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ENS, Université PSL, CNRS, Sorbonne Université,
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We use nominally forbidden electron-nuclear spin transitions in nitrogen-vacancy (NV) centers in
diamond to demonstrate coherent manipulation of a nuclear spin ensemble using microwave fields
at room temperature. We show that employing an off-axis magnetic field with a modest amplitude
(≈ 0.01 T) at an angle with respect to the NV natural quantization axes is enough to tilt the direction
of the electronic spins, and enable efficient spin exchange with the nitrogen nuclei of the NV center.
We could then demonstrate fast Rabi oscillations on electron-nuclear spin exchanging transitions,
coherent population trapping and polarization of nuclear spin ensembles in the microwave regime.
Coupling many electronic spins of NV centers to their intrinsic nuclei offers full scalability with
respect to the number of controllable spins and provides prospects for transduction. In particular,
the technique could be applied to long-lived storage of microwave photons and to the coupling of
nuclear spins to mechanical oscillators in the resolved sideband regime.

Nuclear spins in solids form extremely well isolated
quantum systems that have emerged as promising candi-
dates for solid-state quantum information processing and
quantum sensing [1–3]. However, due to their high degree
of isolation, nuclear spins initialization, control and read-
out remain challenging. A successful strategy is to use
their coupling to electron spins. It was realized 70 years
ago that nuclear polarization can be enhanced by taking
advantage of the magnetic polarizability of nearby elec-
tron spins [4–8] with direct impact in Nuclear Magnetic
Resonance and Imaging (NMR and MRI) [9–11].

More advanced quantum control uses optically polar-
izable electron spins [12, 13] found in some materials.
Notably, in the last two decades, there has been con-
siderable success in the implementation of the electronic
spin of the negatively charged Nitrogen-Vacancy (NV)
centers in diamond interacting with surrounding nuclear
spins. Coherent control of single 13C nuclear spins us-
ing nearby NV centers has for instance enabled a wealth
of quantum effects to be observed such as the realiza-
tion of a two-qubits conditional quantum gate [14], ar-
bitrary quantum state transfer between electron and nu-
clear spins [15] or coherent population trapping of single
nuclear spins [16]. Single NVs have also been coupled to
few [17–23], or a bath of surrounding 13C nuclear spins
[24–28]. Recently, quantum imaging of a 27-spin ensem-
ble [29] and a 10-qubits quantum register [30] have been
achieved.

In contrast with the randomness of the location of most
nuclear spins with respect to the NV centers, 14N spins
are deterministically present on every center. This should
in principle allow a uniform scaling of some of the afore-
mentioned interactions to ensembles. In particular, it
would be beneficial for quantum memories, enabling a√
N scaling of the single photon coupling efficiency [60].

However, the transverse (flip-flop) coupling between the
14N nuclear and NV electron spins is weak. Strong DC

magnetic fields, precisely tuned to Level Anti-Crossings
(LAC) [31–35], have enabled nuclear spin polarization
[32, 33], enhanced electron spin read-out fidelity [36]
and electron to nuclear spin quantum state transfer [37].
Seeking fast and controllable coupling schemes, AC fields
have been used to drive nominally forbidden transitions,
hereafter called electron-nuclear spin transitions (ENST),
which change both the electron and nuclear spins, using
an off-axis magnetic field [38]. ENST have been observed
near the ground state LAC [39–42], in the RF domain
[43, 44] where they have shown to effectively increase the
nuclear g-factor, and with optical fields at 4K [45].

In this letter, we demonstrate coherent driving of en-
sembles of nuclear spins via ENST in the microwave
regime. We use it to realize coherent population trapping
of a nuclear spin ensemble at room temperature and dis-
cuss applications in quantum information storage. We
also present a new method for polarizing nuclear spins
using off-axis magnetic fields and propose an application
in the field of spin-mechanics.

We consider an ensemble of spins in a bulk diamond as
illustrated in Fig.1a. A single NV center can be described
as composed of the S = 1 electron spin and the I = 1 14N
nuclear spin. Taking the NV direction as quantization
axis, the NV center Hamiltonian reads

HNV /h = DŜ2
z + γeŜ ·B +QÎ2z − γnÎ ·B +AÎ · Ŝ,

where D = 2.87 GHz and Q = −4.945 MHz [32] are
the electron and nuclear spin zero field splittings , γe =
2.802 MHz/G and γn = 0.308 kHz/G are the electron
and nuclear spin gyromagnetic factors respectively, and
A is the diagonal hyperfine interaction tensor with Azz =
−2.162 MHz [32] and Axx = Ayy = −2.62 MHz [43]. We
neglect the effect of strain which is a good approximation
for the high quality bulk diamond used in this work.

