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Abstract

The number of adult myofibers in Drosophila is determined by the number of founder myo-

blasts selected from a myoblast pool, a process governed by fibroblast growth factor (FGF)

signaling. Here, we show that loss of cabeza (caz) function results in a reduced number of

adult founder myoblasts, leading to a reduced number and misorientation of adult dorsal

abdominal muscles. Genetic experiments revealed that loss of caz function in both adult

myoblasts and neurons contributes to caz mutant muscle phenotypes. Selective overex-

pression of the FGF receptor Htl or the FGF receptor-specific signaling molecule Stumps in

adult myoblasts partially rescued caz mutant muscle phenotypes, and Stumps levels were

reduced in caz mutant founder myoblasts, indicating FGF pathway deregulation. In both

adult myoblasts and neurons, caz mutant muscle phenotypes were mediated by increased

expression levels of Xrp1, a DNA-binding protein involved in gene expression regulation.

Xrp1-induced phenotypes were dependent on the DNA-binding capacity of its AT-hook

motif, and increased Xrp1 levels in founder myoblasts reduced Stumps expression. Thus,

control of Xrp1 expression by Caz is required for regulation of Stumps expression in founder

myoblasts, resulting in correct founder myoblast selection.

Author summary

Skeletal muscles mediate movement, and therefore, proper structure and function of skel-

etal muscles is required for respiration, locomotion, and posture. Adult muscles arise

from fusion of muscle precursor cells during development. In the fruit fly Drosophila mel-
anogaster, muscle precursor cells come in two flavors: founder cells and fusion-competent

cells. The number of founder cells selected during development corresponds to the num-

ber of adult muscles formed. Here, we report that inactivation of the Drosophila caz gene
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results in muscle developmental defects. Loss of caz function in both muscle precursor

cells and the nerve cells that innervate muscles contributes to the muscle developmental

defect. At the molecular level, loss of caz function leads to increased levels of Xrp1. Xrp1

regulates the expression of many other genes, including genes that produce components

of the FGF signaling pathway, which is known to be involved in founder cell selection. In

all, we uncovered a novel molecular mechanism that regulates founder cell selection dur-

ing muscle development.

Introduction

In Drosophila, two phases of somatic muscle development can be distinguished: during embry-

onic development, a set of muscles is generated that will mediate larval movement, while dur-

ing metamorphosis, adult muscles are generated that allow for adult movement, including

eclosion from the pupal case, locomotion and flight. In the first 24 h after puparium formation

(APF), nearly all larval muscles are histolysed and removed by phagocytosis [1]. Larval motor

neurons persist through metamorphosis, but their processes are substantially remodeled to

innervate the adult muscles [2]. The latter are formed from undifferentiated myoblasts origi-

nating from mesodermal precursor cells that were set aside during embryonic development.

These cells continue to express Twist in the late embryo and proliferate during larval life [3].

During early pupal stages, proliferation continues and myoblasts spread out by migrating

along the peripheral nerves [1]. Around 24 h APF, a subset of adult myoblasts is selected to

become founder myoblasts, while the remaining cells become fusion-competent myoblasts

which later fuse with founder myoblasts to form the characteristic multinucleate adult myo-

tubes [4].

Founder cell selection is accompanied by a decline in Twist expression and induction of

dumbfounded (duf, also known as kirre) expression [4]. Intriguingly, while the selection of

founder myoblasts during embryonic development involves Notch-mediated lateral inhibition

[5], adult founder myoblast selection is mediated by FGF signaling and independent of Notch

signaling [4, 6]. Indeed, manipulation of the expression level of the FGF receptor Heartless

(Htl) in adult myoblasts modulates the number of adult founder myoblasts selected [6]. While

Htl is expressed in both founder and fusion-competent myoblasts, Stumps (also known as Dof

or Hbr), an FGF receptor-specific signaling molecule downstream of Htl, is selectively

expressed in founder myoblasts from 24 h APF onwards [6]. Thus, restriction of Stumps

expression to founder myoblasts may be a key event in founder myoblast selection. The molec-

ular mechanism that mediates restricted Stumps expression in founder myoblasts is currently

elusive.

Here, we identify a novel role for cabeza (caz) in adult muscle development. Caz is the sin-

gle Drosophila orthologue of FUS, EWSR1 and TAF15, three highly homologous proteins that

constitute the FET protein family in humans [7]. The FET proteins are DNA- and RNA-bind-

ing proteins involved in gene expression regulation, including transcription, mRNA splicing

and mRNA subcellular localization [7]. Each of the three FET proteins has been implicated in

the pathogenesis of the motor neurodegenerative disorder amyotrophic lateral sclerosis (ALS)

and frontotemporal dementia (FTD) [8]. We previously reported that loss of caz function

results in failure of pharate adult flies to eclose from the pupal case due to motor weakness.

This is at least in part mediated by loss of neuronal caz function, as selective reintroduction of

Caz in neurons was sufficient to rescue the caz mutant eclosion defect. Moreover, selective

inactivation of caz in neurons was sufficient to induce an adult eclosion defect, albeit with a
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fraction of adult escaper flies that display dramatic motor performance deficits and reduced

life span [9]. The fact that selective caz inactivation in neurons induces an adult eclosion defect

that is not as severe as cazKO animals suggests that loss of caz function in other cell types may

contribute to the caz mutant adult eclosion defect. We considered the adult abdominal muscles

(Fig 1A) as a likely candidate, given their known role in mediating adult eclosion.

We therefore investigated the role of caz function in adult abdominal muscle development.

Loss of caz function resulted in a significant reduction of the number of adult founder myo-

blasts and dorsal abdominal muscles (DAMs), as well as DAM misorientation. Interestingly,

loss of caz function in both adult myoblasts and neurons contributed to the deranged develop-

ment of adult abdominal muscles. Increased expression of Htl or Stumps in adult myoblasts

significantly rescued caz mutant muscle phenotypes, indicating that impaired FGF signaling

contributes to these phenotypes. Consistently, Stumps levels were significantly reduced in caz
mutant founder myoblasts. It was previously reported that neuronal dysfunction in caz
mutants is mediated by increased expression of Xrp1, a DNA-binding protein involved in

gene expression regulation [10]. Here, we could show that also the newly-discovered caz
mutant muscle phenotypes are caused by increased Xrp1 expression levels in both adult myo-

blasts and neurons. Muscle phenotypes induced by increased Xrp1 expression were dependent

on the DNA-binding capacity of its AT-hook motif, and Xrp1 overexpression suppressed

Stumps expression in adult founder myoblasts. In summary, we uncovered a novel mechanism

for regulation of Stumps expression in adult founder myoblasts: Caz controls Xrp1 expression,

thus permitting increased Stumps levels in founder myoblasts and correct founder myoblast

selection.

