
�10.1007/s10898-022-01245-w�. �hal-03450072v2�

https://hal.science/hal-03450072v2
https://hal.archives-ouvertes.fr


TREGO: a Trust-Region Framework for Efficient Global

Optimization

Y. Diouane∗ V. Picheny † R. Le Riche ‡ A. Scotto Di Perrotolo§

October 11, 2022

Please cite as: “Youssef Diouane, Victor Picheny, Rodolphe Le Riche and Alexandre Scotto
Di Perrotolo, TREGO: a Trust-Region Framework for Efficient Global Optimization, Journal of
Global Optimization, doi.org/10.1007/s10898-022-01245-w, October 2022”

Abstract

Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that
has been successfully applied to solve global optimization of expensive-to-evaluate black-box
problems. However, EGO struggles to scale with dimension, and offers limited theoretical
guarantees. In this work, a trust-region framework for EGO (TREGO) is proposed and ana-
lyzed. TREGO alternates between regular EGO steps and local steps within a trust region.
By following a classical scheme for the trust region (based on a sufficient decrease condition),
the proposed algorithm enjoys global convergence properties, while departing from EGO only
for a subset of optimization steps. Using extensive numerical experiments based on the well-
known COCO bound constrained problems, we first analyze the sensitivity of TREGO to its
own parameters, then show that the resulting algorithm is consistently outperforming EGO
and getting competitive with other state-of-the-art black-box optimization methods.

Keywords: non-linear optimization; black-box optimization; Gaussian processes; Bayesian
optimization; trust-region.

1 Introduction

In the past 20 years, Bayesian optimization (BO) has encountered great successes and a grow-
ing popularity for solving global optimization problems with expensive-to-evaluate black-box
functions. Examples range from aircraft design [26] to automatic machine learning [54] to crop
selection [43]. In a nutshell, BO leverages non-parametric Gaussian processes (GPs) to provide
flexible surrogate models of the objective. Sequential sampling decisions are based on the GPs,
judiciously balancing exploration and exploitation in search for global optima; see [34, 40] for
early works or [14] for a recent review.

∗Department of Mathematics and Industrial Engineering, Polytechnique Montréal. E-mail:
youssef.diouane@polymtl.ca

†Secondmind, 72 Hills Road, Cambridge, CB2 1LA, UK. E-mail: victor@secondmind.ai
‡CNRS LIMOS, Mines St-Etienne and UCA, France. E-mail: leriche@emse.fr
§ISAE-SUPAERO, Université de Toulouse, France. E-mail: alexandre.scotto-di-perrotolo@isae-supaero.fr

1



BO typically tackles problems of the form:

min
x∈Ω

f(x), (1)

where f is a pointwise observable objective function defined over a continuous set Ω⊆Rn, with
n relatively small (say, 2 to 20). In this work, the objective function f : Rn → R is assumed
observable exactly (i.e., without random noise), bounded from below in Rn and Lipschitz con-
tinuous near appropriate limit points. The constraints set Ω will be treated as explicit [i.e.
not relying on estimates, as in 51] and non-relaxable [38], meaning that the objective function
cannot be evaluated outside the feasible region. In our numerical experiments, Ω will be set as
a bound constraints set.

Despite its popularity and successes, BO suffers from a couple of important drawbacks. First,
it is very sensitive to the curse of dimensionality, as with growing dimension exploration tends
to overcome exploitation and learning an accurate model throughout the search volume is typ-
ically not feasible within a limited number of function evaluations. Several recent works have
tackled this problem, either making strong structural assumptions [13, 35, 60] or incentivizing
sampling away from the boundaries [42, 53]. Second, the theoretical properties for BO are rather
limited, in particular in the noiseless context. For BO algorithms based on the expected im-
provement acquisition function, Vazquez and Bect [58] showed that the sequence of evaluation
points is dense in the search domain providing some strong assumptions on the objective func-
tion. Bull [16] built upon this result to provide a convergence rate for EGO when GP models
with a Matérn kernel are used. However, the proposed convergence rate requires the addition of
a well-calibrated epsilon-greedy strategy to EGO and it is valid for a limited family of objective
functions.

Over the past two decades, there has been a growing interest in deterministic Derivative-
Free Optimization (DFO) [5, 19]. DFO methods either try to build local models of the objective
function based on samples of the function values, e.g. trust-region methods, or directly exploit a
sample set of function evaluations without building an explicit model, e.g. direct-search methods.
Motivated by the large number of DFO applications, researchers and practitioners have made
significant progress on the algorithmic and theoretical aspects of the DFO methods.

In this paper, we propose to equip a classical BO method with known techniques from
deterministic DFO using a trust-region scheme, and a sufficient decrease condition to accept
new iterates [36]. This is in line with recent propositions hybridizing BO and DFO [24, 48]
that showed great promise empirically, but with limited theoretical guarantees. The proposed
TREGO algorithm (Trust-Region framework for Efficient Global Optimization) benefits from
both worlds: TREGO rigorously achieves global convergence under reasonable assumptions,
while enjoying the flexible predictors and efficient exploration-exploitation trade-off provided by
the GPs. Contrary to the aforementioned propositions, TREGO maintains a global search step,
ensuring that the algorithm can escape local optima and maintain the asymptotic properties of
BO [16, 58].

The remainder of this article is organized as follows. Section 2 presents the classical BO
framework. Section 3 describes our hybrid algorithm, and Section 4 its convergence properties.
Intensive numerical experiments have been carried out using the COCO test bed [30]. They
represent months of CPU time and have allowed to study TREGO and compare it with state-of-
the-art alternatives. These experiments are reported in Section 5. Conclusions and perspectives
are finally provided in Section 6. By default this paper uses `2 norms.

2



2 The Efficient Global Optimization Framework

Efficient Global Optimization [EGO, 34] is a class of BO methods relying on two key ingredients:
(i) the construction of a GP surrogate model of the objective function and (ii) the use of an
acquisition function. EGO proceeds along the following steps:

1. an initial set of evaluations (often referred to as Design of Experiment, DoE) of the
objective function is obtained, typically using a space-filling design [25];

2. a GP surrogate model is trained on this data;

3. a fast-to-evaluate acquisition function, defined with the GP model, is maximized over Ω;

4. the objective function is evaluated at the acquisition maximizer;

5. this new observation is added to the training set and the model is re-trained;

6. Steps 3 to 5 are repeated until convergence or budget exhaustion.

The surrogate model is built by assuming that f is a realization of a Gaussian process (GP)
(Yx)x∈Ω ∼ GP (m, c), with prior mean functionm(x) := E(Yx) and covariance function c(x, x′) :=
cov(Yx, Yx′), x, x

′ ∈ Ω. Given a DoE of size t ∈ N∗, i.e., Dt = {x1, x2, . . . , xt} and Yt =
{f(x1), f(x2), . . . , f(xt)}, the posterior distribution of the process conditioned by Dt,Yt is Gaus-
sian with mean and covariance given by [47]:

mt(x) := m(x) + λt(x) (Yt −Mt) ,

ct(x, x
′) := c(x, x′)− λt(x)ct(x

′),

where λt(x) := ct(x)>C−1
t , ct(x) := (c(x, x1), c(x, x2), . . . , c(x, xt))

>, Ct := (c(xi, xj))1≤i,j≤t,
Yt := (f(x1), f(x2), . . . , f(xt))

> and Mt := (m(x1),m(x2), . . . ,m(xt))
>.

Typically, m is taken as constant or a polynomial of small degree and c belongs to a family of
covariance functions such as the Gaussian and Matérn kernels, based on hypotheses about the
smoothness of f . Corresponding hyperparameters are often obtained as maximum likelihood
estimates; see for example [47, 56] for the corresponding details.