The level structure of the NV center is shown in
Fig.1b, featuring the 3 × 3 quantum states of the two
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FIG. 1: a) Schematics showing a bulk diamond containing an ensemble of NV centers coupled to electronic and 14N nuclear
spins. b) Energy level structure of a single NV center. Left : electron spin levels. Wavy arrows depict optical electron spin
polarization to the mS = 0 state. Right : coupled electron-nuclear spins levels. Solid red arrows show nuclear spin preserving
transitions (1+, 2+ and 3+). Dashed green arrows show nuclear spin exchanging transitions (a+, b+, c+ and d+). c) ODMR
spectrum taken for (B, θ) = (75.0 G, 87.8◦), the dashed line is a guide to the eye. d) ODMR spectra for (B, θ) = (75 G, 89.7◦)
(top), (B, θ) = (75 G, 87.8◦) (middle) and (B, θ) = (57 G, 84.0◦), (bottom). Solid lines are experimental measurements, dashed
lines are guides to the eye, points and vertical lines are theoretical predictions of the transition frequencies. e) Rabi oscillations
on transition a+ for (B, θ) = (81 G, 87.9◦). The red solid line is an exponentially damped sinusoidal fit to the data. f) Ratio
between the Rabi frequencies of the a− (Ωa−) and 2−transitions (Ω2−) as a function of θ for different B-fields. Points are
experimental data, solid lines (dashed lines) are theoretical predictions for a microwave field polarized along the x-axis (y-axis).

coupled spin 1 systems labelled by the electron (mS =
−1, 0,+1) and nuclear (mI = −1, 0,+1) magnetic quan-
tum numbers. Under a B field along the NV axis,
electron and nuclear spins states are not mixed : mS

and mI are therefore good quantum numbers. How-
ever, under an off-axis B field, HNV mixes the elec-
tron and nuclear spin states, leading to new eigenstates
|i〉 =

∑
mS ,mI

αimS ,mI
|ms,mI〉. As illustrated in Fig.1-a,

the two spins indeed do not point to the same direction
because of their differing zero field splitting (D and Q)
and gyromagnetic factors (γe and γn). This authorizes
ENST where both the electronic and nuclear spin states
are changed, without significant reduction in the polari-
sation efficiency of the electronic spin for magnetic fields
below one hundred Gauss (See SI).

Experimentally, we investigate this effect using a 12C
enriched bulk diamond grown by Chemical Vapor Depo-
sition (CVD). Injection of N2 during the growing pro-
cess gives a concentration of NV centers of ≈ 0.3 ppb in
the diamond crystal. Using a confocal microscope (see
SI), we perform Optically Detected Magnetic Resonance
(ODMR) on an ensemble of hundreds of NV centers
driven by a microwave signal. Fig.1c shows an ODMR
on one of the four NV classes at around 2.9 GHz un-
der a magnetic field of B = 75 G at an angle θ = 87.8◦

with respect to the NV axis (see SI for calibration de-
tails). Six electronic spin transitions from the |ms = 0〉
to the |ms = +1〉 state (labelled with subscripts +)
can clearly be observed, as described in Fig.1b. Simi-
lar transitions from the |ms = 0〉 to the |ms = −1〉 state

(labelled with subscripts −) are also observed (see SI).
Those ENST in the microwave domain have not been re-
ported in the literature although they have been shown
to contribute to a modulation in electron spin echo sig-
nals [46]. Fig.1d shows ODMR spectra where θ is tuned
towards π/2 (from bottom to top). Vertical lines on each
graph are the HNV eigenfrequencies calculated numeri-
cally, showing very good agreement with the data.

Fig.1e is a measurement of the normalized NV photolu-
minescence as a function of microwave duration on the a+
transition for (B, θ) = (81 G, 87.9◦), demonstrating co-
herent microwave driving of nuclear spins ensembles. We
measure a Rabi frequency Ωa+ = 2π×147(1) kHz and a
damping time τR = 22(4)µs similar to the damping mea-
sured on the nuclear spin preserving transition (see SI).
The Rabi frequency here is on the order of the RF Rabi
frequencies measured close to NV level anti-crossings
[32, 33]. The relative Rabi strengths Ωa−/Ω2− for dif-
ferent B field amplitudes and orientations are plotted
in Fig.1f. Theoretical calculations of the Rabi frequen-
cies on the |i〉 ↔ |j〉 transition, Ωij = γeBµW 〈i|Sx(y)|j〉
with BµW the B field amplitude at the spin position
(see SI), show very good agreement with the data. Note
that for the B field magnitudes considered in the work,
Ωnp

/Ω2p ≈ 10 % for n = a, b, c, d and p = +,−. In order
to avoid excitation of the nearby nuclear spin preserving
transitions, an upper bound for Ωnp

/2π is thus ≈ 100
kHz.