Results

Loss of caz function deranges adult abdominal muscle development

As proper abdominal muscle function is required for eclosion of adult Drosophila from the

pupal case, we decided to investigate adult abdominal muscle development in two independent

caz loss-of-function lines (caz2 and cazKO) [9]. We generated caz mutants in which the Myosin
heavy chain (Mhc) gene is GFP-tagged to label muscle fibers [11–13]. In vivo confocal imaging

of dorsal abdominal muscles (DAMs) 96 h APF revealed a reduced number of DAMs in both

caz2 and cazKO (Fig 1B). Quantification of DAM number in abdominal hemisegments 3 and 4

revealed a significant reduction by ~30–40% in both body segments of the two caz mutant

lines (Fig 1C and 1D). In addition, DAMs were frequently misoriented in caz mutant animals

(arrowheads in Fig 1B; quantification in Fig 1E and 1F). These abdominal muscle defects are

independent of Mhc-GFP expression, as immunostaining of late pupal filets for actin con-

firmed the profound muscle developmental defects, with both reduced number and misorien-

tation of DAMs in caz mutants that did not carry additional transgenes (Fig 2A and 2B; S1A

Fig). Furthermore, caz mutant muscle defects cannot be attributed to a delay in pupal develop-

ment, as muscle defects were observed both in age-matched (100 h APF) and stage-matched

pupae (based on outer appearance [14], S1A and S1B Fig). Importantly, muscle defects were

not confined to DAMs, but also observed in other abdominal muscle groups, including ventral

abdominal muscles (Fig 2N and 2R). Of note, the larval muscle pattern and number was not

affected by loss of caz function (S2 Fig), indicating that caz mutant muscle defects were con-

fined to adult muscle development, while embryonic muscle development occurred normally.

These muscle morphological defects did not appear secondary to defective innervation by

motor neurons, as the number of motor neurons in the third instar larval ventral cord was not

altered in caz2 animals (Fig 2I and 2J). The fact that caz mutant larvae enter metamorphosis

with a normal number of motor neurons is relevant for pupal development, as the larval
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motor neurons persist to adulthood, in contrast to the majority of larval muscles, which degen-

erate during metamorphosis [1, 2]. Furthermore, staining of abdominal filets of late pupae

(100 h APF) for horseradish peroxidase (HRP), Discs large 1 (Dlg1) and actin revealed normal

innervation of both dorsal and ventral abdominal muscles in caz knock-out animals (Fig 2A–

2H and 2K–2R). This was confirmed by quantitative analysis of NMJ morphology on DAMs

of WT and cazKO pupae 96 h APF, which revealed that both NMJ area and bouton number

were not altered in cazKO (Fig 2S and 2T). Thus, loss of caz function induces muscle develop-

mental defects, which are not attributable to defective motor innervation.

Reduced number of founder myoblasts in caz mutant animals

As the number of adult muscles, including DAMs, is dependent on the number of founder

myoblasts that are selected during early pupal stages (~24 h APF), we investigated whether caz
is expressed in founder myoblasts, and whether the number of founder myoblasts in the dorsal

abdomen was reduced in caz mutants. To identify founder myoblasts, a duf-lacZ transgenic

line was used in which β-galactosidase is selectively expressed in founder myoblasts under the

control of the duf/kirre promoter [4]. Double immunostaining for Caz and β-galactosidase

revealed that Caz is expressed in founder myoblasts (Fig 3A), as well as other cells, likely

including fusion-competent myoblasts, consistent with the previously reported broad expres-

sion pattern of caz [9]. Importantly, the number of founder myoblasts was significantly

reduced in caz mutant pupae as compared to wild type (WT) control (Fig 3B and 3C). Thus,

the reduced number of DAMs in caz mutant late pupae is at least in part attributable to a

reduced number of founder myoblasts 24 h APF.

Loss of caz function in adult myoblasts contributes to caz mutant muscle

defects

Our findings suggested that the caz mutant muscle defects may be caused by loss of caz func-

tion in founder myoblasts. In line with this possibility, selective expression of Caz in adult

myoblasts (1151-GAL4) of caz mutants rescued their reduced number of founder myoblasts to

a level that was not statistically different from control genotypes (Fig 3D). Consistently, selec-

tive Caz expression in adult myoblasts also substantially rescued the reduced DAM number

and DAM misorientation of cazKO pupae 96 h APF (Fig 3E and 3F). We further examined the

effect of selective inactivation of caz in adult myoblasts by crossing animals that selectively

express FLP recombinase in these cells (1151-GAL4>UAS-FLP) to conditional caz knock-out

animals in which the caz gene is flanked by FRT sites (cazFRT) [9]. Adult myoblast-selective caz
inactivation resulted in a significantly reduced number of founder myoblasts at 24 h APF (Fig

3G) and a reduced DAM number and DAM misorientation at 96 h APF (Fig 3H and 3I; repre-

sentative images in S3A Fig), albeit these muscle developmental defects appeared slightly less

pronounced than in full-body caz knock-out animals. Together, these data show that Caz has a

cell-autonomous function in adult myoblasts to promote founder myoblast selection and to

ensure proper DAM number and orientation.

Fig 1. Loss of caz function deranges adult abdominal muscle development. A, Schematic of adult abdominal muscle architecture in Drosophila. Dorsal,

lateral and ventral abdominal muscles are indicated. B, A transgenic line, in which Myosin heavy chain is GFP-tagged (Mhc-GFP), allowed visualization of

dorsal abdominal muscles (DAMs) at 96 h APF in wild type (WT), cazKO, and caz2 animals. Red arrowheads indicate misoriented DAMs. Scale bar: 50μm.

C,D, Quantification of DAM number in abdominal segments 3 (A3) and 4 (A4) of cazKO (C) and caz2 (D) pupae at 96 h APF, as compared to WT. Mann

Whitney test (C), t-test with Welch correction (D); ���p<0.0005; n = 10 WT versus 14 cazKO (A3), 11 WT versus 12 cazKO (A4), 13 WT versus 15 caz2 (A3),

8 WT versus 10 caz2 (A4). Average ± SEM. E,F, Percentage of misoriented DAMs per animal in segments A3 and A4 of cazKO (E) and caz2 (F) pupae at 96

h APF, as compared to WT. One sample Wilcoxon signed rank test; �p<0.05, ��p<0.005; n = 10 WT versus 14 cazKO (A3), 11 WT versus 12 cazKO (A4), 13

WT versus 15 caz2 (A3), 8 WT versus 10 caz2 (A4). Average ± SEM.

https://doi.org/10.1371/journal.pgen.1008731.g001
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Fig 2. Motor neuron number and muscle innervation are not affected by loss of caz function. A-H, Immunostaining for

actin (A,B), Caz (C,D), and HRP (E,F) on abdominal filets of WT (A,C,E,G) and caz2 (B,D,F,H) pupae at 100 h APF showing
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Neuron-selective loss of caz function causes muscle defects

