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TSO-DSOs Stable Cost Allocation for the Joint Procurement
of Flexibility: A Cooperative Game Approach

Anibal Sanjab, Hélène Le Cadre, and Yuting Mou

Abstract—In this paper, a transmission-distribution systems
flexibility market is introduced, in which system operators (SOs)
jointly procure flexibility from different systems to meet their
needs (balancing and congestion management) using a common
market. This common market is, then, formulated as a cooper-
ative game aiming at identifying a stable and efficient split of
costs of the jointly procured flexibility among the participating
SOs to incentivize their cooperation. The non-emptiness of the
core of this game is then mathematically proven, implying the
stability of the game and the naturally-arising incentive for
cooperation among the SOs. Several cost allocation mechanisms
are then introduced, while characterizing their mathematical
properties. Numerical results focusing on an interconnected
system (composed of the IEEE 14-bus transmission system
and the Matpower 18-bus, 69-bus, and 141-bus distributions
systems) showcase the cooperation-induced reduction in system-
wide flexibility procurement costs, and identifies the varying costs
borne by different SOs under various cost allocations methods.

I. INTRODUCTION

The increasing integration of distributed energy resources
(DERs) and electrification of the consumer energy space
(e.g., transportation and heating) pose challenges for grid
operation, due to the induced uncertainty and changing load
patterns. However, this new energy landscape also enables an
unprecedented growing volume of invaluable flexibility1 (from
different voltage levels of the grid) thereby providing essential
services (e.g., congestion management and balancing) for
transmission system operators (TSOs) and distribution system
operators (DSOs). In this respect, the introduction of market
mechanisms for the procurement of flexibility from flexibility
services provides (FSPs) has been increasingly recommended
in policies [1], and has been the center of several recent works
in the literature [2]–[7] and demonstration projects [8].

As FSPs could provide their flexibility as a service to
different system operators (SOs), a major branch of liter-
ature has focused on the SOs’ joint procurement (i.e. co-
optimization) of flexibility [3], [6], to maximize the grid and
system-level value of this flexibility2. In particular, a key
focus has been shed on the need for coordination between
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1Flexibility is the ability to dynamically modify consumption and genera-

tion patterns providing, as a result, a service to system operators.
2A number of works in the literature [9]–[14] has also focused on estimating

and modeling the flexibility capacity at the TSO-DSO interface (i.e., the
collective volume of flexibility that could be provided by distribution systems
to TSOs, while taking distribution network constraints into account) – using,
e.g., the identification of distribution system flexibility regions. This provides
a main guide for TSO-DSO coordination for the procurement of flexibility
but differs in scope from a co-optimized joint procurement process.

SOs to achieve joint procurement, not only for optimization
of economic efficiency but also to ensure that the activated
flexibility meets grid operational constraints of all the grids
involved [2]–[5], [15], [16]. However, when jointly procuring
flexibility, it is paramount to decide on how the costs of
this flexibility should be divided among the participating SOs
in the most efficient and fair way, and most importantly,
in a manner that incentivizes system operators to naturally
collaborate and jointly procure flexibility rather than running
their disjoint markets. To the best of our knowledge3, no
work in the literature has presented a fundamental analysis
and comprehensive solution to this joint cooperation and cost
allocation problem, as is the goal of the current work. To
this end, the current work focuses on the cooperation among
SOs for the joint procurement of flexibility by casting the
cooperation in a common market as a cooperative game among
the SOs to address these various key questions.

Cooperative game theory provides a set of principles and
tools to investigate how multiple agents with interconnected
interests, when allowed to communicate, can form coalitions
that benefit all their members, and to allocate the resulting
benefits/costs among the coalition members, fairly and effi-
ciently. Cooperative game theory has recently gained an in-
creased application in power system research. In a recent paper
[17], the authors review a wide range of cooperative games
applications where a particular attention is shed on power
system expansion planning. In [18] a bilevel optimization
framework incorporating cooperative games’ principles into
a transmission expansion planning problem is proposed while
accounting for the compromise between coalition stability and
economic efficiency. In local energy communities, cooperative
game theory is adopted to expedite stable peer-to-peer trading
algorithms and incentivize individual users [19] as well as
to allocate DER values [20]. Under a pool-based electricity
market, the Shapley value (an allocation concept from coop-
erative game theory) has been adopted for tariff computation
of transmission loss charges [21]. Cooperative game theory
has also been employed to facilitate the planning [22] and
operation of microgrids [23], to study coalition formation
and energy trading between microgrids [24]–[26], as well as
for analyzing shared energy investments [27] and collective
response to tariffs [28]. Moreover, a recent application of
the Shapley value for cost allocation in a Retailer-DSO-TSO
coordination setting has been proposed in [3].