A direct consequence of these ENST is that three-
level Λ-schemes can be isolated, offering the unprece-
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FIG. 2: a) Selected Λ-scheme in the coupled electron-nuclear
spin level structure. Dashed wavy arrows represent the opti-
cally induced nuclear spin state relaxation. b) ODMR as a
function of ∆/2π showing CPT with a nuclear spin ensem-
ble. The blue/red line is the data/fit. c) Full Width at Half
Maximum (FWHM) (blue circles, scale on the left) and con-
trast (green square, scale on the right) of the CPT peak are
plotted as a function of Ω1−/2π. Here, γlas=18(1) kHz and
Ωa−=2π×30.6(7) kHz. Solid lines are linear fits to the data.
For the CPT width, the two first points are excluded from the
fit. d) FWHM (blue circles, scale on the left) and contrast
(green squares, scale on the right) of the CPT peak as a func-
tion of γlas. Here, Ω1−=2π×24.7(2) kHz, Ωa−=2π×33.7(7)
kHz. Solid lines are linear fits to the data, dashed lines are
mean values of the data. (B, θ) = (82.71 G, 10.2◦) for all
data.

dented possibility to realize Coherent Population Trap-
ping (CPT) with nuclear spin ensembles at room tem-
perature. In a three-level Λ-scheme driven by two fields,
the superposition of the two ground states, a so called
dark state, is decoupled from the driving fields [47].
A consequence of this is that when the two fields are
resonant, there is no population in the excited state
in the steady-state across a narrow frequency window.
Fig.2a depicts the Λ-scheme that we isolate experimen-
tally. Fig.2b displays the measured ODMR spectrum.
Here, we set the laser repolarisation rate γlas to 18(1)
kHz (see SI), Ωa−,1− = 2π × (30.6(7), 12.9(2)) kHz and
(B, θ) = (82.71 G, 10.2◦). As expected, a sharp peak
appears close to two-photon resonance, with an almost
full suppression of the population in the excited state at
∆/2π ≈ 0kHz. Quantitatively, this characteristic CPT
peak is well approximated by a Lorentzian with a width
of 2π×8.2(1.0) kHz and a contrast of 95(9)% signaling
very small nuclear spin relaxation.

In atomic CPT, the transitions are in the optical do-
main, so the dissipative preparation of the dark state
occurs through spontaneous emission. Interestingly, in
the case of NV centers, dissipation is tunable via the
green laser that polarizes the NV spin [16, 48]. One
consequence of this is nuclear spin dephasing and relax-
ation induced by the optical excitation [49–52]. Here, the

electron-nuclear spin state mixing due to off-axis mag-
netic fields differs between ground and excited states,
similar to when NV centers couple to the nuclear spin
of proximal 13C atoms [15, 31, 53]. Phenomenologi-
cally, two main resulting mechanisms are at play : de-
cay from the |mS = −1,mI = −1〉 state towards the
|mS = 0,mI = 0〉 state and population transfer between
the |mS = 0,mI = −1〉 and the |mS = 0,mI = 0〉 states
(see Fig.2a). Fig.2c is a measurement of the width of
the CPT peak as a function of Ω1−/2π, featuring a lin-
ear dependency of the width and contrasts as a function
of Rabi frequency up to 90kHz. This is at odds with
standard CPT [47] where the widths and contrasts are
expected to depend quadratically on the Rabi frequency.
In Fig.2d, we plot the same quantities as a function of
the electron spin polarization rate γlas. While the con-
trast remains constant at a value of ≈ 80 %, we observe
that the CPT peak width first increases linearly with γlas
and then reaches a plateau at a value of around 14 kHz
for γlas above 22 kHz. This scaling also differs from the
standard CPT scaling laws, where the width is expected
to decrease with increasing relaxation [47]. Full model-
ing of the dynamics involving the 21 involved levels goes
beyond the scope of this work, but these observations in-
dicate that under strong optical illumination, dephasing
and relaxation processes impact the CPT dynamics (see
SI).

We now turn to another consequence of the ENST,
namely the possibility to polarize ensembles of nuclear
spins. As illustrated in Fig.3a, the electron spin polar-
ization can in principle be transferred to the nuclear spins
via a microwave pump Ωp. The employed experimental
sequence is shown in Fig.3b. First, the electron spins are
polarized in the |mS = 0〉 state. Then, the microwave
pump is turned on. Finally, we let the electron spins
re-polarize in the |mS = 0〉 state before applying a read-
out microwave pulse with a smaller Rabi frequency Ωr.
This sequence is repeated for different frequencies of the
read-out pulse to measure the population in the different
nuclear spin states. Fig.3c ii-iii-iv) show three ODMR
spectra obtained with the pump tuned to transitions a−,
c−/d− and b− respectively and at an angle θ = 10.2◦,
while trace i) is recorded with the pump off, demonstrat-
ing polarization of the whole 14N nuclear spin ensemble.

Unexpectedly, tuning the pump to transition a− resp.
b− depopulates the nuclear spins out of the |mI = +1〉
resp. |mI = −1〉 states, so that the whole process in the
end feeds population back mostly in the desired nuclear
spin state. This observation points towards a faster decay
channel from the |0〉 to the |±1〉 states than between the
| ± 1〉 states as indicated by the dashed red arrows in
Fig.3a. We confirm this by measuring the nuclear spin
depolarisation rate (inset of fig.3e) as a function of γlas
from the state |0〉 (γ

|0〉
las, green squares in fig.3e) and | +

1〉 (γ
|+1〉
las , blue circles) by recording the PL rate versus

twait. We first observe that γ
|+1〉
las and γ

|0〉
las evolve linearly

with γlas and thus with the optical power, as expected.
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FIG. 3: a) Schematic of the nuclear spin polarization mechanism. b) Preparation and measurement sequence. c) ODMR spectra
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an exponential fit to the data (red line). The faint areas are results from a numerical model described in the SI.

