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Abstract. Renal Cell Carcinoma (RCC) is one of the most common
malignancies, and pathological diagnosis is the most reliable RCC diag-
nostic method. Recognizing the type of RCC tumor and the possibility
of cell migration highly depends on the geometric and topological prop-
erties of the vascular network. Motivated by the diagnosis pipeline, we
explore the use of the vascular network from the RCC histopatholog-
ical image to boost the RCC classification result. To realize this, we
firstly build a new vascular network-based RCC histopathological im-
age dataset, namely VRCC200, with 200 well-labeled vascular network
annotations. Based on these vascular networks of RCC histopathological
images, we propose new hand-craft features, namely skeleton feature and
lattice feature. These features well represent the geometric and topologi-
cal properties of the vascular networks of RCC histopathological images.
Then we build strong benchmark results with various algorithms (both
traditional and deep learning models) on the VRCC200 dataset. The re-
sult of lattice features can beat the popular deep learning models with
other features. Finally, we proved the robustness and advantage of our
proposed features on a more patients’ dataset VRCC60. All of the results
of our experiments prove that the vascular network structure of RCC is
one of the most important biomarkers for RCC diagnosis.

Keywords: RCC Histopathological Image Dataset · Vascular Network
· Skeleton Feature · Lattice Feature · RCC Classification

1 Introduction

RCC is a highly malignant tumor in the urinary system, 90% of kidney cancers
are RCC [15], which is mainly divided into clear cell RCC [18](ccRCC) account-
ing for 75% of RCC and papillary RCC (pRCC) accounting for 10% of RCC.
However, RCC classification is a challenging task. Cell morphology, tumor ar-
chitecture, phenotype and genetics data are mainly used to define the tumor
subtype. Most of the current classification research is focused on the search for
biological biomarkers, aiming to define RCC subtype and also predict behavior
of the tumor [8]. However, the vascular structure of these two kinds of RCCs are
different and may lead to an accurate diagnosis. For example, ccRCC is char-
acterized by a fishnet-like vascular architecture while the pRCC has a tree-like
structure [34]. As shown in Fig. 2, the ccRCC vascular networks are denser and
contain more junctions inside vascular networks.
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If vascular network structure is crucial and essential for the machine learning-
based RCC classification is still an open question. In this paper, we explore the
importance of the vascular network in the RCC diagnosis. Due to there is no
public RCC dataset with vascular network annotations, we build the VRCC200
dataset with vascular annotations. VRCC200 is extracted from our larger RCC
histopathological image dataset (BigRCC), which is labeled with RCC cate-
gories. The larger dataset contains the data of 158 Whole Slide Images (WSIs),
coming from 68 patients, which can be cropped into 39986 patch images of
ccRCC and 18254 patch images of pRCC respectively. VRCC200 has 200 vascu-
lar network segment images of ccRCC and pRCC, coming from 7 patients.

To further explore the potential of traditional algorithms, we propose two
sets of features, defined “skeleton features” and “lattice features”, which
are extracted from the vascular network. Specifically, we compute the skeleton
of the vascular network. The skeleton is a structure that embeds the topological
properties of the vascular network, as shown in Fig. 2. It is composed of 3
types of elements: junction, non-end branch, end branch. Firstly, we define some
meaningful features from the skeleton to form the skeleton features, containing
small ending branch (NE), long NE, and Density, etc., as shown in Fig. 3. Then,
we perform a series of operations on the skeleton to obtain the lattice spatial
map. The lattice features that represent the regions between vessels are extracted
from this spatial map. Lattice features include a set of features, such as the mean
area, median area, etc. in Tab. 2.