In this paper, we develop a novel cooperative game-theoretic
approach in which 1) we formulate the concept of cooperation
stability between the TSO and DSOs in a joint flexibility
market, 2) determine whether cooperation between the TSO

3We note that the work in [3] looks at a Retailer-DSO-TSO coordination
setting while focusing particularly on the Shapley value for the numerical
computation of cost allocation, hence, defers in scope from the current work.
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and DSOs is naturally incentivized and the conditions there-
fore, and 3) derive several cost allocation mechanisms and
analytically investigate their properties focusing on concepts
such as stability, efficiency, and computational complexity.

Towards this end, we first introduce a novel flexibility
market model including a TSO and multiple DSOs for jointly
procuring congestion management and balancing services
while explicitly accounting for grid constraints. This frame-
work is developed by first introducing disjoint TSO and DSO
level markets and joining them in a common market setting.
We then formulate the joint procurement of flexibility between
any subset of SOs as a cooperative (cost allocation) game and
analyze its properties. We subsequently analyze and prove
the non-emptiness of the game’s core4. This, as a result,
implies that all SOs would be better off joining the grand
coalition (i.e., the set of all SOs in a common market setting)
as compared to joining any sub-coalition (i.e., a coalition
of a subset of SOs, or forming disjoint markets with no
cooperation). Furthermore, we extend this property to different
pricing mechanisms including pay-as-bid and nodal pricing.
Then, we introduce several cost allocation mechanisms to
allocate the costs of the jointly procured flexibility among
the different SOs (namely, the Shapley value, normalized
Banzhaf index, cost gap allocation, Lagrangian-based cost
allocation, equal profit method, and proportional cost) and
investigate their stability (whether they belong to the core),
allocation adequacy, and other mathematical properties such
as: efficiency, symmetry, additivity, dummy player, anonymity,
and computational complexity.

Our analytical conclusions and results are further corrob-
orated using a flexibility market case analysis focusing on
an interconnected test system composed of the IEEE 14-
bus transmission system interconnected with three distribution
systems – namely, the Matpower 141-bus, 69-bus and 18-
bus systems. The numerical results highlight 1) the significant
reduction in system cost when more SOs joint the common
market grand coalition, highlighting the benefits of coopera-
tion, 2) the essential role of higher interface flows on reaping
the benefits of cooperation, and 3) the disparity that can
result from different cost allocation methods, hence, providing
indispensable inputs to SOs, regulators, and decision makers.

The rest of the paper is organized as follows. Section II
presents the disjoint and common markets formulations. Sec-
tion III introduces the cooperative game formulation. Sec-
tion IV investigates the stability of the game, while Section V
provides different cost allocation mechanisms and charac-
terizes their properties. Section VI introduces the numerical
results, and Section VII concludes the paper.

Notation
Let Rn indicate the set of n dimension real vectors, and

Rn
+ its nonnegative orthant. I is the identity matrix. ‖.‖

represents the Euclidean norm. Given a vector x, xt denotes
its transpose. Let col(x1, ...,xN ) := [xT

1 , ...,x
T
N ]. Depending

on the context, |.| will denote the absolute value of a scalar or

4The core is a game-theoretic concept used to assess cooperation stability,
and will be formally defined in Section III.

the cardinal of a set. Matrices and vectors will be represented
in bold font, using captial letters for matrices.

II. SYSTEMS AND MARKETS MODELS

Consider a transmission system (operated by a TSO) com-
posed of a set of nodes, N T , and set of lines, LT , represented
by a graph GT (N T ,LT ). At a subset, ND, of these nodes,
distribution systems (each operated by a DSO) are connected.
We refer to ND ⊆ N T , as the set of interface nodes,
containing ND nodes from each of which stems one of the
ND different distribution systems. We let a) pTn be the net
real power injection at node n ∈ N T , b) pT,o and dT,o be,
respectively, the vectors of anticipated base injection and load
at all transmission system nodes N T , c) PT

ij denote the real
power flow over line {i, j} ∈ LT , with maximum thermal line
limit FT,max

ij , d) T p
nT and T q

nT denote the active and reactive
power transfer to the distribution system connected to node
nT ∈ ND, and e) X(i,j),n denote the generation shift factor
of PT

ij with respect to the net injection at node n ∈ N T ,
capturing the change in the flow over line {i, j} ∈ LT due to
a change in net injection at node n ∈ N T .