Once the surrogate model is built, an acquisition function is used to determine which point
is most likely to enrich efficiently the model regarding the search for a global minimizer of the
objective function f . The expression of the acquisition function only depends on the proba-
bilistic surrogate model and usually integrates a trade-off between exploitation (i.e., low mt(x))
and exploration (i.e., high ct(x, x)) [27]. In the noise-free setting, the canonical acquisition is
Expected Improvement (EI) [34], i.e.,

EIt(x) := (fmin −mt(x))Φ

(
fmin −mt(x)√

ct(x, x)

)
+
√
ct(x, x)φ

(
fmin −mt(x)√

ct(x, x)

)
,

where fmin = min1≤i≤t(f(xi)). The functions φ and Φ denote the probability and cumulative
density functions, respectively, of the standard normal variable. Note that many alternative
acquisition functions have been proposed over the past 20 years, see for example [52] for a recent
review. Note that while the focus here is on EI for simplicity, the proposed framework described
later is not limited to EI and other acquisitions can be used instead (see Section 4 for suitable
choices).

3



Given Dt the set of observations available at iteration k, the next optimization iterate xk+1

is given by
xglobal
k+1 ∈ argmax

x∈Ω
α(x;Dt). (2)

where α corresponds to the chosen acquisition function at iteration k (for EGO, α(x;Dt) = EIt(x)).
For most existing implementations of EGO, the stopping criterion relies typically on a max-

imum number of function evaluations. In fact, unlike gradient-based methods where the gradi-
ent’s norm can be used as a relevant stopping criterion which ensures a first-order stationarity,
derivative-free optimization algorithms have to cope with a lack of general stopping criterion
and the EGO algorithm makes no exception.

3 A Trust-Region Framework for EGO (TREGO)

In this section, we propose a modified version of EGO where a control parameter is included
(which depends on the decrease of the true objective function) to ensure some form of global
convergence without jeopardizing the performance of the algorithm.

3.1 The TREGO algorithm

Our methodology follows the lines of the search/poll direct-search methods [12, 19, 22, 57].
In the context of EGO, this results in a scheme alternating between local and global phases.
The global phase corresponds to running one iteration of the classical EGO algorithm over the
whole design space as in Eq. 2. This phase ensures an efficient global exploration and aims
at identifying the neighborhood of a global minimizer. The local phase corresponds to running
one iteration of EGO, but restricting the search to the vicinity of the current best point ( the
trust-region Ωk, detailed hereafter), so that

xlocal
k+1 ∈ argmax

x∈Ωk

α(x;Dt). (3)

Associated with a proper management of the trust-region Ωk, this phase ensures that the
algorithm converges to a stationary point. All the trial points, whether coming from the global
or from the local phase, are included in the DoE to refine the surrogate model of the objective
function f .

By default, only the global phase is used. The local one is activated when the global phase
is not successful, that is when it fails to sufficiently reduce the best objective function value. In
addition, the local phase consists of a fixed number of steps (typically only one), after which
the algorithm reverts to the global phase. Consequently, the original EGO algorithm is entirely
maintained over a subset of steps.

The local phase management follows two widely used techniques in the field of nonlinear
optimization with and without derivatives. First, some form of sufficient decrease condition is
imposed on the objective function values to declare an iteration successful. Second, the size of
the steps taken at each iteration is controlled using a parameter σk that is updated depending on
the sufficient decrease condition (increased if successful, decreased otherwise). Given a current
best point x∗k, at iteration k, a trust-region around x∗k is defined as

Ωk := {x ∈ Ω : dminσk ≤ ‖x− x∗k‖ ≤ dmaxσk}, (4)

4



where dmin < dmax are any two strictly positive real values. The inclusion in the algorithm of
the bounds dmin and dmax on the definition of Ωk is essential to our convergence analysis. In
practice, the constant dmin can be chosen very small and the upper bound dmax can be set to a
very large number. Note that the definition of the trust-region as given in (4) uses the `2 norm,
however other norms can be preferred depending on the nature of the constraints set Ω. For
instance, if Ω contains only bound constraints, it is more practical to use the `1 norm as we will
do in our experiments.

At each iteration of the local phase, the following sufficient decrease condition on the objective
function is imposed:

f(xlocal
k+1 ) ≤ f(x∗k)− ρ(σk), (5)

where ρ : R+ → R+ is a forcing function [36], i.e., a positive continuous nondecreasing function
such that ρ(σ)/σ → 0 when σ ↓ 0 (for instance, ρ(σ) = σ2). The step size parameter σk
is increased if the iteration is successful, i.e., σk+1 = γσk with γ ∈ (1,+∞). An iteration is
declared successful if the new iterate x∗k+1 decreases sufficiently the objective function. In this

case, the iterate x∗k+1 can be updated either within the global phase, i.e., x∗k+1 = xglobal
k+1 , or

the local one, i.e., x∗k+1 = xlocal
k+1 . If the sufficient decrease condition (5) is not satisfied, the

current iterate is kept unchanged, i.e., x∗k+1 = x∗k, and the step size is reduced, σk+1 = βσk
with β ∈ (0, 1). A classical scheme is to keep β ∈ (0, 1) constant, and apply:

σk+1 =
σk
β

if the iteration is successful,

σk+1 = βσk otherwise. (6)

Figure 1 is a schematic illustration of the algorithm. The pseudo-code of the full algorithm
is given in Appendix A.

Global phase over Ω
(Update the DoE)

Start from x∗0
k = 0

Local phase
over the trust-region Ωk

(Update the DoE)

Failure

σk+1 = γσk
Update x∗k+1

σk+1 = βσk
x∗k+1 = x∗k

Success xlocal
k+1 Failure

A stopping
condition
is satisfied

Stop and return
current iterate as

solution

xglobal
k+1

In
c
re

m
e
n
t
k

No

Yes

Figure 1: An overview of the TREGO framework. A detailed description is given in Algorithm 1.

5



3.2 Extensions

We now present several possible extensions to TREGO. Some of these extensions are tested in
the ablation study of Section 5.3.

Local / global ratio: in the previous section, a single local step is performed when the global
step fails. The local/global ratio can easily be controlled by forcing several consecutive steps
of either the global or the local phase. For example, a “gl3-5” (see algorithms names later)
tuning would first perform three global steps regardless of their success. If the last step fails, it
then performs five local steps. Such modification will not alter the structure of the algorithm.
Moreover, since the convergence analysis relies on a subsequence of unsuccessful iterations, the
validity of the convergence analysis (see Section 4) is not called into question. In fact, during the
local phase, we keep using the same sufficient decrease condition to decide whether the current
iteration is successful or not.

Local acquisition function: our analysis, see Section 4, does not require using the same
acquisition for the global and local steps. For example, as EI tends to become numerically
unstable in the vicinity of a cluster of observations, it might be beneficial to use the GP mean
or a lower confidence bound [55] as an acquisition function for the local step.

Local model: similarly, our approach does not require using a single model for the global and
local steps. One could choose a local model that uses only the points inside the trust-region to
allow a better fit locally, in particular for heterogeneously varying functions.

Non BO local step finally, our analysis holds when the algorithm employed for the local step
is not Bayesian. For example, using BFGS would allow a more aggressive local search, which
could prove beneficial [39]. In fact, as far as the condition (5) is used to decide whether the
current iteration is successful or not, the convergence theory of the next section applies.

3.3 Related work

TRIKE [48] (Trust-Region Implementation in Kriging-based optimization with Expected im-
provement) implements a trust-region-like approach where each iterate is obtained by maximiz-
ing the expected improvement acquisition function within some trust region. The two major
differences with TREGO are: 1) the criterion used to monitor the step size evolution is based
on the ratio of the expected improvement and the actual improvement, rather than sufficient
decrease; 2) TRIKE does not have a global phase. In [48], TRIKE is associated with a restart
strategy to ensure global search.