Finally, we build solid benchmark results of traditional and deep learning
methods on the VRCC200 dataset. The results of traditional algorithms with
our skeleton and lattice features can beat the results of popular deep learning
models (Graph Convolutional Network (GCN) [32], Convolutional Neural Net-
work (CNN) [14, 24]). Then we do testing on a new vascular annotated dataset
named VRCC60, which contains 60 vascular annotated patch images, com-
ing from 20 patients, our skeleton and lattice features still perform best. This
indicates our features are robust and can embed sufficient information to char-
acterize RCC subtypes. Also, we show the first work using GCN [32, 5] with
vascular graph feature [10] for the RCC histopathological images classification.

All in all, our contribution can be summarized as follows:

– We are the first work to investigate the importance of geometric and topo-
logical properties of the vascular network for RCC classification.

– We build new vascular annotated datasets, “VRCC200” and “VRCC60”, for
RCC histopathological image classification.

– We propose two sets of new hand-craft features, “skeleton and lattice fea-
tures” to represent the vascular network, which are extracted from the vas-
cular network of RCC histopathological images.

– We are the first to apply GCN with vascular graph features for the RCC
classification task.

– We build benchmark results of various algorithms on the VRCC200 and test
them on the VRCC60.
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2 Related works

2.1 Histopathological Dataset

For the histopathological classification, there are some public and popular histopatho-
logical datasets, such as CAMELYON [17] and BreakHis [27] for breast can-
cer, LC25000 [2] for lung and colon, but there is still a lack of accessible RCC
histopathological datasets, especially with vascular network annotations. There-
fore, we have built our own annotated database.

For RCC, [13] proposed an RCC dataset for RCC subtyping. [7] proposed a
dataset for classifying TFE3-RCC and ccRCC. But the raw data of them is still
not available.

In this paper, we focus on the RCC classification task with the vascular
network, as far as we know, we are the first to realize RCC histopathological
classification on RCC dataset with vascular network annotations.

2.2 Histopathological Medical Imaging Classification

Although the deep learning methods have achieved great progress for medical
imaging tasks with the deep features [32, 5], the hand-craft feature still shows its
robustness and efficiency in medical imaging task because of the lack of large
scale datasets.

Deep learning-based on methods in medical imaging include data augmenta-
tion, network structure, unsupervised methods. Firstly, Xue et al. [31] proposed
the HistoGAN for generating synthesizing imaging patches. Spanhol et al. [28]
focused on extracting imaging patches from high-resolution histopathology im-
ages. Secondly, Wang et al. [29] proposed to use the Bilinear CNN for this task.
Moreover, unsupervised methods also attracted more and more attention, Ren
et al. [23] introduced the unsupervised domain adaption method. Peng et al.
[20] developed a multi-task deep learning framework. Different from them, we
use the vascular network in images and corresponding graph features, GCN [32]
to solve this task, with better explainability.

To define hand-craft features in medical imaging, the main challenge is to
maximize the embedded information extracted from histopathology images based
on cell or nuclei (number, size or shape), tissue structure. To solve the histopathol-
ogy classification, Zubiolo et al. [34] proposed to use hand-craft features (number
of end nodes (NE) & junctions (NJ), the length of end branches (LE) & non-
end branches (LJ) and their ratios) to represent the vascular network of RCC.
Qureshi et al. [21] proposed subband texture features and micro-texture fea-
tures. Raza et al. [22] proposed a bag-of-features framework. To further explore
the potential of hand-craft features, we propose two novel hand-craft features, i.e.
skeleton features based on [34] and lattice features. Different from the previous,
these features are build based on the vascular networks of RCC histopathological
images.
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3 Dataset

3.1 Dataset Building

whole slide  images (WSIs)  
from the Scan slices of SCN400

patch images 
2000×2000 pixels pRCC ccRCC
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46 patients
107 slices
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22 patients
51 slices
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annotate tumor areas and non-tumor areas
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…

…

…

…

…
…Raw Data

Fig. 1. Pipeline of BigRCC dataset building.