Moreover, we find that γ
|0〉
las/γlas=8.0(3)% is higher than

γ
|+1〉
las /γlas=4.5(1)% giving a ratio γ

|0〉
las/γ

|+1〉
las = 1.8(1).

As detailed in the SI, numerical modeling (faint areas in
fig.3e) gives loosely bounded but compatible results, with

γ
|0〉
las/γ

|+1〉
las = 2.27(3). Overall, the presented results show

a new method to selectively polarize all three nuclear spin
states with a degree of polarization of ≈ 60%. Uniquely,
this methods does not require a B field align with the NV
axis. This new method could in principle be used with
the 15N isotope with an even better polarisation since it
only has two spin eigenstates.

Let us finally discuss applications emerging from this
work. In general, our observations open a path towards
coupling ensembles of nuclear spins to degrees of free-
dom that are controllable by electronic spins. One ex-
ample where such transduction could be employed is in
spin-mechanics [54], in particular using the libration of
levitating diamonds or magnets [55, 56] coupled identi-
cally to ensembles of NVs via off-axis B-fields. One out-
standing difficulty of these experiments is to reach the
so called resolved sideband regime, where the mechan-
ical oscillator frequency Ωm/2π exceeds the electronic
spin resonance decay rate, a crucial step towards spin-
cooling to the motional ground state. In this endeavor,
nuclear spins can play a decisive role since they are iso-
lated from their environment and feature very low decay
rates. Nuclear spins have already been envisioned as a
pristine system for spin-cooling cantilevers [57–59]. How-
ever these proposals typically require low temperatures
or LAC at large fields for nuclear spin-polarisation. The
presented ENST can be advantageously employed for re-
solved sideband manipulations using levitating diamonds

at room temperature. The nuclear spins can indeed be
polarized using the present scheme in the ideal B-field
angle and magnitude for spin-mechanical coupling [56].
A subsequent tone can then drive the many long-lived
nuclear spins on the resolved red motional sideband at a
frequency Q−Ωm/2π without requiring a large mechan-
ical frequency. Estimations suggest that using 1010 nu-
clear spins at pressures below 10−3 mbars will then cool
the mechanical oscillator to the motional ground state.

A second promising direction would be light storage
using Electromagnetically-Induced Transparency (EIT),
the counterpart of CPT. In addition to ultra-narrow spec-
tral features and its applications in metrology, EIT is the
physical playground for the standard quantum memory
protocol [60] which have been now realized using a large
variety of systems. There are widespread studies on the
strong coupling of electronics spins to microwaves cavities
at ambient conditions [61]. For now, a quantum memory
for microwaves using NV centers has been realized us-
ing photon-echo techniques on an electron spin transition
[62–64] at cryogenic conditions. Our work thus opens up
clear perspectives for the use of EIT-based memories for
storing microwave photons in a nuclear spin ensemble at
room temperature.

In conclusion, we have shown that the 14N nuclear
spin of NV centers can be coherently manipulated by mi-
crowave fields in the presence of an off-axis B field. We
used this to realize CPT with a nuclear spin ensemble at
room temperature and to demonstrate a new method to
polarize nuclear spins under small magnetic fields. Our
results will have important implications as transducers
for protocols that require long-lived spin ensembles.
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Supplementary Material

A. Experimental setup

As illustrated in Fig.S1, the diamond sample is typicaly illuminated with 1mW of 532 nm laser light, focused by a
NA = 0.75 objective (MPLN50x from Olympus). An acousto-optic modulator (AOM) is used to switch on and off the
532nm laser and to finely tuned its power. The photo-luminescence (PL) is collected by the objective, separated form
the excitation light using a dichroic mirror (DM) and a 532nm notch filter (NF), and detected using a multimode-
fibered single-photon avalanche photo-detector (APD) (SPCM-AQRH-15 from Perkin Elmer). Typically, we detect
PL photons at a rate of 1MHz.

532 nm

AOM

DM

NF
Objective

APD

Diamond
sample

antennae
μW

FIG. S1: Optical setup of the experiment.

A ≈ 1mm diameter single loop antenna is placed near the diamond sample (between the objective and the sample)
to apply a microwave field to the NV centers. In the experiments where a single-tone microwave is needed, the
signal is generated with a Rohde & Schwarz SMB100A RF generator, sent to a switch (ZASWA-2-50-DR+ from
Mini-Circuits) and then to an amplifier (ZHL-15W-422-S+ from Mini-Circuits) before feeding the antenna. When a
two-tone microwave field is required, a second signal is generated by a SG4400L RF generator from DS Instruments,
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sent to a switch (ZASWA-2-50-DR+ from Mini-Circuits) and combined with the first signal before the amplifier
using a power combiner (ZAPD-4-S+ from Mini-Circuits). A computer-controlled card (PulseBlaster from SpinCore
Technologies, Inc.) is used to generate the TTL pulses sent to the switches, to trigger the microwave frequency changes
and the photon detection allowing the whole setup to be synchronized.