The fact that (i) muscle phenotypes induced by adult myoblast-selective caz inactivation were

not as severe as in full-body caz mutants, and (ii) adult myoblast-selective Caz reintroduction

substantially but not fully rescued caz mutant muscle phenotypes, suggested that cell types

other than muscle also contribute to the caz mutant muscle phenotypes. As caz function is

known to be particularly important in neurons [9, 15], we evaluated whether loss of caz func-

tion in neurons could contribute to caz mutant muscle phenotypes. Consistent with this possi-

bility, selective caz inactivation in neurons resulted in a significantly reduced number of

founder myoblasts at 24 h APF (Fig 4A), and in a reduced DAM number and DAM misorien-

tation at 96 h APF (Fig 4B and 4C; representative images in S3B Fig). We further evaluated the

effect of neuron-selective Caz expression on caz mutant muscle phenotypes. Remarkably, even

in a wild type genetic background, neuron-selective Caz overexpression significantly increased

the number of DAMs at 96 h APF (Fig 4D). In cazKO pupae, neuron-selective Caz expression

partially rescued the reduced DAM number (Fig 4D). Two-way ANOVA statistical analysis

indicated that the DAM number was increased to a similar extent in the control and cazKO

genetic background (the ‘interaction’ between caz genotype and Caz overexpression was not

statistically significant, p = 0.086). DAM misorientation in cazKO pupae was substantially res-

cued by neuron-selective Caz expression (Fig 4E). In all, our data show that loss of caz function

in both neurons and adult myoblasts contributes to caz mutant muscle phenotypes.

Defective FGF signaling contributes to caz mutant muscle phenotypes

As the FGF signaling pathway has previously been implicated in adult founder myoblast selec-

tion [6], we evaluated whether defective FGF signaling might contribute to caz mutant muscle

phenotypes. Interestingly, overexpression of the FGF receptor Heartless (Htl) in adult myo-

blasts (1151-GAL4) partially but significantly rescued the reduced DAM number and DAM

misorientation in caz mutants (Fig 5A and 5B). Htl overexpression in an otherwise wild type

background tended to increase DAM number, but this difference did not reach statistical sig-

nificance. Importantly, two-way ANOVA revealed that the rescue of caz mutant muscle phe-

notypes by myoblast-selective Htl overexpression represents a genuine genetic interaction

between caz and Htl, and is not merely an additive effect of Htl overexpression in a caz mutant

background.

To confirm the role of the FGF pathway in caz mutant muscle phenotypes, we selectively

overexpressed Stumps, the FGF receptor-specific signal transduction molecule downstream of

Htl, in adult myoblasts. This also significantly rescued the reduced DAM number and DAM

misorientation (Fig 5C and 5D) in caz mutants. Together these data indicate that caz mutant

muscle phenotypes are at least in part attributable to defective FGF signaling.

These findings raised the hypothesis that Caz may, directly or indirectly, regulate the

expression level of FGF pathway components. As Stumps expression becomes restricted to

founder myoblasts 24 h APF [6], suggesting a key role in founder myoblast selection, we

DAM morphology and innervation. The merge of actin and HRP is shown in panels G,H. Scale bar: 50μm. I, Central motor

neuron clusters in segments A2 to A7 in the ventral nerve cord of a third instar larva are delineated by a dashed red rectangle. J,

Quantification of motor neuron number in segments A2 to A7 in WT versus caz2 third instar ventral nerve cord. Unpaired t-

test; n = 17 WT versus 22 caz2. Average ± SEM. K-R, Immunostaining for HRP (K,O), Dlg1 (L,P) and actin on abdominal filets

of WT (K-N) and cazKO (O-R) pupae at 100 h APF showing ventral abdominal muscle morphology and innervation. Merges

between HRP and Dlg1 (M,Q) and between HRP, Dlg1 and actin (N,R) are shown. Scale bar: 10μm. S, NMJ area relative to

DAM area (shown as % of WT) in segments A3 and A4 of WT versus cazKO pupae at 96 h APF. Unpaired t-test; n = 18 WT

versus 18 cazKO. Average ± SEM. T, Bouton number per DAM in segments A3 and A4 of WT versus cazKO pupae at 96 h APF.

Unpaired t-test; n = 18 WT versus 19 cazKO. Average ± SEM.

https://doi.org/10.1371/journal.pgen.1008731.g002
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evaluated Stumps expression levels in adult founder myoblasts by immunostaining, using a

previously described specific anti-Stumps antibody [16]. This experiment revealed signifi-

cantly reduced Stumps protein levels in cazKO founder myoblasts (Fig 5E and 5F). Thus, loss of

caz function leads to reduced Stumps expression, which may explain the reduced founder

myoblast number in caz mutant animals.

Increased Xrp1 levels mediate caz mutant muscle phenotypes

We have previously reported that neuronal dysfunction in caz mutants is mediated by

increased levels of Xrp1, a DNA-binding protein involved in gene expression regulation [10].

Upregulation of Xrp1 by ~3-fold was not only found in caz mutant nervous system but also in

larval body wall, which predominantly consists of muscles [10]. We therefore evaluated

whether the newly discovered caz mutant muscle phenotypes are also mediated by increased

Xrp1 levels. Consistent with increased Xrp1 expression as the key mediator of caz mutant phe-

notypes, heterozygosity for Xrp1 almost fully rescued the reduced DAM number (Fig 6A) and

fully rescued DAM misorientation (S4A Fig) in caz mutant animals. Importantly, selective

overexpression of Xrp1 in adult myoblasts (1151-GAL4) was sufficient to induce a significant

reduction of DAM number (Fig 6B), as well as DAM misorientation (S4B Fig), and a substan-

tial reduction in the number of founder myoblasts (Fig 6C). Thus, adult myoblast-selective

Xrp1 overexpression phenocopied caz mutant muscle phenotypes. This was dependent on the

DNA-binding capacity of Xrp1, as adult myoblast-selective overexpression of Xrp1 with a sub-

tle mutation in its AT-hook DNA-binding domain did not induce muscle phenotypes (Fig 6B,

S4B Fig). These data suggest that gene expression dysregulation induced by increased Xrp1

expression in adult myoblasts mediates caz mutant muscle phenotypes. Based on our finding

that Stumps expression is reduced in caz mutant founder myoblasts (Fig 5E and 5F), we

hypothesized that increased Xrp1 expression may suppress Stumps expression in adult founder

myoblasts. Immunostaining for Stumps confirmed that Xrp1 overexpression in adult myo-

blasts of otherwise wild type animals was sufficient to significantly reduce Stumps levels in

founder myoblasts (Fig 6D and 6E).