The original WSIs are Hematoxylin Eosin-stained, scanned by SCN400 scan-
ner at 40x magnification. ccRCC includes 46 patients and a total of 107 slices,
while pRCC includes 22 patients and a total of 51 slices. Tumor and non-tumor
(necrosis, fiber, and normal) areas were annotated using the open-source soft-
ware ASAP and stored in XML format file. Next, we cut the WSIs images into
smaller histopathologic patch images (2000 × 2000 Pixels). All the patch im-
ages form the BigRCC dataset. As shown in Tab. 1, we analyze the statistical
distribution of the BigRCC dataset.

BigRCC dataset Necrosis Fiber Normal Tumor Total

ccRCC 3324 1941 7459 27287 39986

pRCC 1602 920 2105 13637 18254
Table 1. The number of patch images of each category in BigRCC.

3.2 VRCC200

We annotated 200 tumor patch images of ccRCC and pRCC to construct the
VRCC200 dataset. We use “ImageJ” software to annotate the vascular networks.
As shown in Fig. 2, the vascular structure of ccRCC is like “fishnet”, while pRCC
is looks like “tree”. To describe the vascular network we consider junctions, end
branches and non-end branches (branches between two junctions).

ccRCC pRCC

junction

non-end
branch

end
branch

junction

non-end
branch

end
branch

Fig. 2. The vascular network examples of ccRCC and pRCC images.
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4 Vascular Network Feature

4.1 Hand-craf Features

Skleton note Lattice note

NE The Number of End branches Mean Area Mean of all lattice areas
small NE NE that LE less than mean of nuclear size ×10 Median Area Median of all lattice areas
long NE NE that LE more than mean of nuclear size ×10 Mean Perimeter Mean of all lattice Perimeters

NJ The Number of Junctions Median Perimeter Median of all lattice Perimeters
LE The average Length of the End branches Mean Eccentricity Mean of all lattice Eccentricities
LJ The average Length of the non-End branches Median Eccentricity Mean of all lattice Eccentricities

density Sum of skeleton pixels
NE/NJ NE/NJ Ratio
LE/LJ LE/LJ Ratio

NE/(LJ+LE) NE/(LJ+LE) Ratio
NJ/(LJ+LE) NJ/(LJ+LE) Ratio
LJ/(LJ+LE) LJ/(LJ+LE) Ratio

Table 2. The explanation of every skeleton and lattice feature.

Skeleton Features. As shown in Fig. 2, the fishnet has more junctions, more
non-end branches, the tree has more end branches. The graph visualization on
Fig. 5 also supports our assumption. We use NE, small NE (less than nuclear
size ×10), long NE (more than nuclear size ×10), NJ, LE, LJ, Density as the
basic features of the skeleton. Moreover, we also consider NE/NJ, NE/(LJ+LE),
NJ/(LJ+LE), LE/LJ, LJ/(LJ+LE) to make the skeleton features robust and
comprehensive. The details are shown on Tab. 2 and Fig. 3.

Skeleton Feature

NE Small NE Big NE NJ LE LJ Density

Ratio

Sum 

NE/NJ NE/(LJ+LE) NJ/(LJ+LE) LE/LJ LJ/(LJ+LE)

Fig. 3. Skeleton feature.

Lattice Features. As shown above, the vascular networks of ccRCC and pRCC
have different structures. We propose a new set of features “lattice features” to
represent the vascular network. But different from the skeleton, they are not
extracted from the skeleton directly. As shown in Fig. 4, we first compute the
watershed [26] on the vascular skeleton to obtain closed areas. Then we use the
minima imposition method [1, 19] to solve the problem of local minimum and
modify the distance transformation to obtain the lattice spatial map. Finally,
we removing the surrounding lattices which do not include complete vascular
information. Next, we define and extract 6 features from the lattice map. in-
cluding Mean Area, Median Area, Mean Perimeter, Median Perimeter, Mean
Eccentricity, and Median Eccentricity. The details are shown in Tab. 2.

watershed minima imposition remove surrounding

Fig. 4. The pipeline of obtaining the lattice features.
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4.2 Deep Learning Feature

Deep Features. Besides the hand-craft features with traditional methods, we
also use the deep learning algorithm for the RCC classification. To further eval-
uate the importance of the vascular network, we consider both raw RCC images
and vascular segment mask images as inputs, then learn these deep features with
popular CNNs as the baseline experiments, such as ResNet [14], VGG Net [24],
ShuffeNet [33] and Stochastic Depth Network [16].