TURBO [24] (a TrUst-Region BO solver) carries out a collection of simultaneous BO runs
using independent GP surrogate models, each within a different trust region. The trust-region
radius is updated with a failure/success mechanism based on the progress made on the objective
function1. At each iteration, managed by an implicit multi-armed bandit strategy, a global

1Importantly, TURBO uses a simple decrease rule of the objective function, which turns to be insufficient to
ensure convergence to a stationary point with GP models.

6



phase allocates samples between these local areas and thus decides which local optimizations to
continue.

Both TRIKE and TURBO display very promising performances, in particular when solving
high dimensional optimization problems. However, both rely on several heuristics that hin-
der theoretical guarantees. In contrast, the use of the search/poll direct-search algorithmic
design [12, 22, 19, 57] allows TREGO to benefit from global convergence properties.

4 Convergence Analysis of TREGO

Under appropriate assumptions, the global convergence of the proposed algorithm is now de-
duced. By global convergence, we mean the ability of a method to generate a sequence of points
converging to a stationary point regardless of the starting DoE. A point is said to be stationary
if it satisfies the first-order necessary conditions, in the sense that the gradient is equal to zero
if the objective function is differentiable. In the non-smooth case, the first-order necessary con-
ditions mean that, for any direction d, the Clarke generalized derivative [18] along the direction
d is non-negative.

In order to achieve our goal, the following additional assumption on the forcing function ρ(·)
is made.

Assumption 4.1 The forcing function ρ(·) satisfies the following properties:

• ρ(·) is a positive continuous nondecreasing function such that ρ(σ)/σ → 0 when σ ↓ 0.

• there exist constants γ̄ and β̄ satisfying 0 < β̄ < 1 < γ̄, such that, for each σ > 0, one has

ρ(βσ) ≤ β̄ρ(σ) and ρ(γσ) ≤ γ̄ρ(σ).

Such assumption is not restrictive as it holds in particular for the classical forcing functions
of the form ρ(σ) = cσq with c > 0 and q ≥ 1. The next lemma shows that, as far as the objective
function is bounded below, the series

∑+∞
k=0 ρ(σk) is bounded above. The proof of the lemma

is inspired by what is done in DFO [4, 10, 11] when handling stochastic noisy estimates of the
objective function.

Lemma 4.1 Under Assumption 4.1, consider TREGO without any stopping criterion. Let f
be bounded below by flow∈ R. Then, one has

+∞∑
k=0

ρ(σk) ≤
(γ̄ − β̄) (f(x∗0)− flow) + ρ(σ0)

1− β̄
<∞.

Proof. For the sake of our proof, the following function is introduced

φk := ν̄(f(x∗k)− flow) + (1− ν̄)ρ(σk), (7)

where ν̄ := γ̄−β̄
1+γ̄−β̄ ∈ (0, 1). Then, if an iteration k is unsuccessful x∗k+1 = x∗k and σk+1 = βσk,

this leads to

φk+1 − φk = (1− ν̄)(ρ(σk+1)− ρ(σk)) ≤ (1− ν̄)(β̄ − 1)ρ(σk)= −
(

1− β̄
1 + γ̄ − β̄

)
ρ(σk) (8)

7



where ρ(βσk) ≤ β̄ρ(σk) and ν̄ = γ̄−β̄
1+γ̄−β̄ were used.

Otherwise, if the iteration k is successful, then x∗k+1 is changed and σk+1 = γσk. Then, by

using the fact that ρ(γσk) ≤ γ̄ρ(σk) and ν̄ = γ̄−β̄
1+γ̄−β̄ , one has

φk+1 − φk ≤ −ν̄ρ(σk) + (1− ν̄)(γ̄ − 1)ρ(σk)= −
(

1− β̄
1 + γ̄ − β̄

)
ρ(σk). (9)

Hence, from (8) and (9), one deduces that for any iteration k, one gets

φk+1 − φk ≤ −
(

1− β̄
1 + γ̄ − β̄

)
ρ(σk). (10)

Thus, by applying the sum over the subscript k, one gets for a given iteration index n

φn+1 − φ0 =
n∑
k=0

φk+1 − φk =≤ −
(

1− β̄
1 + γ̄ − β̄

) n∑
k=0

ρ(σk).

Since φn+1 ≥ 0, one deduces that by taking n→∞

+∞∑
k=0

ρ(σk) ≤
(1 + γ̄ − β̄)φ0

1− β̄
=

(γ̄ − β̄) (f(x∗0)− flow) + ρ(σ0)

1− β̄
<∞.

From Lemma 4.1, one concludes that the full sequence {ρ(σk)} must converge to zero. Then,
by assuming that the forcing function is ρ(σ) = cσq with c > 0 and q ≥ 1, one gets limk→+∞ σk =
0. The result is stated in the next theorem.

Theorem 4.1 Consider TREGO without any stopping criterion and with a forcing function of
the form ρ(σ) = cσq with c > 0 and q ≥ 1. Then, if the objective function f is bounded below,
one gets

lim
k→+∞

σk = 0.

The following definition, similar to those in [2, 4, 5, 7], is now introduced to show the existence
of convergent subsequences of TREGO iterates.

Definition 4.1 [4, Definition 5] A convergent subsequence {x∗k}k∈K of TREGO iterates (for
some subset of indices K) is said to be a refining subsequence, if and only if {σk}k∈K converges
to zero. The limit x∗ of {x∗k}k∈K is called a refined point.

Assuming that TREGO is producing iterates that lie in a compact set, one can ensure the
existence of a refining subsequence using the Bolzano-Weierstrass theorem.

Theorem 4.2 Consider TREGO without any stopping criterion and with a forcing function of
the form ρ(σ) = cσq with c > 0 and q ≥ 1. Let f be bounded below. If the sequence {x∗k} lies in
a compact set, then there exists a convergent refining subsequence {x∗k}k∈K.

8



The proposed convergence analysis will rely on iterates from the local phase. Thus, in what
comes next, the sequence {x̂local

k }k∈K′ ⊆ {x∗k}k∈K, where K′ ⊆ K is an infinite subset of indices,
will be used to denote a refining subsequence associated with TREGO local phase iterates. The
global convergence will be achieved by establishing that some type of directional derivatives are
non-negative at limit points of refining subsequences along certain limit directions, known as
refining directions, see [2, 4, 5, 7].

Definition 4.2 Consider a convergent refining subsequence associated with the TREGO local
phase {x̂local

k }k∈K′ and its corresponding refined point x∗. Let {dk}k∈K′ be a sequence such that,
dk := (xlocal

k+1 − x̂local
k )/σk, for all k ∈ K′. A direction d is said to be a refining direction for x∗ if

and only if there exists an infinite subset L ⊆ K′ such that limk∈L dk = d.

Note that by construction, one has dmin ≤ ‖dk‖ ≤ dmax, for all k ∈ K′. Thus, the existence of a
refining direction d is justified as the sequence {dk}k∈K′ lies in a compact set.

When f is Lipschitz continuous near x∗, one can make use of the Clarke-Jahn generalized
derivative along a direction d

f◦(x∗; d) := lim sup
x→ x∗, x ∈ Ω
t ↓ 0, x+ td ∈ Ω

f(x+ td)− f(x)

t
.

(Such a derivative is essentially the Clarke generalized directional derivative [18], adapted by
Jahn [33] to the presence of constraints.) However, for the proper definition of f◦(x∗; d), one
needs to guarantee that x + td ∈ Ω for x ∈ Ω arbitrarily close to x∗ which is assured if d is
hypertangent to Ω at x∗. In the following definition from [2, 19], the notation B(x; ∆) := {y ∈
Rn : ‖y − x‖ < ∆} will be used to denote the open ball of radius ∆ centered at x.