In addition to increased Xrp1 expression in adult myoblasts, increased Xrp1 levels in neu-

rons may also contribute to caz mutant muscle phenotypes. Indeed, selective knock-down of

Fig 3. Reduced founder myoblast number in caz mutants and rescue of caz mutant muscle phenotypes by adult myoblast-selective caz
expression. A, Immunostaining of duf-lacZ/Y transgenic pupal filets 24 h APF for β-galactosidase and Caz revealed Caz expression in founder

myoblasts. Scale bar: 10μm. B, Immunostaining of founder myoblasts in a dorsal abdominal segment (A3 or A4) of 24 h APF duf-lacZ pupal

filets, either WT (duf-lacZ/Y) or cazKO (cazKO,duf-lacZ/Y), for β-galactosidase (green) and Futsch (red). Scale bar: 20μm C, Quantification of

the number of founder myoblasts in a dorsal abdominal segment (A3 or A4) of WT (duf-lacZ/Y) and cazKO (cazKO,duf-lacZ/Y) pupae at 24 h

APF. Unpaired t-test; ���p<0.001; n = 8 WT versus 15 cazKO. Average ± SEM. D, Quantification of the number of founder myoblasts in a

dorsal abdominal segment (A3 or A4) of 24 h APF cazKO pupae in which caz is selectively expressed in adult myoblasts (cazKO,duf-
lacZ,1151-GAL4/Y;; UAS-caz/+) as compared to the relevant control genotypes (duf-lacZ,1151-GAL4/Y // duf-lacZ,1151-GAL4/Y;; UAS-caz/+
// cazKO,duf-lacZ,1151-GAL4/Y). Two-way ANOVA with Tukey’s multiple comparisons test; ��p<0.001, ���p<0.001; n = 13 per genotype.

Average ± SEM. E,F, Quantification of DAM number (E) and percentage of misoriented DAMs per animal (F) in segment A4 of 96 h APF

cazKO pupae in which caz is selectively expressed in adult myoblasts (cazKO,1151-GAL4/Y; Mhc-GFP,his-RFP/+; UAS-caz/+) as compared to the

relevant control genotypes (1151-GAL4/Y; Mhc-GFP,his-RFP/+ // 1151-GAL4/Y; Mhc-GFP,his-RFP/+; UAS-caz/+ // cazKO,1151-GAL4/Y; Mhc-
GFP,his-RFP/+). Statistics (E): Brown-Forsythe and Welch ANOVA with Dunnett’s post test; ��p<0.01, ���p<0.001; n = 8 per genotype.

Average ± SEM. Statistics (F): One sample Wilcoxon signed rank test to compare all genotypes to control (set to 0), t-test with Welch’s

correction to compare cazKO to cazKO;; UAS-caz/+; �p<0.05, ��p<0.005, ���p<0.0001; n = 9 control, 8 UAS-caz, 10 cazKO, 18 cazKO; UAS-caz.

G, Quantification of the number of founder myoblasts in a dorsal abdominal segment (A3 or A4) of 24 h APF pupae in which caz is selectively

inactivated in myoblasts (cazFRT,duf-lacZ,1151-GAL4/Y; UAS-FLP/+) as compared to the relevant control genotype (cazFRT,duf-
lacZ,1151-GAL4/Y). Unpaired t-test; ���p<0.0001; n = 18 cazFRT, 25 cazFRT; UAS-FLP. Average ± SEM. H,I, Quantification of DAM number

(H) and percentage of misoriented DAMs per animal (I) in segment A4 of 96 h APF pupae in which caz is selectively inactivated in myoblasts

(cazFRT,1151-GAL4/Y; Mhc-GFP,his-RFP/UAS-FLP) as compared to the relevant control genotype (cazFRT,1151-GAL4/Y; Mhc-GFP,his-RFP/+).

Statistics (H): Mann Whitney test; ���p<0.0001; n = 23 cazFRT, 22 cazFRT; UAS-FLP. Average ± SEM. Statistics (I): One sample Wilcoxon test;
�p<0.05; n = 23 cazFRT, 22 cazFRT; UAS-FLP. Average ± SEM.

https://doi.org/10.1371/journal.pgen.1008731.g003
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Xrp1 in neurons (elav-GAL4) induced a partial but substantial rescue of cazKO muscle pheno-

types, both DAM number and misorientation (Fig 6F and 6G). Thus, increased Xrp1 levels in

both muscle and neurons mediate caz mutant muscle phenotypes.

Discussion

Cabeza (caz) is the single Drosophila orthologue of the human FET protein family, which con-

sists of FUS, EWSR1 and TAF15 [7]. Caz was previously reported to have a particularly impor-

tant function in neurons. Indeed, similar to full-body caz loss-of-function (LOF) mutants,

selective caz inactivation in neurons induced motor deficits resulting in failure of the majority

of adult flies to eclose from the pupal case, and adult escaper flies displayed dramatic climbing

deficits and reduced life span [9]. Furthermore, neuron-selective expression of Caz or human

FUS was sufficient to rescue the adult eclosion and motor performance defects of caz LOF

mutants [9, 15]. Here, we show for the first time that caz mutants display adult abdominal

muscle defects, including a reduced number and occasional misorientation of dorsal abdomi-

nal muscles (DAMs). The reduced DAM number correlated with a reduced number of adult

founder myoblasts, and our data indicate that caz mutant adult muscle developmental defects

are to an important extent attributable to loss of caz function in adult myoblasts. Indeed, simi-

lar to full-body caz LOF mutants, adult myoblast-selective inactivation of caz resulted in a

reduced number of adult founder myoblasts and DAMs, as well as DAM misorientation. In

addition, myoblast-selective Caz expression in a caz mutant background substantially rescued

adult muscle developmental defects. Thus, caz function in adult muscle precursor cells is

required for normal muscle development.

The normal muscle morphology and number in caz mutant third instar larvae indicated a

selective defect in adult muscle development, with the reduced number of adult founder myo-

blasts as the earliest observable defect. While embryonic founder myoblast selection involves

Notch-mediated lateral inhibition [5], FGF signaling through the FGF receptor Heartless (Htl)

and its downstream signal transduction molecule Stumps/Dof/Hbr has been shown to mediate

adult founder myoblast selection [6]. We therefore investigated the potential contribution of

defective FGF signaling to caz mutant muscle phenotypes. We found that selective expression

of Htl or Stumps in adult myoblasts significantly rescued the reduced DAM number and

DAM misorientation in caz mutants. Consistent with this genetic evidence for a role of FGF

signaling in caz mutant muscle phenotypes, immunostaining revealed that Stumps levels are

significantly reduced in caz mutant founder myoblasts. Together, these data indicate that

defective FGF signaling contributes to caz mutant muscle phenotypes.