B. Magnetic field calibration

A permanent magnet is placed a few cm away from the diamond sample in order to apply a uniform magnetic field
to the NV centers. To calibrate the magnetic field magnitude B, and its orientation θ with respect to the NV axis, we
record Optically Detected Magnetic Resonace (ODMR) spectra. We measure both the |mS = 0,mI = 0〉 ↔ |mS =
−1,mI = 0〉 and |mS = 0,mI = 0〉 ↔ |mS = +1,mI = 0〉 transition frequencies (see Fig.S2a). We then perform
reverse engineering on the NV center electron spin Hamiltonian to deduce B and θ from the transition frequencies
measurement.
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FIG. S2: a) ODMR spectra showing the |mS = 0〉 ↔ |mS = −1〉 and |mS = 0〉 ↔ |mS = +1〉 transitions. b) Graphical
determination of (Bexp, θexp). c) Zoom on the crossing point with experimental uncertainties.

For a range of (B,θ) values, we diagonalize numerically He/h = DŜ2
z + γeŜ ·B to calculate the frequency difference

Ediff (B, θ) between and the mean frequency Emean(B, θ) of the |mS = 0〉 ↔ |mS = +1〉 and |mS = 0〉 ↔ |mS =
−1〉 transitions. For a given value Eexpdiff(mean), one can determine all possible pairs (Bdiff(mean), θdiff(mean)) such

that Ediff(mean)(Bdiff(mean), θdiff(mean)) = Eexpdiff(mean). As shown in Fig.S2b), (Bdiff , θdiff ) and (Bmean, θmean)

intercept at one point. One can thus graphically determine the values (Bexp, θexp) corresponding to a given pair of
experimentally measured (Eexpdiff ,Eexpmean).

As shown in Fig.S2c), the experimental uncertainties of the transition frequency measurements translate to uncer-
tainties for the determination of B and θ. Precisions of 0.1 Gauss and 0.1 degree are typically obtained. For values
quoted in the main text, uncertainties are on the order of one unit of the last significant digit.
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FIG. S3: a) Sequence used for the Rabi oscillations measurements. b) Rabi oscillations for the a−transition (in red) and the
2-transition (in green). Solid lines are the data, dashed lines are exponentially damped sinusoidal fits to the data.

C. Rabi oscillations on the nuclear spin preserving and direct transitions

In this section, we describe the experimental measurements of Rabi oscillations shown in Fig. 1 in the main text.
The same sequence, shown in Fig.S3a), is used for both nuclear spin exchanging and preserving transitions. In
Fig.S3b), we plot Rabi oscillations for both the a−transition and the 2-transition.

In these measurements, the Rabi frequency for the 2-transition (Ω2 = 2π×138(1) kHz) is similar than for the
a−transition (Ωa = 2π×147(1) kHz). Damping times τR = 26(5)µs and 22(4) µs are measured, for the 2 and a
transitions respectively, indicating that there is no appreciable difference between the dephasing of the nuclear spin
exchanging and preserving transitions.

D. Measurement of the electron spin T ∗2 time
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FIG. S4: ODMR spectrum of a single electron spin resonance taken at low driving field. The data (blue) are fitted by a
Gaussian function (red).

The Rabi decay time τR can be compared to the electronic spin dephasing time T ∗2 (given mostly by the interaction
between NV and the P1 centers in the sample). The latter can be extracted from the width of an electron spin resonance
at low driving field. We show such an ODMR spectrum in Fig.S4. Fitting the data by a Gaussian lineshape, we

measure a full width at half maximum Γ∗2 = 237(8) kHz. Using the relation Γ∗2 = 2
√
ln2

πT∗
2

[1] gives T ∗2 = 2.2(1) µs. Note

that since ΩaτR > 1 here, continuous dynamical decoupling enhances τR above T ∗2 .
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E. Measurement of the nuclear spin T1 time in the presence of the green laser

1. NV center electron spin polarisation

Before estimating the influence of the laser on the nuclear spin depolarisation rate in the presence of off-axis magnetic
fielf, we describe the optical polarisation of the NV center electronic spin. We use the formalism of [2]. As shown
in Fig.S5a), the relevant NV center energy level structure is composed of the spin-triplet ground state 3A2 (states
{|1〉, |2〉, |3〉}), the spin-triplet excited state 3E (states {|4〉, |5〉, |6〉}) and an effective spin-singlet metastable state
(|7〉). The spin-triplet excited state 3E is an orbital doublet which is averaged at room temperature, its Hamiltonian

Hes
e /h = DesŜ2

z + γeŜ · B is similar to the ground state one (with the same natural quantization axis) but with a
different zero-field splitting value Des = 1.43 GHz. The optical polarization of the electron spin in the |mS = 0〉
state relies on a spin-dependent relaxation of the optically exited states to the metastable state via a non-radiative
inter-system crossing (ISC).
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FIG. S5: a) NV center electron spin energy level structure. b) Population in the lowest energy state versus θ for B=50,100
and 150 G. The calculations are done with the rates given by the set 1 mean values (see Table 1). c) Population in the lowest
energy state versus θ with B=100 G for the set 1 (in blue) and for the set 2 (in green). The dashed lines give the error margins
(See Table 1).