We denote a distribution system connected to a transmission
node nT ∈ ND by DSO–nT . Each DSO–nT is composed
of a radial distribution network composed of NnT

nodes
(where node nn

T

0 ∈ NnT

is the root node of DSO–nT )
and LnT

distribution lines forming a graph, GnT

(NnT

,LnT

).
In each DSO–nT , we let A(n) denote the ancestor node of
n ∈ NnT \{nnT

0 } and K(n) the set of predecessor nodes of n.
For the root node nn

T

0 , A(nn
T

0 ) = nT . For each DSO–nT , we
let a) sn

T

n = pn
T

n +jqn
T

n be the net complex power injection at
bus n ∈ NnT

, b) pn
T,o and dn

T,o be, respectively, the vectors
of anticipated base generation and demand at all distribution
system nodes NnT

, c) PnT

A(n)n and QnT

A(n)n be, respectively,
the real and reactive power flowing over the line connecting
A(n) and n, with a maximum apparent power flow denoted by
SnT,max
A(n)n , and d) vn

T

n be the magnitude squared of the voltage

at node n ∈ NnT

, with upper and lower limits specified,
respectively, by vn

T,max
n and vn

T,min
n . Here, PnT

A(nnT
0 )nnT

0

and

QnT

A(nnT
0 )nnT

0

denote the interface flows with the transmission

grid, which are equal, respectively, to T p
nT and T q

nT defined
on the transmission side. In addition, for the line parameters,
we let rn

T

A(n)n and xn
T

A(n)n be, respectively, the resistance and
reactance of line {A(n), n} ∈ LnT

.
We next introduce the formulation of disjoint transmission

and distribution markets, followed by the common market
model, which joins the distribution and transmission-level
markets.

A. Disjoint Transmission-Level Market

We consider that the TSO’s anticipated base schedule pT,o

and dT,o shows imbalance and/or line congestion which the
TSO aims to solve using resources available only from the
transmission level (hence, resulting in a disjoint market).
These resources are represented by offers to the market from
assets connected to the transmission network. Let ∆pT+

n and
∆pT−n correspond, respectively, to the volumes of increase and
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reduction in generation (respectively, upward and downward
flexibility) connected at the transmission bus n. In addition, let
∆dT+

n and ∆dT−n correspond, respectively, to the volumes of
reduction and increase in demand (i.e., upward and downward
flexibility) at node n of the transmission network. In addition,
let cT+

pn
, cT−pn

, cT+
dn

, and cT−dn
represent the unit price offered

by adjustable generation and loads for, respectively, ∆pT+
n ,

∆pT−n , ∆dT+
n , and ∆dT−n . The goal of the TSO is to resolve

the balancing and congestion issues at the minimum possible
cost. Hence, the TSO’s problem can be described as follows5:

min
∆pT,∆dT

∑
n∈NT

(
cT+
pn ∆pT+

n −cT−pn ∆pT−n +cT+
dn

∆dT+
n −cT−dn ∆dT−n

)
, (1)

Subject to:

pTn=pT,o
n +∆pT+

n −∆pT−n −dT,o
n +∆dT+

n −∆dT−n , ∀n ∈ N T , (2)

PT
ij =

NT∑
n=1

pTnX(i,j),n −
∑

n∈ND

T p
nX(i,j),n, ∀{i, j} ∈ LT , (3)

pTn −
∑

js.t.{i,j}∈LT

PT
ij = 0 : (λT

n ), ∀n ∈ N T \ ND, (4)

pTn − T p
n −

∑
js.t.{i,j}∈LT

PT
ij = 0 : (λT

n ), ∀n ∈ ND, (5)

−FT,max
ij ≤ PT

ij ≤ FT,max
ij , ∀{i, j} ∈ LT , (6)

0 ≤ ∆pT+
n ≤ ∆pT+,max

n , 0 ≤ ∆pT−n ≤ ∆pT−,max
n , ∀i ∈ N T , (7)