Definition 4.3 [2, Definition 3.3] A vector d ∈ Rn is said to be a hypertangent vector to the
set Ω ⊆ Rn at the point x in Ω if there exists a scalar ε > 0 such that

y + tw ∈ Ω ∀y ∈ Ω ∩B(x; ε), w ∈ B(d; ε) and 0 < t < ε.

The hypertangent cone to Ω at x, denoted by THΩ (x), is the set of all hypertangent vectors
to Ω at x. Then, the Clarke tangent cone to Ω at x (denoted by TΩ(x)) can be defined as the
closure of the hypertangent cone THΩ (x). The Clarke tangent cone generalizes the notion of
tangent cone in nonlinear programming [41]. In the following definition from [2, 5, 18, 19], the
formal notion of the Clarke tangent cone is detailed.

Definition 4.4 [2, Definition 3.5] A vector d ∈ Rn is said to be a Clarke tangent vector to the
set Ω ⊆ Rn at the point x in the closure of Ω if for every sequence {yk} of elements of Ω that
converges to x and for every sequence of positive real numbers {tk} converging to zero, there
exists a sequence of vectors {wk} converging to d such that yk + tkwk ∈ Ω, for a sufficiently
large k. The set TΩ(x) of all Clarke tangent vectors to Ω at x is called the Clarke tangent cone
to Ω at x.

If we assume that f is Lipschitz continuous near x∗ and by using [2, Propostion 3.5], then
for any direction v in the Clarke tangent cone, one can consider the Clarke-Jahn generalized
derivative to Ω at x∗ as the limit

f◦(x∗; v) = lim
d∈TH

Ω (x∗),d→v
f◦(x∗; d).

9



A point x∗ ∈ Ω is considered Clarke stationary if f◦(x∗; d) ≥ 0, ∀d ∈ TΩ(x∗). Moreover, when
f is strictly differentiable at x∗, one has f◦(x∗; d) = ∇f(x∗)>d. Hence in this case, if x∗ is a
Clarke stationary point is being equivalent to ∇f(x∗)>d ≥ 0 , ∀d ∈ TΩ(x∗).

It remains now to state the next lemma which will be useful for the proof of the optimality
result based on the Clarke derivative. The proof of this lemma is inspired by [4, Theorem 4].

Lemma 4.2 Consider TREGO without any stopping criterion and using a forcing function of
the form ρ(σ) = cσq with c > 0 and q ≥ 1. Then, if the objective function f is bounded below,
one has

lim inf
k→+∞

f(x∗k)− f(x∗k + σkdk)

σk
≤ 0.

Proof. By contradiction, assume that there exists ε > 0 such that,

f(x∗k)− f(x∗k + σkdk)

σk
≥ ε, for all k ∈ N. (11)

From Theorem 4.1, one has limk→+∞ σk = 0, hence by using the forcing function properties one

has also limk→+∞
ρ(σk)
σk

= 0. This means that there exists k0 > 0, such that

ρ(σk) ≤ εσk, for all k ≥ k0. (12)

By combining (11) and (12), one gets

f(x∗k)− f(x∗k + σkdk) ≥ ρ(σk), for all k ≥ k0.

Hence, for all k ≥ k0, the k-th iteration of TREGO is successful and σk+1 = γσk with γ > 1.
This contradicts limk→+∞ σk = 0 and thus the claim (11) is false.

The next theorem states the global convergence of TREGO. The obtained result is in the
vein of those first established in [2, Theorem 3.2] for simple decrease and Lipschitz continuous
functions and later generalized in [21, 59] for sufficient decrease and directionally Lipschitz
functions.

Theorem 4.3 Let the assumptions made in Theorem 4.1 hold. Let x∗ ∈ Ω be a refined point
of a refining subsequence associated with the TREGO local phase {x̂local

k }k∈K′. Assume that f
is Lipschitz continuous near x∗ and that THΩ (x∗) 6= ∅. Let d ∈ THΩ (x∗) be a refining direction
associated with {dk}k∈K′. Then, the Clarke-Jahn generalized derivative of f at x∗ in the direction
d is nonnegative, i.e., f◦(x∗; d) ≥ 0.

Proof. In fact, from Lemma 4.2, there exists a subset K such that

lim
k∈K

f(x∗k)− f(x∗k + σkdk)

σk
≤ 0.

From Theorem 4.1, one has also limk∈K σk = 0. Now, by using Theorem 4.2, there exists a
subset K′′ ⊆ K such that limk∈K′′ x

∗
k = x∗. Consider now K′ ⊆ K′′ an infinite subset of indices

such that {x̂local
k }k∈K′ ⊆ {x∗k}k∈K′′ is a refining subsequence associated with TREGO local phase

10



iterates. Then, since the subsequence {dk}k∈K′ lies in a compact set, there must exist a subset
L ⊆ K′ such that {dk}k∈L converges to d and

lim
k∈L

f(x̂local
k )− f(x̂local

k + σkdk)

σk
≤ 0. (13)

From the Lipschitz continuity of f near x∗ and using [2, Proposition 3.9], one deduces that
the Clarke generalized derivative is continuous with respect to d on the Clarke tangent cone.
Hence,

f◦(x∗; d) = lim
k∈L

f◦(x∗; dk)

Additionally, one has x̂local
k + σkdk ∈ Ω for all k ∈ L sufficiently large, this leads to

f◦(x∗; d) = lim
k∈L

lim sup
x→ x∗, x ∈ Ω

t ↓ 0, x+ tdk ∈ Ω

f(x+ tdk)− f(x)

t
,

≥ lim sup
k∈L

f(x̂local
k + σkdk)− f(x̂local

k )

σk
. (14)

Hence, by substituting (13) into (14), one gets

f◦(x∗; d) ≥ lim sup
k∈L

f(x̂local
k + σkdk)− f(x̂local

k )

σk
≥ 0.

5 Numerical Experiments

The objective of this section is twofold: first, to evaluate the sensitivity of TREGO to its own
parameters and perform an ablation study; second, to compare our algorithm with the original
EGO and other BO alternatives to show its strengths and weaknesses. TREGO is available both
in the R package DiceOptim 2 and python library trieste 3.

5.1 Testing procedure using the BBOB benchmark

Our experiments are based on the COCO (COmparing Continuous Optimizers, [30]) software.
COCO is a recent effort to build a testbed that allows the rigorous comparison of optimizers.
We focus here on the noiseless Black-Box Optimization Benchmarking (BBOB) test suite in
the expensive objective function setting [29] that contains 15 instances of 24 functions [15]; each
function is defined for an arbitrary number of parameters to optimize. Each instance corresponds
to a randomized modification of the original function by using rotation of the coordinate system
and a random translation of the optimum. The functions are divided into 5 groups: 1) separable,
2) unimodal with moderate conditioning, 3) unimodal with high conditioning, 4) multi-modal
with adequate global structure, and 5) multi-modal with weak global structure. Note that group

2https://cran.r-project.org/package=DiceOptim

3https://secondmind-labs.github.io/trieste/

11



4 is often seen as the main target for Bayesian optimization [34]. The full description of the
functions is available in Appendix B (see Table 2).

A problem is a pair [function, target to reach]. Therefore, for each instance of a function,
there are several problems to solve of difficulty varying with the target value. The Empirical
Run Time Distributions (ERTD) gives, for a given budget (i.e. number of objective function
evaluations), the proportion of problems which are solved by an algorithm. This metric can be
evaluated for a single function and dimension, or averaged over a set of functions, typically over
one of the 5 groups or over the 24 functions.