In a magnetic field that is along the NV center natural quantization axis, the natural basis set is {|i〉}. The
incoherent transition rates between the seven levels resulting from optical excitation, photo-luminescence and non-
radiative ISC, are conveniently defined in this basis. Optical excitation from the ground to the excited state and
direct photo-luminescence from the excited to the ground state are assumed to be spin conservative and equal for the
three electron spin states: k14 = k25 = k36 = kLas and k41 = k52 = k63 = kPL. ISC transitions are characterized by
k47 6= k57 = k67 and k71 6= k72 = k73. The five intrinsic parameters (kPL,k47,k57,k71,k72) left in the problem have been
determined experimentally. Their values are presented in table 1. Solving the corresponding rate equations shows
that around 80% of the population is pumped into the state |mS = 0〉 of the spin triplet ground level (state |1〉).

In the presence of an off-axis magnetic field, states |1〉 to |7〉 are not eigenstates of the system because Ĥe and

Ĥes
e are not diagonal in the NV center natural quantization basis. The new eigenstates {|̃i〉} can be expressed as

|̃i〉 =
∑7
j=1 αĩj |j〉 where the {αĩj} can be computed numerically by diagonalizing Ĥe and Ĥes

e . A new set of rate

equations for the states {|̃i〉} can be obtained by calculating the new rates as k̃ĩj̃ =
∑7
p=1

∑7
q=1 |αĩp|2|αj̃q|2kpq. In

Fig.S5b), we show the population in the lowest energy state of the system as a function of the angle between the
magnetic field and the NV center axis θ for B = 50, 100 and 150 G. This shows that, for the magnetic field strength
considered in this work, the NV electron spin optical polarization remains, for all θ, on the same order of magnitude
as for θ = 0 (longitudinal magnetic field). On this graph the orientation for which CPT and nuclear spin polarization
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rate (MHz) Set 1 Set 2
kPL 67.9±1.3 63±3
k47 5.7±0.7 12±3
k57 49.9±1.6 80±6
k71 1.01±0.28 3.3±0.4
k72 0.75±0.11 2.4±0.4

TABLE I: Coupling rates between the NV center eigenstates. The values presented in the set 1 are taken from [2] where
measurements were done on four different NV centers. The values quoted here corresponds to the weighted mean and standard
error of the four measurements. The values of the set 2 are taken from [3], where measurements from [4] were used.

experiments have been realized is indicated by the vertical dashed line.
In Fig.S5c), we plot the same curve as above for B = 100 G using the two available set of parameters, with their

experimental uncertainties. It is noteworthy that, using currently available experimental measurements, the value for
the optical polarization achievable for NV centers at room temperature is determined with a level of uncertainty of
around 10%.
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FIG. S6: a) Phenomenological picture for the NV electron spin polarization. b) Experimental sequence used to determine γLas.
c) Typical measurements of γLas, data are in blue, solid red line is an exponential fit to the data.

A very simplified picture can be used to describe the effect of optical illumination on the NV electron spin ground
level by modeling the polarisation via a relaxation from the states |mS ± 1〉 towards the state |mS = 0〉 at a rate γLas
(see Fig.S6a)). Experimentally, γLas is obtained by monitoring the PL counts rate temporal evolution after switching
off a microwave field resonant with an electron transition (see Fig.S6b)). While the microwave field populates the
|mS = −1〉 (or |mS = 1〉) state, population returns to the |mS = 0〉 after the field is switched off. As shown in
Fig.S6c), fitting the temporal evolution of the PL by an exponential curve gives γLas.

2. Electron-nuclear spin state mixing under off-axis magnetic field

In this section, we give describe in more details the electron-nuclear spin coupling induced by the presence of an
off-axis magnetic field. We first recall the NV-center Hamiltonian as given in the main text

ĤNV /h = DŜ2
z + γeŜ ·B +QÎ2z − γnÎ ·B +AÎ · Ŝ.

This Hamiltonian is expressed in the NV center natural quantization basis (the z-axis is the NV center axis). Without
loss of generality, we take the magnetic field (of magnitude B) in the z − x-plane, forming an angle θ with the z-axis
and write

γeŜ ·B = γeB||Ŝz + γeB⊥Ŝx,

γnÎ ·B = γnB||Îz + γnB⊥Îx,

with B cos θ = B|| and B sin θ = B⊥.
In Fig.S7a), we show a graphical representation of this Hamiltonian, highlighting the off-diagonal terms re-

sponsible for the electron-nuclear spin state mixing. We can formally express the eigenstates of ĤNV as |i〉 =
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FIG. S7: a) Energy levels in the NV center natural basis, the arrows represent the mixing due to the Hamiltonian off-diagonal

terms. b) Decomposition of the Hamiltonian eigenstates (denoted as ˜|mS ,mI〉) onto the NV center natural basis, for B=100 G
and θ=45◦. Both the amplitude (bottom) and amplitude squared (top) of the α coefficients are represented. For each eigenstate

˜|mS ,mI〉, the blue bars represent the decomposition onto the 9 states |mS ,mI〉 with the same ordering as the new eigenstates.