Mallik et al. recently reported that neuronal dysfunction in caz loss-of-function mutants is

mediated by increased expression of Xrp1 [10], a DNA-binding protein involved in protection

against genotoxic stress [17], DNA damage repair [18], cell competition [19, 20] and intra-

Fig 4. Neuron-selective loss of caz function causes muscle defects. A, Quantification of the number of founder myoblasts in a dorsal abdominal segment (A3 or A4) of

24 h APF pupae in which caz is selectively inactivated in neurons (cazFRT,duf-lacZ,elav-GAL4/Y; UAS-FLP/+) as compared to the relevant control (cazFRT,duf-lacZ,elav-
GAL4/Y). Unpaired t-test; ��p<0.001, n = 14 cazFRT versus n = 18 cazFRT; UAS-FLP. Average ± SEM. B,C, Quantification of DAM number (B) and percentage of

misoriented DAMs per animal (C) in segment A4 of 96 h APF pupae in which caz is selectively inactivated in neurons (cazFRT,elav-GAL4/Y; Mhc-GFP,his-RFP/UAS-FLP)

as compared to the relevant control genotypes (cazFRT,elav-GAL4/Y; Mhc-GFP,his-RFP/+ // cazFRT/Y; Mhc-GFP,his-RFP/UAS-FLP // elav-GAL4/Y; Mhc-GFP,his-RFP/

UAS-FLP). Statistics (B): Kruskal-Wallis test with Dunn’s multiple comparisons test; �p<0.05, ��p<0.005, ���p<0.0001. Statistics (C): one sample Wilcoxon signed rank

test; ��p<0.01; n = 14 cazFRT, elav-GAL4, 14 cazFRT; UAS-FLP, 14 elav-GAL4>UAS-FLP, 15 cazFRT, elav-GAL4>UAS-FLP. Average ± SEM. D,E, Quantification of DAM

number (D) and percentage of misoriented DAMs per animal (E) in segment A4 of 96 h APF cazKO pupae in which caz is selectively expressed in neurons (cazKO,elav-
GAL4/Y; Mhc-GFP,his-RFP/+; UAS-caz/+) as compared to the relevant control genotypes (elav-GAL4/Y; Mhc-GFP,his-RFP/+ // elav-GAL4/Y; Mhc-GFP,his-RFP/+; UAS-

caz/+ // cazKO,elav-GAL4/Y; Mhc-GFP,his-RFP/+). Statistics (D): two-way ANOVA with Tukey’s multiple comparisons test; ���p<0.0001; n = 21 per genotype. Statistics

(E): one sample Wilcoxon signed rank test to compare all genotypes to control, Mann-Whitney test to compare cazKO to cazKO; UAS-caz; ��p<0.01, ���p<0.0001; n = 21

control, 23 UAS-caz, 21 cazKO, 25 cazKO; UAS-caz. Average ± SEM.

https://doi.org/10.1371/journal.pgen.1008731.g004
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Fig 5. Defective FGF signaling contributes to caz mutant muscle phenotypes. A,B, Quantification of DAM number (A)

and percentage of misoriented DAMs per animal (B) in segments A3 and A4 of 96 h APF cazKO pupae in which Htl is

selectively expressed in adult myoblasts (cazKO,1151-GAL4/Y; Mhc-GFP,his-RFP/+; UAS-htl/+) as compared to the relevant

control genotypes (1151-GAL4/Y; Mhc-GFP,his-RFP/+ // 1151-GAL4/Y; Mhc-GFP,his-RFP/+; UAS-htl/+ //

cazKO,1151-GAL4/Y; Mhc-GFP,his-RFP/+). Statistics (A): two-way ANOVA with Tukey’s multiple comparisons test;
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and inter-organ growth coordination [21]. Increased Xrp1 expression in caz mutant central

nervous system led to gene expression dysregulation and neuronal dysfunction [10]. In this

study, we show that increased Xrp1 levels also mediate the newly-discovered caz mutant mus-

cle phenotypes, as heterozygosity for Xrp1 almost completely rescued caz mutant muscle phe-

notypes. Interestingly, selective overexpression of Xrp1 in adult myoblasts of otherwise WT

animals was sufficient to induce a substantial reduction in the number of founder myoblasts

and DAMs, and DAM misorientation. A subtle mutation in the Xrp1 AT-hook motif that

abolishes its DNA-binding capacity completely prevented the induction of muscle phenotypes

upon selective overexpression in adult myoblasts. This indicates that gene expression dysregu-

lation as a consequence of increased Xrp1 levels mediates caz mutant muscle phenotypes.

Intriguingly, in adult founder myoblasts, Stumps is a downstream target of Xrp1, as selective

overexpression of Xrp1 in adult myoblasts of otherwise WT animals significantly decreased

Stumps expression in founder myoblasts, as is the case in caz mutants. As Stumps expression

becomes restricted to adult founder myoblasts at the time of founder myoblast selection (24 h

APF) [6], suppression of Stumps by Xrp1 is likely a key molecular mechanism underlying the

reduced adult founder myoblast number in caz mutants. Altogether, our data indicate that in

adult founder myoblasts, loss of caz function leads to increased Xrp1 expression levels, which

in turn suppresses Stumps expression, leading to a reduced number of founder myoblasts and

consequently to a reduced DAM number.

Although our data indicate a role of caz in founder myoblast selection by controlling Xrp1

expression, which in turn regulates Stumps expression (and possibly other FGF pathway com-

ponents), additional mechanisms may contribute to caz mutant muscle phenotypes. It is

unlikely that defective myoblast fusion contributes to caz mutant muscle phenotypes, as the

number of nuclei per DAM was not substantially changed in caz mutants at 96 h APF (S5 Fig).

However, other processes that occur later during adult muscle development may be defective

in caz mutants, including myoblast migration, attachment to tendons, or muscle degeneration

may occur. Such mechanisms may underlie the frequent misorientation of DAMs that we

observed in caz mutants, the mechanism of which remains to be elucidated.

Consistent with the previously recognized importance of caz function in neurons [9, 15],

loss of caz function in neurons also contributed to caz mutant muscle phenotypes, despite the

fact that the number of motor neuron cell bodies was not altered and that the remaining mus-

cles in caz mutant animals were normally innervated. Indeed, neuron-selective inactivation of

caz in an otherwise WT genetic background was sufficient to induce a reduced founder myo-

blast and DAM number, as well as DAM misorientation. Furthermore, neuron-selective rein-

troduction of Caz in a caz mutant background partially rescued the reduced DAM number

���p<0.0001; n = 19 per genotype. Average ± SEM. Statistics (B): one sample Wilcoxon signed rank test to compare all

genotypes to control, Mann-Whitney test to compare cazKO to cazKO; UAS-htl; �p<0.05, ��p<0.01, ���p<0.001; n = 32

control, 37 UAS-htl, 33 cazKO, 19 cazKO; UAS-htl. Average ± SEM. C,D, Quantification of DAM number (C) and

percentage of misoriented DAMs per animal (D) in segments A3 and A4 of 96 h APF cazKO pupae in which Stumps is

selectively expressed in adult myoblasts (cazKO,1151-GAL4/Y; Mhc-GFP,his-RFP/UAS-stumps) as compared to the relevant

control genotypes (1151-GAL4/Y; Mhc-GFP,his-RFP/+ // 1151-GAL4/Y; Mhc-GFP,his-RFP/UAS-stumps/+ //

cazKO,1151-GAL4/Y; Mhc-GFP,his-RFP/+). Statistics (C): two-way ANOVA with Tukey’s multiple comparisons test;
���p<0.0001; n = 16 per genotype. Average ± SEM. Statistics (D): one sample Wilcoxon signed rank test to compare all

genotypes to control, Mann-Whitney test to compare cazKO to cazKO; UAS-stumps for A3, t-test with Welch’s correction

for A4; ��p<0.005, ���p<0.001; n = 16 per genotype. Average ± SEM. E, Immunostaining of founder myoblasts in a dorsal

abdominal segment (A3 or A4) of 24 h APF duf-lacZ pupal filets, either WT (duf-lacZ/Y) or cazKO (cazKO,duf-lacZ/Y), for