To set the target values and more generally define a reference performance, COCO relies on
a composite fake algorithm called best09. best09 is made at each optimization iteration of the
best performing algorithm of the BBOB 2009 [29]. In our experiments, the targets were set at
the values reached by best09 after [0.5, 1, 3, 5, 7, 10, 15, 20] × n function evaluations. Note that
outperforming best09 is a very challenging task, as it does not correspond to the performance
of a single algorithm but of the best performing algorithm for each instance. In the following,
the best09 performance is added to the plots as a reference. In addition, the performance of a
purely random search are also included to serve as a lower bound.

5.2 Implementation details

For a fair comparison, TREGO, EGO and TRIKE are implemented under a unique framework,
based on the R packages DiceKriging (Gaussian process models) and DiceOptim (BO) [44, 50].
Our setup aligns with current practices in BO [27, 52], as we detail below.

All GP models use a constant trend and an anisotropic Matérn covariance kernel with
smoothness parameter ν = 5/2. The GP hyperparameters are inferred by maximum likeli-
hood after each addition to the training set; the likelihood is maximized using a multi-start
L-BFGS scheme. In case of numerical instability, a small regularization value is added to the
diagonal of the covariance matrix.

Trust regions are defined using the `1 norm, see (4), to optimize the expected improvement
using a multi-start L-BFGS scheme. Each experiment starts with an initial set of 2n+ 4 obser-
vations, generated using latin hypercube sampling improved through a maximin criterion [25].
All BO methods start with the same DoEs, and the DoE is different (varying the seed) for each
problem instance.

For locGP, the local model uses the same kernel and mean function as the global one, but
its hyperparameters are inferred independently. To avoid numerical instability, the local model
is always trained on at least 2n + 1 points. If the trust-region does not contain enough points,
the points closest to the center of the trust-region are also added to the training set.

5.3 Sensitivity analysis and ablation study

TREGO depends on a number of parameters (see Section 3) and has some additional degrees of
freedom worth exploring (see Section 3.2). The objective of these experiments is to answer the
following questions:

1. is TREGO sensitive to the initial size of the trust region?

2. is TREGO sensitive to the trust region contraction factor β, see (6)?

3. is using a local model beneficial?

12



Acronym Solvers

random random search
best09 best of all BBOB 2009 competitors at each budget [8]
TRIKE TRIKE algorithm of [48]
SMAC SMAC algorithm of [31]
DTS-CMA DTS-CMA algorithm of [9]
EGO original EGO algorithm of [34]

TREGO default TREGO with β = 0.9, γ = 1/β, σ0 = 1
2(1/5)1/n, ρ(σ) = σ2,

dmax = 1, dmin = 10−6 , global/local ratio = 1 / 1 (i.e., G = 1 and
L = 1), with no local GP model

gl1-10, gl1-4, gl4-1
and gl10-1

TREGO with a global/local ratio of 1/10, 1/4, 4/1 and 10/1, re-
spectively

smV0 and lgV0 TREGO with small (i.e., σ0 = 1
2(1/10)1/n) and large (i.e.,

σ0 = 1
2(2/5)1/n) initial trust-region size

fstC TREGO with fast contraction of the trust-region, i.e., β = 0.5
fstCsmV0 TREGO with fast contraction of the trust-region and small σ0

locGP TREGO with a local GP model

Table 1: Names of the compared algorithms. For the TREGO variants, when not specified, the
parameter values are the ones of the default, TREGO.

4. is there an optimal ratio of global and local steps?

To answer these questions, we run a default version of TREGO and 9 variants, as reported in
Table 1. The contraction parameter β is either 0.9 which is classical in DFO algorithms, or 0.5
which corresponds to an aggressive reduction of the trust region. The choice of the initial trust-
region σ0, within the default TREGO, corresponds to setting the initial trust-region volume to
20% of the search space. In this case, the initial trust-region volume is given by (2σ0)n. We test
also as alternatives with a small initial trust-region, i.e., 10% of the search space, and a larger
one, i.e., 40% of the search space. The global-local ratio varies from 10-1, which is expected to
behave almost similarly to the original EGO, to 1-10, i.e., a very local behavior.

Because of the cost of a full COCO benchmark with EGO-like algorithms, the interaction
between these parameters is not studied. Also, the ablation experiments are limited to the
problems with dimensions 2 and 5 and relatively short runs (30n function evaluations). With
these settings and 15 repetitions of each optimization run, an EGO algorithm is tested within a
couple of days of computing time on a recent single processor.

Figure 2, top row, summarizes our study on the effect of the global versus local iterations
ratio. There is measurable advantage of algorithms devoting more iterations to local rather
than global search. gl1-4 and gl1-10 consistently outperform gl4-1 and gl10-1. gl1-4 and gl1-10
slightly outperform the TREGO baseline, the effect being more visible with higher dimension,
see also Figure 3 for results with 10 dimensions.

By further splitting results into function groups (see Figure 5 in Appendix), it is observed
that the performance gain due to having more local iterations happens on the unimodal function
groups (the 2nd and 3rd, i.e., unimodal functions with low and high conditioning) when less dif-
ference can be observed on multimodal functions (first, fourth and fifth group). For multimodal
functions with a weak global structure (fifth group, bottom right plot of Figure 5), gl10-1 is

13



even on average (over the budgets) the best strategy. These findings are intuitive, as unimodal
function may not benefit at all from global steps, while on the other hand a too aggressively
local strategy (e.g. gl1-10) may get trapped in a local optimum of a highly multimodal function.
Overall on this benchmark, gl1-4 offers the best trade-off over all groups between performance
and robustness.

n = 2 n = 5

0
0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
fu

n
ct

io
n
,t

a
rg

e
t 

p
a
ir

s

random

gl4-1

gl10-1

gl1-10

TREGO

gl1-4

best09

v2.3.1

0
0.0

0.2

0.4

0.6

0.8

1.0

random

gl10-1

gl4-1

gl1-4

gl1-10

TREGO

best09

v2.3.1

0
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
fu

n
ct

io
n
,t

a
rg

e
t 

p
a
ir

s

random

locGP

smV0

lgV0

fstCsmV0

fstC

TREGO

best09

v2.3.1

0
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

random

fstCsmV0

fstC

locGP

TREGO

lgV0

smV0

best09

v2.3.1

Figure 2: Effect of changing the amount of local and global iterations (top), and changing
the other parameters of the TREGO algorithm (bottom). Performance is reported in terms of
ERTD, averaged over the entire noiseless BBOB testbed in 2 (left) and 5 (right) dimensions.
Run length is 30× n.

Figure 2, bottom row, shows the average performance of other variants of TREGO. Overall,
TREGO has very little sensitivity to its internal parameters, the average performances of all
TREGO variants being similar in both dimensions. The robustness of TREGO performance
with respect to the other parameters is an advantage of the method, and is in line with what is
generally observed for trust region based algorithms.

The effects of the TREGO parameters are studied by function groups in Figure 5. The main
visible results are:

• a slightly positive effect of the local GP on the groups 1 and 2 but a strong negative effect on
unimodal functions with bad conditioning, and no effect on the remaining groups. Despite
offering attractive flexibility in theory, the local GP provides in practice either limited gain
or has a negative impact on performance. As this variant is also more complicated than
TREGO, it may be discarded.

• a positive effect of fast contraction of the trust region on highly multimodal functions
during early iterations. By making the trust region more local earlier in the search, the

14



fast contraction allows to reach the easy targets, but this early performance prevents the
algorithm from finding other better targets later on; those variants being outperformed by
others at the end of the runs.

The gl1-4 variant of TREGO is shown to offer the best trade-off over all groups between per-
formance and robustness. In our comparison with the state-of-the-art BBO algorithms, we will
use the name TREGO to refer to the gl1-4 solver.

5.4 Comparison with state-of-the-art BBO algorithms

Longer runs of length 50n (function evaluations) are made with TREGO in dimensions 2, 5 and
10. The results are compared to state-of-the-art Bayesian optimization algorithms: a vanilla
EGO, that serves as a baseline, TRIKE (see Section 3.3), SMAC, DTS-CMA, Nomad and
MCS. A COCO test campaign of such a set of algorithms up to dimension 10, with run length
of 50n and 15 repetitions of the optimizations takes of the order of 3 weeks of computing time
on a recent single processor.