0 ≤ ∆dT+
i ≤ ∆dT+,max

i , 0 ≤ ∆dT−i ≤ ∆dT−,max
i , ∀i ∈ N T . (8)

Here, ∆pT and ∆dT are the vectors grouping, respectively,
∆pT+

n and ∆pT−n , and ∆dT+
n and ∆dT−n , at all nodes n ∈

N T . Equation (2) defines the net injection at node n ∈ N T .
Constraint (3) consists of the power flow equations over all the
transmission lines expressed using the generation shift factors,
X(i,j),n. Constraint (4) is the energy balance equation at node
n ∈ N T \ ND, while (5) is the energy balance equation at
interface node n ∈ ND. λTn denotes the Lagrange multipliers
of the nodal energy balance constraints at each node n ∈ N T .
In this disjoint transmission system market formulation, T p

n is
considered to be a constant (i.e. not dependent on any decision
variable) to reflect the case that balancing and congestion
management in this case are to be resolved using flexibility
available only at the transmission system. In addition, (6)
represents the congestion prevention constraints, while (7) and
(8) capture the bid limits.

B. Disjoint Distribution-Level Market

The disjoint market for congestion management at the
DSO–nT level uses solely distribution grid flexibility to solve
congestion issues resulting from the anticipated base gener-
ation and load profiles, pn

T,o and dn
T,o, at all distribution

system nodes NnT

. Let ∆pn
T+

n and ∆pn
T−

n correspond,
respectively, to the volumes of increase and reduction in gen-
eration (corresponding to, respectively, upward and downward

5The transmission-level flexibility market formulation builds upon
transmission-level optimal power flow models that include a linear power
flow representation (commonly known as the MW-only DC power flow
model) based on generation shift factors as commonly implemented in North
American electricity markets such as in [29].

flexibility) connected at the DSO–nT node n. In addition,
we let ∆dn

T+
n and ∆dn

T−
n represent upward and downward

flexibility at node n (i.e., the volumes of reduction and increase
in demand at that node). In addition, similarly to the cost
structure on the transmission level, we let cn

T+
pn

, cn
T−

pn
, cn

T+
dn

,
and cn

T−
dn

represent the unit prices offered by adjustable
generation and loads on the distribution level for, respectively,
∆pn

T+
n , ∆pn

T−
n , ∆dn

T+
n , and ∆dn

T−
n .

As the DSO–nT ’s goal is to resolve congestion issues at
minimum cost, its problem can be formulated as follows6.

min
∆pn

T
,∆dn

T
,qn

T

∑
n∈NnT

(
cn

T +
pn ∆pn

T +
n − cn

T−
pn ∆pn

T−
n

+ cn
T +

dn
∆dn

T +
n − cn

T−
dn

∆dn
T−

n

)
, (9)

Subject to:

pn
T

n =pn
T,o

n +∆pn
T+

n −∆pn
T−

n − dn
T,o

n +∆dn
T+

n −∆dn
T−

n , ∀n∈NnT

,
(10)

pn
T

n +PnT

A(n)n−
∑

k∈K(n)

PnT

nk = 0, ∀n ∈ NnT

\ nnT

0 : (λnT

n ), (11)

qn
T

n +QnT

A(n)n −
∑

k∈K(n)

QnT

nk = 0 ∀n ∈ NnT

\ nnT

0 , (12)

T p

nT −
∑

k∈K(nnT
0 )

PnT

nnT
0 k

= 0, : (λ
nnT
0

), (13)

T q

nT −
∑

k∈K(nnT
0 )

QnT

nnT
0 k

= 0, (14)

vn
T

n =vn
T

A(n)−2rn
T

A(n)nP
nT

A(n)n−2xn
T

A(n)nQ
nT

A(n)n, ∀n ∈ NnT

\ nnT

0 ,
(15)

αmP
nT

A(n)n+βmQ
nT

A(n)n+δmS
nT ,max
A(n)n ≤ 0,∀m∈M, {A(n), n}∈LnT

,

(16)

vn
T ,min

n ≤ vnT
n 6 vn

T ,max
n ,∀n ∈ NnT

, (17)

qn
T ,min

n ≤ qn
T

n ≤ qn
T ,max

n , ∀n ∈ NnT

, (18)

T q,min
nT ≤ T q

nT ≤ T q,max
nT , (19)