β-galactosidase (green) and Stumps (red). Scale bar: 50μm. F, Quantification of Stumps staining intensity (% of WT) in

founder myoblasts of cazKO (cazKO,duf-lacZ/Y) 24 h APF pupae relative to WT (duf-lacZ/Y). Unpaired t-test; �p<0.05;

n = 9 WT, 10 cazKO. Average ± SEM.

https://doi.org/10.1371/journal.pgen.1008731.g005
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Fig 6. Increased Xrp1 levels mediate caz mutant muscle phenotypes. A, Quantification of DAM number in segments A3 and A4 of

96 h APF cazKO pupae that are heterozygous for Xrp1KO (cazKO/Y; Mhc-GFP,his-RFP/+; Xrp1KO/+) as compared to the relevant

control genotypes (+/Y; Mhc-GFP,his-RFP/+ // +/Y; Mhc-GFP,his-RFP/+; Xrp1KO/+ // cazKO/Y; Mhc-GFP,his-RFP/+). Two-way
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and DAM misorientation. The neuronal contribution to caz mutant muscle phenotypes is also

mediated by increased Xrp1 expression, as neuron-selective knock-down of Xrp1 partially res-

cued caz mutant muscle phenotypes. Thus, gene expression dysregulation in caz mutant neu-

rons likely explains the non-cell-autonomous contribution to muscle phenotypes. Future

studies are needed to identify the Xrp1 target genes in neurons that are responsible for caz
mutant muscle defects. In line with the neuronal contribution to caz mutant muscle pheno-

types, the development of adult muscles is known to be intricately linked to the development

of adult innervation. Early during metamorphosis, adult myoblasts migrate along motor

nerves [1] and denervation of adult abdominal hemisegments at the onset of metamorphosis

results in thinner and less numerous DAMs [22]. Furthermore, innervation is absolutely

required for the formation of the male specific muscles [22, 23].

As mutations in FUS cause aggressive familial forms of the motor neurodegenerative dis-

ease ALS [8, 24], our findings may be interesting in the context of ALS. Indeed, a possible con-

tribution of the skeletal muscle to ALS pathogenesis has been suggested, but is controversial.

On the one hand, selective expression of ALS-mutant SOD1 in skeletal muscle of mice resulted

in progressive muscle atrophy, reduced muscle strength, alteration in the contractile apparatus,

mitochondrial dysfunction, paresis and motor defects [25, 26]. On the other hand, selective

reduction of mutant SOD1 expression in skeletal muscle of mutant SOD1 transgenic mice did

not affect their disease course, neither did increasing muscle fiber number and diameter by fol-

listatin expression [27, 28]. Intriguingly, a recent study reported that ALS-mutant FUS is

intrinsically toxic to both motor neurons and muscle cells, and toxicity in muscle may be

attributable to defective FUS-mediated transcriptional regulation of acetylcholine receptor

subunit genes [29]. While this and other studies in FUS-ALS mouse models indicate that a

gain-of-toxic-function of ALS-mutant FUS is required to cause motor neuron degeneration

[30–32], a possible contribution of loss of nuclear FUS function to FUS-ALS pathogenesis can-

not be excluded. Despite the fact that caz mutant muscle defects are developmental, our find-

ings are consistent with a cell-autonomous function of the Drosophila FUS orthologue in

muscle, and a possible role of the skeletal muscle in FUS-ALS pathogenesis.

Interestingly, FGF signaling has previously been implicated in ALS pathogenesis, through

retrograde FGF signaling from muscle to motor neuron [33]. Beyond ALS, FGF signaling has

also been implicated in spinal muscular atrophy (SMA) [34], a related motor neurodegenera-

tive disease caused by loss of SMN1 function [35]. FUS also directly binds to SMN and associ-

ates with SMN complexes [36–39], and FUS knock-out or cytoplasmic mislocalization of ALS-

mutant FUS induces cytoplasmic SMN mislocalization and a reduced number of nuclear

ANOVA with Tukey’s multiple comparisons test; ��p<0.01, ���p<0.0001; n = 15 per genotype. Average ± SEM. B, Quantification of

DAM number in segments A3 and A4 of 96 h APF male pupae in which Xrp1 is selectively overexpressed in adult myoblasts

(1151-GAL4), either as WT protein or with a subtle mutation that disrupts the DNA-binding capacity of the AT-hook motif (Mut), as

compared to driver-only control. Brown-Forsythe and Welch ANOVA with Dunnett’s post test; ���p<0.001; n = 8 control, 23

UAS-Xrp1 WT, 20 UAS-Xrp1 Mut. Average ± SEM. C, Quantification of the number of founder myoblasts in 24 h APF male pupae in

which Xrp1 is overexpressed in adult myoblasts (1151-GAL4). Mann Whitney test; ���p<0.001; n = 15 WT versus 19 UAS-Xrp1 WT.

Average ± SEM. D, Immunostaining of founder myoblasts in a dorsal abdominal segment (A3 or A4) of 24 h APF duf-lacZ pupal

filets, either WT (1151-GAL4,duf-lacZ/Y) or 1151-GAL4,duf-lacZ/Y;;UAS-Xrp1 WT/+, for β-galactosidase (green) and Stumps (red).

Scale bar: 20μm. E, Quantification of Stumps staining intensity (% of WT) in founder myoblasts of 1151-GAL4,duf-lacZ/Y;; UAS-Xrp1

WT/+ 24 h APF pupae relative to WT (1151-GAL4,duf-lacZ/Y). Unpaired t-test; �p<0.05; n = 7 WT versus 8 UAS-Xrp1 WT.