DTS-CMA [9] is a surrogate-assisted evolution strategy based on a combination of the CMA-
ES algorithm and Gaussian process surrogates. The DTS-CMA solver is known to be very
competitive compared to the state-of-the-art black-box optimization solvers particularly on some
classes of multimodal test problems. SMAC [31] is a BO solver that uses an isotropic GP to
model the objective function and a stochastic local search to optimize the expected improvement.
SMAC is known to perform very well early in the search compared to the state-of-the-art black-
box optimizers. Nomad [6, 37] is a C++ solver based on the mesh adaptive direct search
method [2]. We have tested Nomad version 4.2.0 via its provided Python interface where
the variable neighborhood search (VNS) strategy was enabled to enhance its global exploration.
Nomad enjoys similar convergence properties to those of TREGO, hence a comparison between
the two solvers is meaningful. MCS [32] is a multilevel coordinate search solver that balances
global and local search that uses quadratic interpolation. MCS is among the best DFO solvers
on bound constrained optimization problems [49].

DTS-CMA, SMAC and MCS results are directly extracted from the COCO database. This
is not the case of Nomad and TRIKE. As TRIKE follows a relatively standard BO framework,
we use our own implementation to compare TREGO against it. As TURBO has a complex
structure and the available code is too computationally demanding to be used directly with
COCO, it is left out of this study. Figure 3 gives the average performance of the algorithms on
all the functions of the testbed. Results in 5 and 10 dimensions split by function groups are
provided in Figure 4.

EGO is significantly outperformed by both trust regions algorithms, i.e., TREGO and TRIKE.
This performance gap is limited for n = 2 but very visible for n = 5 and even higher for n = 10.
It is also significant for any budget as soon as the shared initialization is done. The improvement
is also visible for all function groups, see Figure 4, in particular for groups with strong structure.
For the multimodal with weak structure group, the effect is mostly visible for the larger budgets.

Nomad has an overall performance comparable to TREGO. Nomad is shown in particular to
be very efficient for small budgets but then it gets outperformed by TREGO as the evaluation
budget gets larger. The performance gap between Nomad and TREGO is limited for n = 2

15



n = 2 n = 5 n = 10

Figure 3: Comparison of TREGO with state-of-the-art optimization algorithms, averaged over
the entire COCO testbed in 2, 5 and 10 dimensions. Run length = 50× n.

Multimodal Multimodal, weak struct. Unimodal, low cond.

n
=

5
n

=
1
0

Figure 4: Comparison of TREGO with state-of-the-art optimization algorithms, averaged over
the multi-modal functions with adequate (left, f15 to f19) and weak (middle, f20 to f24) global
structure, unimodal functions with low conditioning (right), n = 5 (top row) and n = 10 (bottom
row) dimensions. Run length = 50 × n. Results for the other groups are given in Appendix,
Figure 6.

16



but very visible for n = 5 and even higher for n = 10, see Figure 3. The good start of Nomad
can be explained by the fact that it requires only one point to start the optimization process,
while Bayesian optimization solvers need a set of points (i.e., the initial DoE) to initiate the
optimization process. Thanks to its variable neighborhood search strategy, Nomad seems to
outperform most of the tested solvers on the group of multimodal optimization problems, see
Figure 4.

MCS is outperformed by most of the tested solvers despite its very good performance at the
early stages of the optimization process. In fact, the performance of MCS at the beginning
seems to deteriorate very fast as the the budget is getting larger, particularly when the regarded
optimization problems are multimodal, see Figure 4.

SMAC has an early start and is visibly able to start optimizing while all other methods are
still creating their initial DoE. However, it is outperformed by all trust region variants before the
number of evaluations reaches 10 times the problem dimension, i.e., vertical line on the graphs.
This effect also increases with dimension.

DTS-CMA has conversely a slower start, so that it is slightly outperformed by trust regions
for small budgets, less than 20× n. However, for large budgets and n = 10, DTS-CMA largely
outperforms other methods on average. However, looking at Figure 4, DTS-CMA clearly out-
performs the other methods, including the best09 baseline, on multimodal functions with strong
structure for n = 10 and large budgets, while TREGO remains competitive in other cases.

TRIKE has an overall performance comparable to TREGO. For n = 5, it slightly outper-
forms the other methods for intermediate budget values, but looses its advantage for larger
budgets. Figure 6 reveals that this advantage is mainly achieved on the unimodal group with
high conditioning, but on multi-modal problems, TREGO’s ability to perform global steps offer
a substantial advantage.

Overall performance Overall, this benchmark does not reveal a universal winner. SMAC,
Nomad and MCS excel with extremely limited budgets, while DTS-CMA outperforms the other
methods for the largest dimensions and budgets. TREGO is overall very competitive on inter-
mediate values, in particular for multi-modal functions.

Discussion It appears clearly from our experiments that trust regions are an efficient way to
improve EGO’s scalability with dimension. EGO is known to over-explore the boundaries in
high dimension [42, 24], and narrowing the search space to the vicinity of the current best point
naturally solves this issue. Thus, since EGO is outperformed for any budget, we can conclude
that the gain obtained by focusing early on local optima is not lost later by missing the global
optimum region. Trust regions also improve performance of EGO on problems for which GPs
are not the most natural fit (i.e. unimodal functions). For this class of problems, the most
aggressively local algorithm, i.e., TRIKE, can perform best in some cases (Figure 6), however
our more balanced approach is almost as good, if better (Figure 6, unimodal functions with low
conditioning). On the other hand, maintaining a global search throughout the optimization run

17



allows escaping local optima and ultimately delivering better performance for larger budgets
(see in particular Figure 4, all multimodal functions).

6 Conclusions and perspectives

In this work, the TREGO method is introduced: a Bayesian optimization algorithm based
on a trust-region mechanism for the optimization of expensive-to-evaluate black-box functions.
TREGO builds on the celebrated EGO algorithm by alternating between a standard global step
and a local step during which the search is limited to a trust region. Equipped with such a
local step, TREGO rigorously achieves global convergence, while enjoying the flexible predictors
and efficient exploration-exploitation trade-off provided by the GPs. An extensive benchmark
is then performed, which allowed us to form the following conclusions:

• TREGO benefits from having a relatively high proportion of local steps, but is otherwise
almost insensitive to its other parameters.

• A more complex approach involving both a local and a global model, which is possible in
the TREGO framework, does not provide any benefit.

• TREGO significantly outperforms EGO in all tested situations.

• TREGO is a highly competitive algorithm for multi-modal functions with moderate di-
mensions and budgets.

Making TREGO a potential overall winner on the experiments reported here is an avenue for
future work. This would require improving its performance on unimodal functions with high
conditioning, and improving its performance at very early steps, for example by leveraging SMAC
for creating the initial DoEs. Our empirical evaluation focused on bound constrained BBO
problems. However, TREGO readily applies to the case of explicit, non-relaxable constraints,
which may be studied in the future. Moreover, inspired by e.g. [3, 20, 28] from the DFO
community and [45, 51] from the BO one, TREGO can also be naturally extended to handle
constraints that are allowed to be violated during the optimization process. Another important
future work may include the extension of TREGO to the case of noisy observations, following
recent results in DFO [1, 4, 17, 23] and established BO techniques [46].

Data availability statements

The authors confirm that all data generated or analysed during this study are included in the
paper.

References

[1] S.-K. Anagnostidis, A. Lucchi, and Y. Diouane. Direct-search for a class of stochastic min-max
problems. In International Conference on Artificial Intelligence and Statistics, pages 3772–3780,
2021.