Graph Features. Because the vascular network is a kind of graph-like struc-
ture, we transform the vascular network into graph with SKL-Graph [10], as
shown in Fig. 5. Then we feed the adjacency matrix of the graph into GCN. We
are the first to apply this pipeline for RCC classification. Although we only con-
sider topological information as the branch length is not coded in the adjacency
matrix, this feature is more explainable than the deep features which are black
boxes.

ccRCC pRCC

skeleton graph skeleton graph

Fig. 5. The graph features of ccRCC and pRCC, red point represent end point of the
vascular network, green point represent junction of the vascular network.

5 Experiments

5.1 Skeleton Features and Lattice Features Analysis

Non-parametric tests. Due to the value of the proposed features isn’t normal
distribution and variance heterogeneity, we use 3 non-parametric tests methods
to calculate the statistical significance between the ccRCC and pRCC features.
As shown in Tab. 3, there are only 5 features whose P-value is larger than 0.05
for at least one statistical test (italics). Finally, we choose the 13 features that
are significant in all 3 tests. i.e. these 13 features are more suitable for classifying
the ccRCC and pRCC images.

Performance on traditional algorithms. To prove the robustness and effect
of skeleton and lattice features, we compare them with the baseline features: NE,
NJ, LE, LJ, NE/NJ and LE/LJ [34]. As shown in Tab. 4, the proposed features,
particularly after filtering by non-parameteric tests achieves much higher accu-
racy on almost all traditional algorithm models. This proved that our proposed
features are more robust and advanced for RCC classification.
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Features
Mann-Whitney

U Test
Moses extreme
reactions Test

Kolmogorov-
Smirnov Z Test

NE 1.73E-19 1.23E-13 7.01E-16
small NE 2.09E-01 0.000139 0.083674
long NE 2.89E-21 0.00E+00 4.57E-18

NJ 1.17E-07 0.002281 0.000016
LE 1.16E-13 0.007344 3.46E-14
LJ 2.50E-24 8.41E-19 5.26E-23

density 7.93E-29 0.00E+00 1.98E-27
NE/NJ 4.76E-28 2.83E-21 5.25E-26
LE/LJ 0.046331 1 0.026055

NE/(LJ+LE) 0.026 0.98752 3.45E-03
NJ/(LJ+LE) 1.59E-28 0.00E+00 3.93E-27
LJ/(LJ+LE) 0.04442 1 0.027041

mean Area 3.96E-29 0.00E+00 3.96E-29
median Area 2.65E-22 5.91E-20 5.25E-26

mean Perimeter 4.44E-08 0.317547 1.26E-07
median Perimeter 2.45E-23 5.91E-20 5.25E-26
mean Eccentricity 0.003825 0.000006 0.000043
median Eccentricity 0.048702 0.000139 0.001597

Table 3. Pvalue of non-parametric tests of every feature.

Methods
baseline
Skeleton

full
Skeleton & Lattice

filtered
Skeleton & Lattice

Adaboost [11] 0.975 0.940 0.940
DecisionTree [4] 0.955 0.965 0.965

Gradient Boosting Tree [12] 0.955 0.965 0.965
KNN [9] 0.905 0.910 0.935

Logistic Regression [30] 0.970 0.985 0.985
Random Forest [3] 0.960 0.960 0.965

SVM RBF [6] 0.965 0.980 0.985
SVM Sigmoid [25] 0.790 0.965 0.965

Table 4. The Accuracy result of 3 features on different algorithms. “Baseline
Skeleton” refers to previous skeleton feature [34], “full Skeleton & Lattice” refers to all
the skeleton and lattice feature we proposed, “filtered Skeleton & Lattice” refers to a
part of skeleton and lattice feature whose features are filtered by non-parametric tests.