Average ± SEM. F,G, Quantification of DAM number (F) and percentage of misoriented DAMs per animal (G) in segments A3 and

A4 of 96 h APF cazKO pupae in which Xrp1 is selectively knocked-down in neurons (cazKO,elav-GAL4/Y; Mhc-GFP,his-RFP/+;

UAS-Xrp1-RNAi/+) as compared to the relevant control genotypes (elav-GAL4/Y; Mhc-GFP,his-RFP/+ // elav-GAL4/Y; Mhc-GFP,his-
RFP/+; UAS-Xrp1-RNAi/+ // cazKO,elav-GAL4/Y; Mhc-GFP,his-RFP/+). Statistics (F): two-way ANOVA with Tukey’s multiple

comparisons test; �p<0.05, ��p<0.005, ���p<0.0001; n = 10 per genotype. Statistics (G): one sample Wilcoxon signed rank test to

compare all genotypes to control, and cazKO to cazKO; UAS-Xrp1-RNAi, ��p<0.005; n = 13 control, 15 UAS-Xrp1-RNAi, 10 cazKO, 16

cazKO; UAS-Xrp1-RNAi. Average ± SEM.

https://doi.org/10.1371/journal.pgen.1008731.g006
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SMN-containing Gems [31, 36, 38, 39]. Thus, our finding that defective FGF signaling contrib-

utes to caz mutant muscle phenotypes is consistent with dysregulation of the FGF pathway as a

contributing factor to both FUS-ALS and SMA, further indicating that common molecular

pathways may underlie FUS-ALS and SMA.

Materials and methods

Drosophila genetics

Flies were kept in a temperature-controlled incubator with 12 h on/off light cycle at 25˚C. The

X chromosome-inserted elav-GAL4 (Bloomington Drosophila Stock center (BDSC) stock

number 458) was used for pan-neuronal expression of UAS transgenes. 1151-GAL4 was used

for targeted expression in adult myoblast precursors [40] (kindly provided by K. VijayRagha-

van). For motor neuron quantification, OK371-GAL4 was used to drive UAS-RedStinger. For

in vivo imaging, elav-GAL4 and 1151-GAL4 drivers were recombined with cazKO, and recom-

binant females were crossed to Mhc-GFP, his-RFP/CyO [11–13] in order to generate an intro-

gressed stock. To induce cell-type-specific caz inactivation, cazFRT [9] was recombined with

elav-GAL4 and 1151-GAL4; homozygous females were crossed to UAS-FLP (BDSC stock

4539) males and male offspring was used for the experiments. In order to evaluate the number

of founder myoblasts at 24 h APF, 1151-GAL4 // cazKO // cazKO,1151-GAL4 // cazFRT,1151-
GAL4 // cazFRT,elav-GAL4 were recombined with duf-lacZ [41]. The UAS-caz line used for res-

cue experiments was the UAS-flag-caz line described in [15]. The htl line used in this study

was UAS-htl.ORF.3xHA (F000798; FlyORF). The UAS-stumps transgenic line was provided

by M. Leptin [16]. The caz2 and cazKO lines [9], as well as Xrp1KO and 5xUAS-Xrp1 lines were

described [10] and the UAS-Xrp1-RNAi line used in this study was P[TRiP.HMS00053]attP2

(BDSC 34521).

In vivo imaging of dorsal abdominal muscles

To image dorsal abdominal muscles, appropriate crosses were set up, male larvae were selected

and placed in a new vial containing standard Drosophila food supplemented with yeast paste.

White prepupae were collected on wet Whatman filter paper in petri dishes and kept at 25˚C

for 96 h. After 96 h, pharate adults were dissected out from the pupal case and placed in an

approximately 2 mm furrow of a plastic slide with a drop of 60% glycerol. Images of serial opti-

cal sections were acquired using a Zeiss LSM700 or a Leica SP8 laser scanning confocal micro-

scope. For quantification, DAMs were manually counted using ImageJ/Fiji [42] by inspecting

the acquired Z-stacks.

Histone-RFP (his-RFP) expression was used to quantify the number of nuclei that are pres-

ent in the DAMs in abdominal segments A3 and A4.

Motor neuron quantification

The number of motor neuron cell bodies were quantified in third instar larval ventral nerve

cords (VNC) of caz2 and WT controls. Motor neuron cell bodies were visualized by

OK371-GAL4-driven UAS-RedStinger and the number of motor neuron cell bodies was

counted in the central clusters in segments A2-A7 of the 3rd instar larval VNC.

Immunostainings

Immunostaining of pharate adults (96 h APF). Open book preparations of pupal abdo-

mens were fixed in 4% PFA in PBS for 30 minutes. Tissues were washed 3 x 10 min with PBS/

0.2% Triton X-100 and blocked for 1 h at RT with 10% goat serum in PBS. Tissues were
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incubated overnight at 4˚C with primary antibodies against Caz (mouse monoclonal clone

3F4; 1:30; [43]) or Dlg1 (mouse monoclonal clone 4F3; 1:200; Developmental Studies Hybrid-

oma Bank). Secondary antibodies conjugated either with Alexa Fluor 488 or Alexa Fluor 568

(1:500; Molecular Probes), anti-HRP-549 (1:1000; Jackson ImmunoResearch) and Phalloidin-

647 (1:20; Cell Signaling) were applied for 3 h at RT.

For quantification of neuromuscular endplate area we used ImageJ/Fiji in order to measure

the endplate and muscle area in DAMs of abdominal segment A3 and A4, from maximum

intensity projections of acquired confocal z-stacks. In case of multiple branches, the sum of the

areas of individual branches was used as total endplate area. The endplate areas were then nor-

malized to the respective muscle area.

Immunostaining of 24 h APF pupae. Open book preparations of abdomens were fixed

in 4% PFA in PBS for 60 minutes. Tissues were washed 3 x 10 min with PBS/0.2% Triton X-

100 and blocked for 1 h at RT in 10% goat serum in PBS.

For quantification of founder myoblasts and Caz immunostaining, tissues were incubated

overnight at 4˚C with the first primary antibody against β-galactosidase (mouse monoclonal

40-1a; 1:50; Developmental Studies Hybridoma Bank). Anti-mouse secondary antibody conju-

gated with Alexa Fluor 488 (1:500; Molecular Probes) was applied at RT for 1 h. Tissues were

then washed 3 x 10 min in PBS/0.2% Triton X-100 and incubated overnight at 4˚C with the

second primary antibody against Caz or Futsch (mouse monoclonal clone 22C10; 1:100;

Developmental Studies Hybridoma Bank). Anti-mouse secondary antibody conjugated with

Alexa Fluor 568 (1:250; Molecular Probes) was applied at RT for 30 min. For imaging a Zeiss

LSM700 or a Leica SP8 laser scanning confocal microscope was used.

For quantification of Stumps level, tissues were incubated overnight at 4˚C with primary

antibodies against β-galactosidase (mouse monoclonal 40-1a; 1:50; Developmental Studies

Hybridoma Bank) and Stumps, a gift from M. Leptin (rabbit; 1:1000) [16]. Secondary antibod-

ies conjugated either with Alexa Fluor 488 or Alexa Fluor 568 (1:500; Molecular Probes) were

applied at RT for 1 h. As internal control, TetraSpeck Microspheres 4.0 μm (ThermoFisher)

were applied on the slides while mounting the tissues. Images were acquired using a Leica SP8

laser scanning confocal microscope with a 40x/1.3 NA oil objective with the exact same set-

tings for all the samples. Maximum intensity projections of acquired z-stacks were generated

with ImageJ/Fiji. The mean cytoplasmic intensity was measured in these projections using a

custom-made ImageJ/Fiji macro, upon thresholding and removing all background pixels’

intensities. Same approach was used for the quantification of beads’ intensity. For both Stumps

staining and internal control, the mean intensity per pupa was calculated and the cytoplasmic

Stumps staining intensity was normalized to the beads intensity.