[2] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

18



[3] C. Audet and J. E. Dennis Jr. A progressive barrier for derivative-free nonlinear programming.
SIAM J. Optim., 20:445–472, 2009.

[4] C. Audet, K. J. Dzahini, M. Kokkolaras, and S. Le Digabel. Stochastic mesh adaptive direct search
for blackbox optimization using probabilistic estimates. Comput. Optim. Appl., 19:1–34, 2021.

[5] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer, Cham, Philadelphia,
2017.

[6] C. Audet, S. Le Digabel, V. Rochon Montplaisir, and C. Tribes. Algorithm 1027: NOMAD Version
4: Nonlinear Optimization with the Mads Algorithm. ACM Trans. Math. Softw., 48:1–22, 2022.

[7] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim., 13:889–903,
2002.

[8] A. Auger, S. Finck, N. Hansen, and R. Ros. BBOB 2009: Comparison Tables of All Algorithms on
All Noiseless Functions. Technical Report RT-0383, INRIA, April 2010.

[9] L. Bajer, Z. Pitra, J. Repický, and M. Holena. Gaussian process surrogate models for the CMA
evolution strategy. Evol. Comput., 27:665–697, 2019.

[10] E. Bergou, Y. Diouane, V. Kungurtsev, and C. W. Royer. A stochastic Levenberg-Marquardt method
using random models with complexity results. SIAM-ASA J. Uncertain. Quantif., 10:507–536, 2022.

[11] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis of a stochastic
trust region method via supermartingales. INFORMS J. Optim., 1:92–119, 2019.

[12] A. J. Booker, J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset. A rigorous
framework for optimization of expensive functions by surrogates. Struct. Multidiscipl. Optim., 17:1–
13, 1998.

[13] M. A. Bouhlel, N. Bartoli, R. G. Regis, A. Otsmane, and J. Morlier. Efficient global optimization
for high-dimensional constrained problems by using the kriging models combined with the partial
least squares method. Eng. Optim., 50:2038–2053, 2018.

[14] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599, 2010.

[15] D. Brockhoff. Online description of the BBOB functions. https://coco.gforge.inria.fr/, 2006.

[16] A. D. Bull. Convergence rates of efficient global optimization algorithms. J. Mach. Learn. Res.,
12:2879–2904, 2011.

[17] R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using trust-region method and
random models. Math. Program., 169:447–487, 2018.

[18] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983. Reissued
by SIAM, Philadelphia, 1990.

[19] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[20] Y. Diouane. A merit function approach for evolution strategies. EURO J. Comput. Optim., 9:100001,
2021.

19

https://coco.gforge.inria.fr/


[21] Y. Diouane, S. Gratton, and L. N. Vicente. Globally convergent evolution strategies. Math. Program.,
152:467–490, 2015.

[22] Y. Diouane, S. Gratton, and L. N. Vicente. Globally convergent evolution strategies for constrained
optimization. Comput. Optim. Appl., 62:323–346, 2015.

[23] Y. Diouane, A. Lucchi, and V. Patil. A globally convergent evolutionary strategy for stochastic
constrained optimization with applications to reinforcement learning. In International Conference
on Artificial Intelligence and Statistics, pages 3772–3780, 2022.

[24] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek. Scalable global optimization
via local Bayesian optimization. In Advances in Neural Information Processing Systems.

[25] K.-T. Fang, R. Li, and A. Sudjianto. Design and modeling for computer experiments. CRC press,
2005.

[26] A. I. J. Forrester, A. Sóbester, and A. J. Keane. Multi-fidelity optimization via surrogate modelling.
Philos. Trans. A. Math. Phys. Eng. Sci., 463:3251–3269, 2007.

[27] P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[28] S. Gratton and L. N. Vicente. A merit function approach for direct search. SIAM J. Optim.,
24:1980–1998, 2014.

[29] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık. Comparing results of 31 algorithms from the
black-box optimization benchmarking bbob-2009. In Annual Conference Companion on Genetic and
evolutionary computation, pages 1689–1696, 2010.

[30] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff. COCO: a platform for
comparing continuous optimizers in a black-box setting. Optim. Methods Softw., 36:114–144, 2021.

[31] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International Conference on Learning and Intelligent Optimization,
pages 507–523, 2011.

[32] W. Huyer and A. Neumaier. Global optimization by multilevel coordinate search. J. Global Optim.,
14:331–355, 1999.

[33] J. Jahn. Introduction to the Theory of Nonlinear Optimization. Springer-Verlag, Berlin, 1996.

[34] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. J. Global Optim., 13:455–492, 1998.

[35] K. Kandasamy, J. Schneider, and B. Póczos. High dimensional Bayesian optimisation and bandits
via additive models. In International Conference on Machine Learning, pages 295–304, 2015.

[36] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[37] S. Le Digabel. Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm. ACM
Trans. Math. Softw., 37:44, 2011.

[38] S. Le Digabel and S.M. Wild. A Taxonomy of Constraints in Simulation-Based Optimization.
Technical Report G-2015-57, Les cahiers du GERAD, 2015.

[39] M. McLeod, S. Roberts, and M. A. Osborne. Optimization, fast and slow: optimally switching
between local and Bayesian optimization. In International Conference on Machine Learning, pages
3443–3452, 2018.

20



[40] J. Mockus. Bayesian approach to global optimization: theory and applications. Springer Science &
Business Media, 2012.

[41] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second edition, 2006.

[42] Ch. Y. Oh, E. Gavves, and M. Welling. BOCK: Bayesian optimization with cylindrical kernels. In
International Conference on Machine Learning, pages 3868–3877, 2018.

[43] V. Picheny, P. Casadebaig, R. Trépos, R. Faivre, D. Da Silva, P. Vincourt, and E. Costes. Using
numerical plant models and phenotypic correlation space to design achievable ideotypes. Plant Cell
Environ., 40:1926–1939, 2017.

[44] V. Picheny and D. Ginsbourger. Noisy Kriging-based optimization methods: a unified implementa-
tion within the DiceOptim package. Comput. Stat. Data Anal., 71:1035–1053, 2014.

[45] V. Picheny, R. B. Gramacy, S. Wild, and S. Le Digabel. Bayesian optimization under mixed con-
straints with a slack-variable augmented lagrangian. In Advances in Neural Information Processing
Systems, pages 1435–1443, 2016.

[46] V. Picheny, T. Wagner, and D. Ginsbourger. A benchmark of kriging-based infill criteria for noisy
optimization. Struct. Multidiscipl. Optim., 48:607–626, 2013.

[47] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT press
Cambridge, MA, 2006.

[48] R. G. Regis. Trust regions in Kriging-based optimization with expected improvement. Eng. Optim.,
48:1037–1059, 2016.

[49] L. Rios and N. Sahinidis. Derivative-free optimization: a review of algorithms and comparison of
software implementations. J. Global Optim., 56:1247–1293, 2013.

[50] O. Roustant, D. Ginsbourger, and Y. Deville. DiceKriging, DiceOptim: Two R Packages for the
Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization. J. Stat.
Softw., 51, 2012.

[51] M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained optimization
of computer models. Lecture Notes-Monograph Series, pages 11–25, 1998.

[52] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of the IEEE, 104:148–175, 2015.

[53] E. Siivola, A. Vehtari, J. Vanhatalo, J. González, and M. R. Andersen. Correcting boundary over-
exploration deficiencies in Bayesian optimization with virtual derivative sign observations. In IEEE
International Workshop on Machine Learning for Signal Processing, pages 1–6, 2018.

[54] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in neural information processing systems, pages 2951–2959, 2012.

[55] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. In International Conference on Machine Learning,
2010.

[56] M. L. Stein. Interpolation of spatial data: some theory for Kriging. Springer Science & Business
Media, 2012.