∑
mS ,mI

αimS ,mI
|ms,mI〉, where {|ms,mI〉}mS=−1,0,+1,mI=−1,0,+1 denote the quantum states in the NV center basis.

We plot in Fig.S7b) |αimS ,mI
| and |αimS ,mI

|2 for a magnetic field B=100G and θ=45◦. As the state mixing remains

small, each eigenstate |i〉 is mainly composed of 1 bare state |ms,mI〉 that we label ˜|mS ,mI〉.
The only pair of states that are significantly mixed by ĤNV are |0,−1〉 and |0,+1〉 in the ground state of the

electronic spin because they have very little energy difference (2γnB||). The small mixing between, for example,
the states |0, 0〉 and |0,+1〉 is responsible for the nuclear spin exchanging transition in the electron spin resonance
spectrum. Interestingly, given that γn � γe, D/B, the contribution of the Ix term in the Hamiltonian (green arrows
on the Fig.S7a)) is negligible. The electron-nuclear spin state mixing at stake in this work originates mostly from

both the hyperfine interaction term A⊥(ŜxÎx + Ŝy Îy) and the magnetic term γeB⊥Ŝx that involves the transverse
component of the magnetic field. As can be seen in Fig.S7a), mixing between the relevant states are a second order

perturbation with a Λ-scheme involving one Ŝx and one (ŜxÎx + Ŝy Îy) coupling. For example the states |0, 0〉 and
|0,+1〉 are mixed through two of these Λ-schemes via the | − 1,+1〉 and |+ 1, 0〉 states.

We now analyse the strength of the different transitions that can be driven with a magnetic field of magnitude BµW
oscillating in the microwave regime. These transitions are shown in Fig.S8a) and b) which shows experimental data
and the corresponding levels in the eigenbasis of Sz.

In Fig.S8c), we plot the quantity |〈i|Sx(y)|j〉| as a function of θ. It corresponds to the |i〉 ↔ |j〉 transition strength
normalized by γeBµW , for a microwave field polarized along the x-axis (y-axis). This plot was taken with a magnetic
field of B=100 G. The weakly allowed transition where the nuclear spin is changed by one quantum (labelled a, b, c

and d in the main text) increases linearly with θ, like the γeB⊥Ŝx coupling term, and reaches values on the order of
10% of the nuclear spin preserving transition. Interestingly, the transitions where the nuclear spin is changed by two
quanta have, for a θ close to π/2, a strength comparable to the ones of nuclear spin preserving transition. This is
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FIG. S8: a) ODMR spectrum taken in the presence of a magnetic field of B=80.8 G and θ=88.0o. Black solid line is the
data, colored vertical lines are the calculated transition frequencies. b) Energy level diagrams for the mS = 0,−1 (left) and
mS = 0,+1 (right) states. The allowed transitions between states are indicated by the colored lines with the same color code
as in a). c) Calculated transition strengths versus θ with B=100 G. The |mS = 0〉 ↔ |mS = −1(+1)〉 transitions are on the
left (right), panels on the top (bottom) are with a microwave field polarized along the x-axis (y-axis). The same color code as
in b) is used. The inset on the top left panel is a zoom on the low angle values.

due to the strong mixing between the |0,−1〉 and |0,+1〉 states. At small θ, their strengths vary quadratically with θ,

because the states |0,−1〉 and |0,+1〉 are mixed through a fourth order mixing involving two γeB⊥Ŝx coupling terms.
It noteworthy that these transitions occur at roughly the same frequency than the spin preserving transitions with a
frequency difference of γnB||, i.e. on the order of 10 kHz for the magnetic field considered in this work, and cannot
be distinguished from the latter. Finally, we note that, when θ approaches 90◦, either the |mS = 0〉 ↔ |mS = −1〉
or the |mS = 0〉 ↔ |mS = +1〉 transition vanishes, at the benefit of the other, when the driving microwave field is
polarized along the x- or the y-axis.

To compare experimental measurements with these theoretical predictions, it is convenient to calculate the transition
strength ratio between the nuclear-spin exchanging transitions and the nuclear spin preserving transition. In Fig.S9a),
we plot the strength of the a−, b−, c− and d− transitions divided by the strength of transition 2−, for a driving
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along both the x- (solid lines) and the y-axis (doted-dashed lines). b) Strength of the a−, b−, c− and d− transitions over the
one of the transition 2− for a driving microwave field polarized along the x-axis, with (solid lines) and without (doted-dashed

lines) the term γnB⊥Îx in the Hamiltonian.

microwave field polarized along both the x- and the y-axis. While the two polarization leads to little differences for
all transitions, we note that the smallest difference is for the a− transition. This is the one that has been compared
with experimental data in the main text.

Finally, we plot in Fig.S9b) the strength of the a−, b−, c− and d− transitions over the one of the transition 2− for

a driving microwave field polarized along the x-axis, with and without the term γnB⊥Îx in the Hamiltonian. This
shows that, as mentioned above, this term is almost negligible for the electron-nuclear spin state mixing investigated
in this work.