Larval muscle quantification

To visualize larval muscles, elav-GAL4; Mhc-GFP and cazKO; Mhc-GFP larvae were dissected

and briefly fixed in Bouin’s solution for 3 min, followed by 3 x 15-min washes with PBS/0.2%

Triton X-100 and three 15-min washes in PBS, and mounted in Vectashield (Vector Laborato-

ries). Samples were imaged using a Leica SP8 laser scanning confocal microscope. For quantifi-

cation, larval muscles in A3 and A4 were counted using ImageJ/Fiji.

Statistical analysis

All results from analysis are presented as mean ± standard error of the mean (SEM) and differ-

ences were considered significant when p<0.05. Before analysis, a Robust regression and Out-

lier removal method (ROUT) was performed to detect all outliers. This nonlinear regression

method fits a curve that is not influenced by outliers. Residuals of this fit were then analyzed
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by a test adapted from the False Discovery Rate approach, to identify any outliers. This analysis

did not identify outliers, and therefore no data points were removed. Normality and homosce-

dasticity of all data was analyzed by a Shapiro–Wilk and Brown–Forsythe (F-test for t-tests)

test, respectively. Subsequent statistical tests were only performed if all assumptions were met,

except mild heteroscedasticity that was observed between experimental groups in Figs 3F, 5A,

5B, 6A, S3A and S3B(A3).

For comparison of normally distributed data of two groups, two-tailed unpaired Student’s

t-test was used in combination with an F-test to confirm that the variances between groups

were not significantly different. Non-parametric Mann–Whitney tests were performed if data

were not normally distributed. An unpaired t-test with Welch’s correction was performed for

data with heteroscedasticity.

Comparisons of data consisting of more than two groups, varying in a single factor, were

performed using Kruskal–Wallis for not-normally distributed data with homogeneous vari-

ance, and using Brown-Forsythe with Welch’s correction for normally distributed data with

heterogeneous variance, both using Dunn’s or Dunnett’s multiple comparisons post hoc test.

Comparisons of data consisting of more than two groups, varying in two factors, was per-

formed using two-way ANOVA and subsequent Tukey’s multiple comparisons test for nor-

mally distributed data with homogeneous variance.

To analyze muscle misorientation, one sample two-tailed Wilcoxon signed rank test using

the Pratt method was used to evaluate differences as compared to the control genotype (with a

set value of 0).

Data were analyzed using GraphPad Prism v.8.0 and R (3.5.1).

Supporting information

S1 Fig. Reduced DAM number in both age-matched and stage-matched cazKO pupae. A,B,

Quantification of DAM number in segments A3 and A4 of either age-matched (100 h APF, A)

or stage-matched (P15: twitching legs, B) cazKO versus WT male pupal filets immunostained

for actin. Unpaired t-test (A, B-A3) and t-test with Welch’s correction (B-A4); ��p<0.01,
���p<0.001; n(A) = 4 WT versus 5 cazKO (A3), 5 WT versus 4 cazKO (A4); n(B) = 11 WT versus

10 cazKO (A3), 15 WT versus 8 cazKO (A4). Average ± SEM.

(TIF)

S2 Fig. Loss of caz function does not affect larval muscle morphology. A, A transgenic line

in which the Myosin heavy chain gene is GFP-tagged (Mhc-GFP) allowed for visualization of

muscles in abdominal segments A3 and A4 of WT (+/Y; Mhc-GFP,his-RFP/+) and cazKO

(cazKO/Y; Mhc-GFP,his-RFP/+) third instar larvae. Scale bar: 100μm. B, Quantification of lar-

val muscle number in segments A3 and A4. Mann-Whitney test; n = 6 per genotype.

Average ± SEM.

(TIF)

S3 Fig. DAM phenotypes induced by selective caz inactivation in adult myoblasts or neu-

rons. A, Representative images of DAMs in abdominal segments A3 and A4 of 96 h APF

pupae in which caz was selectively inactivated in adult myoblasts (cazFRT,1151-GAL4/Y; Mhc-
GFP/UAS-FLP, right panel) as compared to the relevant control (cazFRT,1151-GAL4/Y; Mhc-
GFP/+, left panel). Scale bar: 100μm. B, Representative images of DAMs in abdominal seg-

ments A3 and A4 of 96 h APF pupae in which caz was selectively inactivated in neurons

(cazFRT,elav-GAL4/Y; Mhc-GFP/UAS-FLP, right panel) as compared to the relevant control

(cazFRT,elav-GAL4/Y; Mhc-GFP/+, left panel). Scale bar: 100μm.

(TIF)
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S4 Fig. Increased Xrp1 levels mediate caz mutant DAM misorientation. A, Percentage of

misoriented DAMs per animal in segments A3 and A4 of 96 h APF cazKO pupae that are het-

erozygous for Xrp1 (cazKO/Y; Mhc-GFP,his-RFP/+; Xrp1KO/+) as compared to the relevant

control genotypes (+/Y; Mhc-GFP,his-RFP/+ // +/Y; Mhc-GFP,his-RFP/+; Xrp1KO/+ // cazKO/

Y; Mhc-GFP,his-RFP/+). One sample Wilcoxon signed rank test to compare all genotypes to

control, and cazKO to cazKO; Xrp1KO/+; ���p<0.0005; n = 15 per genotype. Average ± SEM. B,

Percentage of misoriented DAMs per animal in segments A3 and A4 of 96 h APF male pupae

that selectively overexpress Xrp1 in adult myoblasts (1151-GAL4), either as WT protein or

with a subtle mutation that disrupts the DNA-binding capacity of the AT-hook motif (Mut),

as compared to driver-only control. One sample Wilcoxon signed rank test to compare all

genotypes to control and UAS-Xrp1 WT to UAS-Xrp1 Mut; ��p<0.01, ���p<0.0001; n = 8

control, 23 UAS-Xrp1 WT, 20 UAS-Xrp1 Mut. Average ± SEM.

(TIF)

S5 Fig. Loss of caz function does not preclude myoblast fusion. The average number of

nuclei per DAM was determined in abdominal segments A3 and A4 of 96 h APF WT, caz2,
and cazKO pupae that carried Mhc-GFP and his-RFP transgenes to visualize muscles and nuclei,

respectively. Ordinary one-way ANOVA with Dunnett’s post test; �p<0.05; n = 7 per geno-

type. Average ± SEM.

(TIF)
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