[57] A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound constrained
global optimization. J. Global Optim., 39:197–219, 2007.

21



[58] E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm with fixed
mean and covariance functions. J. Stat. Plan. and Inference, 140:3088–3095, 2010.

[59] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions. Math.
Program., 133:299–325, 2012.

[60] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas. Bayesian optimization in a billion
dimensions via random embeddings. J. Artif. Intell. Res., 55:361–387, 2016.

22



A Pseudo-code of the TREGO algorithm

Algorithm 1: A Trust-Region framework for EGO (TREGO).

Data: Create an initial DoE Dt0 = {x1, x2, . . . , xt0} of t0 points in a given set Ω ⊂ Rn with a given
method. Set Yt0 = {f(x1), f(x2), . . . , f(xt0)}. Choose G ≥ 0 the number of the global steps and
L ≥ 1 the number of the local steps. Initialize the step-size parameter σ0, x∗0 ∈ Dt0 , choose the
constants β, γ, dmin and dmax such that 0 < β < 1 < γ and 0 < dmin < dmax. Select a forcing
function ρ(.) and set k = 0 and t = t0;

while some stopping criterion is not satisfied do

/* A global phase over Ω: */
for i = 1, . . . , G do

Step 1 (global acquisition function maximization):
Set

xglobal
t := argmax

x∈Ω
α(x;Dt);

Step 2 (update the DoE): Set Dt+1 = Dt ∪
{
xglobal
t

}
and Yt+1 = Yt ∪

{
f
(
xglobal
t

)}
;

Increment t;

end

Let xglobal
k+1 be the best point (in term of f) in the DoE Dt;

Step 3 (imposing sufficient decrease globally):
if f(xglobal

k+1 ) ≤ f(x∗k)− ρ(σk) then

the global phase is successful, set x∗k+1 = xglobal
k+1 and σk+1 = γσk;

else

/* A local phase over the trust-region Ωk: */
for i = 1, . . . , L do

Step 4 (local acquisition function maximization):
Set

xlocal
t := argmax

x∈Ωk

α(x;Dt),

where Ωk is the trust-region given by Ωk = {x ∈ Ω | dminσk ≤ ‖x− x∗k‖ ≤ dmaxσk};
Step 5 (update the DoE): Set Dt+1 = Dt ∪

{
xlocal
t

}
and Yt+1 = Yt ∪

{
f
(
xlocal
t

)}
;

Increment t;

end

Let xlocal
k+1 be the best point (in term of f) in the DoE Dt;

Step 6 (imposing sufficient decrease locally):
if f(xlocal

k+1 ) ≤ f(x∗k)− ρ(σk) then

the local phase and iteration are successful, set x∗k+1 = xlocal
k+1 and σk+1 = γσk ;

else
the local phase and iteration are not successful, set x∗k+1 = x∗k, and σk+1 = βσk;

end

end
Increment k;

end

23



B Functions of the BBOB noiseless testbed

ID name comments
separable functions

f1 Sphere unimodal, allows to checks numerical accuracy at convergence
f2 Ellipsoidal unimodal, conditioning ≈ 106

f3 Rastrigin 10n local minima, spherical global structure
f4 Büche-Rastrigin 10n local minima, asymmetric global structure
f5 Linear Slope linear, solution on the domain boundary

functions with low or moderate conditioning
f6 Attractive Sector unimodal, highly asymmetric
f7 Step Ellipsoidal unimodal, conditioning ≈ 100, made of many plateaus
f8 Original Rosenbrock good points form a curved n− 1 dimensional valley
f9 Rotated Rosenbrock rotated f8

unimodal functions with high conditioning ≈ 106

f10 Ellipsoidal rotated f2
f11 Discus a direction is 1000 times more sensitive than the others
f12 Bent Cigar non-quadratic optimal valley
f13 Sharp Ridge resembles f12 with a non-differentiable bottom of valley
f14 Different Powers different sensitivities w.r.t. the xi’s near the optimum

multimodal functions with adequate global structure
f15 Rastrigin rotated and asymmetric f3
f16 Weierstrass highly rugged and moderately repetitive landscape, non unique optimum
f17 Schaffers F7 highly multimodal with spatial variation of frequency and amplitude,

smoother and more repetitive than f16
f18 moderately ill-conditioned Schaf-

fers F7
f17 with conditioning ≈ 1000

f19 Composite Griewank-Rosenbrock highly multimodal version of Rosenbrock
multimodal functions with weak global structure

f20 Schwefel 2n most prominent optima close to the corners of a shrinked and rotated
rectangle

f21 Gallagher’s Gaussian 101-me
peaks

101 optima with random positions and heights, conditioning ≈ 30

f22 Gallagher’s Gaussian 21-hi peaks 21 optima with random positions and heights, conditioning ≈ 1000
f23 Katsuura highly rugged and repetitive function with more than 10n global optima
f24 Lunacek bi-Rastrigin highly multimodal function with 2 funnels, one leading to a local optimum

and covering about 70% of the search space

Table 2: Functions of the BBOB noiseless testbed, divided in groups.

24



C Complementary experimental results

Local / global ratio Other parameters
S

ep
ar

a
b

le

0
0.0

0.2

0.4

0.6

0.8

random

gl10-1

gl4-1

gl1-4

gl1-10

TREGO

best09

v2.3.1

0
0.0

0.2

0.4

0.6

0.8

random

fstC

fstCsmV0

smV0

TREGO

lgV0

locGP

best09

v2.3.1

L
ow

co
n

d
it

io
n

in
g

0
0.0

0.2

0.4

0.6

0.8

1.0

random

gl10-1

gl4-1

gl1-10

gl1-4

TREGO

best09

v2.3.1

0
0.0

0.2

0.4

0.6

0.8

1.0

random

fstCsmV0

fstC

lgV0

smV0

TREGO

locGP

best09

v2.3.1

H
ig

h
co

n
d

it
io

n
in

g

0
0.0

0.2

0.4

0.6

0.8

1.0

random

gl10-1

gl4-1

TREGO

gl1-10

gl1-4

best09

v2.3.1

0
0.0

0.2

0.4

0.6

0.8

1.0

random

locGP

fstCsmV0

smV0

lgV0

TREGO

fstC

best09

v2.3.1

M
u

lt
im

o
d

.,
st

ro
n

g
st

ru
ct

.

0
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

random

gl10-1

gl4-1

TREGO

gl1-10

gl1-4

best09

v2.3.1

0
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

random

smV0

fstCsmV0

fstC

TREGO

locGP

lgV0

best09

v2.3.1

M
u

lt
im

o
d

.,
w

ea
k

st
ru

ct
.

0
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

random

gl4-1

gl10-1

gl1-4

gl1-10

TREGO

best09

v2.3.1

0
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

random

fstC

fstCsmV0

locGP

TREGO

best09

smV0

lgV0

v2.3.1

Figure 5: Effect of changing parameters of the TREGO algorithm, averaged by function groups
for n = 5. Run length is 30× n.

25



Separable Unimodal, high cond.

n
=

5
n

=
10

Figure 6: Comparison of TREGO with state-of-the-art optimization algorithms on separable
(left) and unimodal with high conditioning functions (right), for n = 5 (top) and n = 10
(bottom). Run length = 50× n.

26


	Introduction
	The Efficient Global Optimization Framework
	A Trust-Region Framework for EGO (TREGO)
	The TREGO algorithm
	Extensions
	Related work

	Convergence Analysis of TREGO
	Numerical Experiments
	Testing procedure using the BBOB benchmark
	Implementation details
	Sensitivity analysis and ablation study
	Comparison with state-of-the-art BBO algorithms

	Conclusions and perspectives
	Pseudo-code of the TREGO algorithm
	Functions of the BBOB noiseless testbed
	Complementary experimental results