3. NV center electron-nuclear spins photo-physics

In this section we discuss theoretical modeling of the dynamics of the NV center coupled electron-nuclear spin system
in the presence of optical illumination and off-axis magnetic field [3, 5–7]. Numerical resolution of this dynamics
can be compared with the experimental measurements of the nuclear spin depolarization rates versus electron spin
polarization rate presented in fig.3e in the main text.

As discuss in a previous section (see fig.S5a), the NV center electron spin photo-physics can be described with a
7-level system (3 ground levels, 3 excited levels and 1 metastable level) connected through incoherent transition rates

and with Hamiltonian dynamics within the 3 ground states (Ĥe) and the 3 excited states (Ĥes
e ). The I = 1 14N

nuclear spin will now be included in the electronic level scheme. The Hamiltonian of excited electronic spin state is
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then

Ĥes
NV /h = DesŜ2

z + γeŜ ·B +QÎ2z − γnÎ ·B +AesÎ · Ŝ,

where Aes is the excited state diagonal hyperfine interaction tensor with Aeszz = 40 MHz [8] and Aesxx = Aesyy = Aes⊥ =
23(3) MHz [3]. The incoherent transitions, that have been defined in the NV natural quantization basis for the
electron spin, can be straightforwardly extended to the electron-nuclear spin system in the same basis by assuming
that they preserve the nuclear spin. Each of the 12 incoherent transitions (see fig.S5a) is split into 3 transitions with
the same rate.

The time evolution of the resulting density matrix ρ is given by

d

dt
ρ = − i

~

[
Ĥ, ρ

]
+ L̂ [ρ] ,

where

L̂ [ρ] =

36∑
k=1

(
LkρL

†
k −

1

2
L†kLkρ−

1

2
ρL†kLk

)
,

The Lindbald operator L̂ describes the 36 incoherent transitions through their jump operator, Lk =
√

Γnm|m〉〈n|
describing a transition from state |n〉 to state |m〉.

To compare this model with the experimental measurements of the nuclear spin depolarization rates shown in fig.3e

in the main text we solve this dynamics numerically. We start in the |̃0, 0〉 and the ˜|0,+1〉 states (eigenstates of

ĤNV which are mainly composed of the |mS = 0,mI = 0〉 and |mS = 0,mI = +1〉 states, respectively, as defined in
the previous section). We can extract the total population of the 9 excited levels Pexc, which is proportional to the

NV center PL and also the population difference PSignal between the |̃0, 0〉 and the ˜| − 1, 0〉 states (and between the

˜|0,+1〉 and the ˜| − 1,+1〉 states). The latter is proportional to the signal that we measure experimentally in fig.3e of
the main text, when applying a resonant microwave field.

Time (μs)

Time (μs)

P e
xc

P S
ig

n
al

FIG. S10: Top: total population in the 9 excited levels Pexc versus time for |Ψ(t = 0)〉 = |̃0, 0〉. Bottom, population difference

between the |̃0, 0〉 and the ˜| − 1, 0〉 states for |Ψ(t = 0)〉 = |̃0, 0〉 (green) and between the ˜|0,+1〉 and the ˜| − 1,+1〉 states for

|Ψ(t = 0)〉 = ˜|0,+1〉 (blue). This was calculating with (B, θ) = (82.71 G, 10.2◦) as in the experimental curve of Fig.3e, and
using kLas = 0.01× kPL. The dashed black curves are exponential decay fits.

In fig.S10, we plot Pexc and PSignal as a function of time for different initial states, using the transition rate values
from [2] (set 1 in table 1). Fitting these curves with exponential decays allow to get values for the electron spin
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polarization rate (γLas) and the nuclear spin depolarization rate γ
˜|mI=+1〉

las and γ
˜|mI=0〉
las , that can be compared to

experimental data.
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FIG. S11: Nuclear spin depolarization rate versus γLas including parameters uncertainty. Region a corresponds to uncertainty
on the hyperfine interaction tensor transverse component, region b corresponds to the difference between the two available
experimental sets for the transitions strengths, region c to the uncertainty within one experimental set

In fig.S11 we plot the nuclear spin depolarization rate of the state ˜|0,+1〉 versus γLas for the three identified sources
of uncertainty in the physical parameters, i.e, the value of the hyperfine interaction tensor transverse component Aes⊥ =
23(3) MHz, the available experimental sets for the transitions strengths parameters and their own uncertainty. We

note that overall, γ
˜|mI=+1〉

las and γ
˜|mI=0〉
las are currently only loosely bounded by the available experimental parameters.

However, their ratio γ
˜|mI=+1〉

las /γ
˜|mI=0〉
las is almost constant for most of the parameters. The discrepancy between the

theoretical and experimental values, 2.27(3) and 1.8(1), respectively, remains to be explained. It could be due to the
presence of electron spin non-preserving radiative transitions [4] or photo-induced excitation to the neutral charge
NV state, which are not accounted for in the present model.
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