0 6∆pn
T +

n 6 ∆pn
T+,max

n , 0 6 ∆pn
T−

n 6 ∆pn
T−,max

n , ∀n ∈ NnT

,
(20)

0 6∆dn
T +

n 6 ∆dn
T+,max

n , 0 6∆dn
T−

n 6 ∆dn
T−,max

n , ∀n ∈ NnT

.
(21)

Here, ∆pn
T

and ∆dn
T

are vectors grouping, respectively,
∆pn

T+
n and ∆pn

T−
n , and ∆dn

T+
n and ∆dn

T−
n at each n ∈

NnT

. Equation (10) returns the net generation, pn
T

n , which
depends on the base generation and load profiles and the
activated flexibility at node n. The equality constraints in
(11)-(15) follow directly from the LinDistFlow formulation
[30], representing the linearized power flow equations in
radial distribution networks. In a local market mechanism
(i.e. disjoint DSO–nT level market), the interface flow T p

nT

is considered to be constant – i.e., not a decision variable
nor a dependent variable – which is directly derived from the

6The proposed linear distribution-level flexibility market makes use of the
LinDistFlow power flow equations to compute active and reactive power flows
as well as voltage magnitudes (as the MS-only DC power flow representation
is not typically adequate for distribution systems). The accuracy of this linear
formulation as compared to a second order cone programming counterpart is
evaluated in [5].
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initial anticipated base generation and load profiles at each
of the nodes of the system as can be seen by substituting
(10) and (11) in (13). Hence, this reflects that congestion
management on the distribution level is to be resolved solely
using flexibility provided from within the distribution system.
We denote the Lagrange multiplier of constraint (11) and (13)
by λn

T

n . Constraint (16) is a linearization of the complex flow
limit constraint. This linearization, as proposed in [31], is a
polygonal inner-approximation that transforms the feasibility
region of the flow limit constrain from a circle of radius
SnT ,max
A(n)n into a polygon whose number of edges are given

by the size of the approximation set M. The values of αm,
βm, and γm define this polygon such that all its vertices
would lie on the original feasibility circle of radius SnT ,max

A(n)n
(a detailed explanation of this approximation is presented
in [31]). Constraints (17) and (18) capture the limits on
the nodal voltage magnitudes and reactive power injections,
to ensure operational stability and the real-reactive power
operational and capacity limits of load and generation, while
(19) enforces a limit on the reactive power transfer with the
transmission grid, T q

nT , where this limit reflects the technical
substation capacity as well as any financially-imposed limits
on the allowable power transfers. Constraints (20) and (21)
reflect the limits of the submitted bids.

Remark II.1. As can be noted in the distribution-level market
in (9) – (21), even though reactive power is not traded in
the market as a flexibility product, it has a direct effect on
the feasibility region of the market solution, in particular on
the voltage magnitudes and apparent power flows as seen in
(12), (14) – (19). In general, a setting can be considered
in which the reactive power outcomes of flexibility resources
are coupled to their active power outcomes, which makes
active power bids have associated reactive power components
(based, e.g., on constant or modifiable power factors). This
strict coupling is not considered in the market formulation in
(9) – (21), to keep the generality of the formulation. However,
it can be readily accommodated by adding an additional
constraint coupling the reactive power flexibility to the active
power flexibility bid activation.

C. Common Market Model

In the common market, the TSO can readily use resources
offered from within the different distribution systems con-
nected to its transmission network as well as resources con-
nected to its transmission network to perform balancing and
congestion management. Concurrently, the DSOs can use re-
sources offered from their distribution networks for congestion
management. In the common market, flexibility resources (i.e.
submitted bids) are accessible to all participating SOs and
the market is jointly cleared, in a collaborative manner, to
optimally meet the needs of all the SOs while abiding by the
operational limits (i.e. constraints) of all the grids involved.
The proposed common market formulation, incorporating the
TSO and the ND DSOs, combines the disjoint market models
as follows:

min
∆p,∆d,q

[ ∑
n∈NT

(
cT+
pn∆pT+

n −cT−pn∆pT−n +cT+
dn

∆dT+
n −cT−dn ∆dT−n

)
+
∑

nT∈ND

∑
n∈NnT

(
cn

T+
pn ∆pn

T+
n −cn

T−
pn ∆pn

T−
n +cn

T+
dn

∆dn
T+

n −cn
T−

dn
∆dn

T−
n

)]
,

(22)