5.2 Vascular-based RCC Classification Benchmark

In this section, we conduct abundant experiments on the VRCC200 dataset with
traditional and deep learning models. The accuracy results of validation are the
average of leave-one-out cross-validation. There are 7 patients’ data, the data of
1 patient is used for testing each time. To check the robustness of the models, we
annotated more patients’ dataset VRCC60 for testing. VRCC60 dataset has a
total of 60 patch images, coming from 20 patients (10 for ccRCC, 10 for pRCC).

Validation results on VRCC200. As shown in Tab. 5, the results of the
traditional methods range from 94% to 98.5%, which is higher than most others.
This demonstrates that the proposed skeleton and lattice features are advanced.
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Methods Input Feature Acc(val) Acc(test)

Traditional Algorithm

Adaboost [11] Segment filtered Skeleton & Lattice 0.940 0.935
DecisionTree [4] Segment filtered Skeleton & Lattice 0.965 0.935

Gradient Boosting Tree [12] Segment filtered Skeleton & Lattice 0.965 0.965
KNN [9] Segment filtered Skeleton & Lattice 0.935 0.915

Logistic Regression [30] Segment filtered Skeleton & Lattice 0.985 0.915
Random Forest [3] Segment filtered Skeleton & Lattice 0.965 0.985

SVM RBF [6] Segment filtered Skeleton & Lattice 0.985 0.915
SVM Sigmoid [25] Segment filtered Skeleton & Lattice 0.965 0.865

Deep Learning

ResNet-18 [14] Raw Deep 0.817 0.867
VGG-16 [24] Raw Deep 0.908 0.800

ShuffleNet V1 [33] Raw Deep 0.867 0.800
Stochastic Depth [16] Raw Deep 0.869 0.817

ResNet-18 [14] Segment Deep 0.937 0.917
VGG-16 [24] Segment Deep 0.958 0.883

ShuffleNet V1 [33] Segment Deep 0.887 0.867
Stochastic Depth [16] Segment Deep 0.979 0.933

GCN+SAGPoolg [32] Segment Graph 0.962 0.833
GCN+SAGPoolh [5] Segment Graph 0.866 0.817

Table 5. The benchmark results on the VRCC200. Segment images are vascular
network segment masks. Acc (val) is the accuracy result of ”leave one out” cross-
validation on VRCC200. Acc (test) is the accuracy result of testing on the VRCC60.

For the deep learning-based methods, the accuracy with vascular segment
input is much better than that with raw image input, which indicates the im-
portance of vascular network again. We argue that only using the segments of the
vascular network may suppress background noise, resulting in higher accuracy.

Also, we obtain results of two GCN models. They’re lower than some vascu-
lar segmentation input deep learning model (97.9% V S 96.2%) and traditional
algorithm models (98.5% V S 96.2%). May because the graph feature only con-
tains the topological information of vascular, but other features contain both
topological and geometrical information.

Testing results on VRCC60. Compare with the validation result on VRCC200,
most of the accuracy has declined, but it can still maintain above 80.0%. More-
over, skeleton and lattice features are still the best performers (86.5% to 98.5%).
This demonstrates that our proposed features are robust on more patients’ data.

6 Conclusion

In this paper, we build VRCC200 and VRCC60 datasets to experiment. We can
characterize ccRCC and pRCC only from vascular properties. The result of our
proposed “skeleton and lattice features” (contain both topological and geometri-
cal information) better than the “graph features” (only topological information)
and the baseline deep learning features. Our proposed features provide an ex-
planation for RCC classification and robustness on more patients’ data as well.
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