Subject to:
(2)–(8), (10)–(21)∀nT ∈ ND, (23)

and T p,min
nT ≤ T p

nT ≤ T p,max
nT ∀nT ∈ ND. (24)

∆p and ∆d are the vectors of generation and demand
flexibility variables (i.e., respectively, ∆pT and ∆pn

T

for
all nT ∈ ND, and ∆dT and ∆dn

T

for all nT ∈ ND). In
addition, q is the vector of qn

T

for all nT ∈ ND. The common
market formulation sums the objective functions of the disjoint
markets and uses all the operational and bid level constraints
from these markets. An additional constraint in the common
market is (24). In this regard, in contrast to the disjoint
markets, the common market model treats T p

nT as a dependent
variable (rather than a constant as in the disjoint markets) with
limits shown in (24). This enables the interaction between the
previously disjoint markets to jointly procure the flexibility
needed by all SOs. As in the common market T p

nT is variable,
(24) captures the limits on the interface power between the
transmission and distribution system, capturing the technical
substation capacity limits as well as any contractually imposed
limits on the interface power transfer.

Remark II.2. We note that the common market formulation
in (22)–(24) can be readily adapted to reflect a sub-common
market setting joining any subset of the SOs. This is readily
achieved by replacing ND by any defined subset of DSOs in
(22)–(24), and by optionally including or excluding the TSO-
level market from the formulation.

D. Compact Formulation

Due to its linearity, and for the ease of notation, the common
market model can be readily expressed using a compact linear
programming (LP) formulation. This is carried out next, which
will be useful in defining the cooperative game framework.

We introduce x0 as the column vector which
contains the TSO’s decision variables: x0 ,
col
(
∆pT+,∆pT−,∆dT+,∆dT−

)
. The TSO’s feasibility

set X0 is defined based on the constraints that depend
only on the TSO’s decision variables. Each DSO–nT ’s
decision variable column vector, denoted by xnT , contains
xnT , col

(
∆pn

T+,∆pn
T−,∆dn

T+,∆dn
T−, qn

T
)

. We
define XnT as the feasibility set of DSO–nT . The set
is made of constraints that depend only on the DSO’s
decision variables. We let x ∈ X0 ×

∏
nT XnT be the

vector that contains the joint decisions of the TSO and
DSOs. Dependent variables, which can be expressed as
functions of the TSO and DSOs’ decision variables, are
concatenated in a column vector z. Precisely, we set: z ,
col
(
pT ,P T , (pn

T

)nT∈ND , (P nT

)nT∈ND , (QnT

)nT∈ND ,

(vn
T

)nT∈ND ,T p,T q
)

. Constants such as pT,o, dT,o,
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(pn
T,o)nT∈ND , (dn

T,o)nT∈ND , ∆pT+,max,∆pT−,max,
∆dT+,max, ∆dT−,max, (∆pn

T+,max,∆pn
T−,max,

∆dn
T+,max, ∆dn

T−,max)nT∈ND , (vn
T ,max)nT∈ND ,

(vn
T ,min)nT∈ND , (qn

T ,max)nT∈ND , (qn
T ,min)nT∈ND ,

T q,max, T q,min, T p,max, T p,min, Ξ
(
(i, j), n

)
= X(i,j),n,

(rn
T

, xnT

)nT∈ND , α,β, δ, F T,max, and (SnT,max)nT∈ND ,
are taken as input parameters. We also define the TSO’s cost
vector c0 , col

(
cT+
p ,−cT−p , cT+

d ,−cT−d
)

and DSO–nT ’s

cost vector cnT , col
(
cn

T+
p ,−cnT−

p , cn
T+

d ,−cn
T−

d ,0
)
.

Based on this compact notation, the TSO’s objective func-
tion can be written as Φ0(x0) , ct0x0, while the objective
function of each DSO-nT is given by Φn(xnT ) , ctnTxnT ,
where .t is the transpose operator. The social cost of the
common market, introduced in (22), is defined as the sum
of the TSO and DSOs’ objective functions, i.e., Φ(x) ,
Φ0(x0) +

∑
nT∈NT ΦnT (xnT ). To write the common market

model (22)-(24) in a compact matrix form, a change of
notations is needed. For that purpose, we order the DSOs in
ascending order form 1 to ND = |ND| based on the values of
their initial nT . In addition, we denote x , col

(
x0, (xn)n

)
as

the concatenation of the TSO and DSOs’ decision variables.
As the common market model in (22)-(24) is linear, it can

readily be presented as a standard compact linear program
(LP), using our defined vector notation, as follows:

(LP) min
x,z

Φ(x), (25a)

s.t. Ax+Bz ≤ d, (λ) (25b)
x0 ∈ X0, (25c)

xn ∈ Xn, ∀n ∈ ND, (25d)
z ∈ Z. (25e)

The steps towards this compact formulation are presented
in the Appendix. Note that (25b) can be equivalently written
as (A0x0+B0z0)+

∑
n(Anxn+Bnzn) ≤ d to differentiate

between the TSO and the different DSO n’s variables. We let
λ be the dual variable of (25b).

Constraints (25c) and (25d) characterizing the feasibility set
of the TSO and DSOs, can be explicitly written as Ψ0(x0) ≤ 0
and Ψn(xn) ≤ 0,∀n ∈ N respectively. We denote µ0 and
(µn)n as the associated dual variables.

The Lagrangian function associated with the optimization
problem (25) is defined as follows:
L(x,z,λ,µ) ,Φ(x) + λt

(
Ax+Bz − d

)
+ µt

0Ψ0(x0)

+
∑
n

µt
nΨn(xn). (26)

In addition, we introduce the relaxed formulation (also, of-
ten called partial dual formulation) of (25) where the coupling
constraint (25b) is replaced by a penalty in the objective:

max
λ≥0

min
x∈X ,z∈Z

(
Φ(x) + λt(Ax+Bz − d)

)
, (27a)

s.t. x0 ∈ X0, (27b)

xn ∈ Xn, ∀n ∈ ND, (27c)
z ∈ Z. (27d)

The dual function of problem (25) is g(λ,µ) ,
minx,z L(x, z,λ,µ) where L(.) is defined in (26). The asso-
ciated dual problem is maxλ≥0,µ≥0 g(λ,µ). The duality gap

is the non-negative number Φ(x∗)− g(λ∗,µ∗) where x∗ is a
solution to the primal problem (25) and λ∗,µ∗ are solutions to
the dual problem. Under constraint qualification (e.g. Slater’s
condition) for (25), strong duality implies:

min
x,z

max
λ≥0
L(x,z,λ) = max

λ≥0
min
x,z
L(x,z,λ). (28)

Remark II.3. Since Ψ0(.),Ψn(.),∀n ∈ ND and (25b), (25e)
are all defined through affine functions, Slater’s condition
is not strictly required and can be replaced with non-strict
inequalities in the LP feasibility set.

III. COST GAME DEFINITION

We consider a game that is populated by the non-empty
set ND of the ND DSOs and the TSO. We will refer to
them as the players of the game. A coalition is a subset of
NG , ND ∪ {TSO}. The grand coalition is the set NG of
all SOs (players), with cardinality NG. We cast this game as
a characteristic function cost game, G, formally defined as
follows.

Definition 1 (Characteristic Function Cost Game [32]). A
characteristic function cost game G is given by a pair
(NG, v), where v : 2N

G → R is a characteristic function,
which maps each coalition C ⊆ NG to a real number v(C).
The real number v(C) denotes the value of the coalition C.

The common market in (25), and its special cases for a
singleton TSO or DSO market (or any sub-common market
containing any subset of the SOs as discussed in Remark II.2),
corresponds to a characteristic function v given by:

v(C) =
∑
n∈C

ctnx
∗
n where C ⊆ NG, (29)

and (x∗n)n∈C is the optimum of the optimization problem

min
(xn)n∈C ,(zn)n∈C

∑
n∈C

Φn(xn), (30a)

s.t. Ax+Bz ≤ d, (30b)
xn ∈ Xn,zn ∈ Zn, ∀n ∈ C. (30c)

As the coalitional value v(C) (i.e., the total cost of the
common and sub-common markets) can be divided amongst
the members of C in any way that the members of C choose,
G is classified as a transferable utility (TU) game [32].

As we show next, in the case where the global coupling
constraint (30b) depends only on the decision variables of the
SOs belonging to the coalition, our cost game G takes the
form of a linear production game [33]. In this class of games,
which is common in transportation and logistics, players pool
resources to produce finished goods which can be sold at a
given market price defined as the dual variables of the coupling
constraints. We define xC , col

(
(xn)n∈C

)
as the stack of the

vectors of decision variables of all the SOs in C ⊆ NG.

Definition 2 (Linear Production Game [33]). A linear pro-
duction game is a characteristic function game with value
function defined as in (29) and (x∗n)n∈C is the optimum of
the optimization problem
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min
(xn)n∈C ,(zn)n∈C

∑
n∈C

Φn(xn), (31a)

s.t. ACxC +BCzC ≤ dC , (31b)
xn ∈ Xn,zn ∈ Zn, ∀n ∈ C, (31c)

where AC ,BC ,dC are constant matrices and vector defined
locally to coalition C players.

Proposition 1. If in each coalition C ⊆ NG containing only
DSOs, the active power transfer between each DSO and TSO
(T p

n)n∈C is fixed, then the characteristic function cost game
G takes the form of a linear production game.

Proof. As can be seen in the common market formulation
in (22)–(24), the coupling between the transmission [(1)–(8)]
and distribution [(9) – (21)] markets takes place through the
interface power flow variable, T p

nT , for all nT ∈ ND. Then, if
T p
nT is fixed by the TSO (i.e., cannot be changed unilaterally

if the TSO and DSO are not part of the same coalition), then
there is no coupling between coalitions not containing the TSO
and the coalition that contains the TSO. As such, in this case,
for each coalition C, Problem (30) can be defined as a linear
production game problem as expressed in (31).

In general, an outcome of the characteristic function game,
G, consists of two parts: i) a partition of the SOs (i.e. the
players) into coalitions, known as the coalition structure; and
ii) a cost vector, distributing the value of each coalition among
its members. These concepts are formally defined next.

Definition 3 (Coalition Structure). Given our game G =
(NG, v), a coalition structure over NG is a collection of non-
empty subsets CS = {C1, ..., Cs} such that ∪sj=1C

j = NG

and Ci ∩ Cj = ∅,∀i, j ∈ {1, ..., s} such that i 6= j.

A vector y = (y1, ..., yNG) ∈ RNG

is a cost allocation
vector for a coalition structure CS = {C1, ..., Cs} over NG

if: yn ≥ 0,∀n ∈ NG,
∑

n∈Cs′ yn ≥ v(Cs′) for any s′ ∈
{1, ..., s} (feasibility condition). The efficiency of y is defined
as follows.

Definition 4 (Efficiency). A cost allocation vector y is effi-
cient if all the coalition cost is distributed amongst coalition
members, i.e.,

∑
n∈Cs′ yn = v(Cs′),∀s′ ∈ {1, ..., s}.

The space of all coalition structures will be denoted CS . An
outcome of G is, hence, a pair (CS,y).

For a cost allocation vector y, we let y(C) ,
∑

n∈C yn
denote the total cost allocation of a coalition C ⊆ NG under
y. By extension, the social cost of the coalition structure CS
will be denoted v(CS) ,

∑
C∈CS v(C).

For the derivations that ensue, we now recall classical
definitions of two subclasses of coalitional games that will
be useful thereafter: submodular games and concave games.

Definition 5 (Submodularity [32]). A characteristic function
v is said to be submodular if it satisfies

v(C ∪ C′) + v(C ∩ C′) ≤ v(C) + v(C′),

for every pair of coalitions C,C ′ ⊆ NG. A game with a
submodular characteristic function is said to be concave.

Concave games have an intuitive characterization in terms
of players’ marginal contributions: in a concave game, a player
(i.e. an SO) is more useful (decreasing the group cost) when
it joins a bigger coalition, as formally defined next.

Definition 6 (Concavity [32]). A characteristic function game
G is concave if and only if for every pair of coalitions C,C ′

such that C ⊂ C ′ and every player n ∈ NG \C ′ it holds that
v(C ∪ {n})− v(C) ≤ v(C ′ ∪ {n})− v(C ′).

To define whether a common market can naturally arise,
the stability of the cooperation between the SOs in a common
market must be defined and verified. A stable coalition is a
coalition from which no SO has an incentive to deviate. A
stable grand coalition, is the coalition including the TSO and
all DSOs and which is stable. Consider an outcome (CS,y) of
the cost game G. If y(C) > v(C) for some C ⊆ NG, the SOs
in C could do better by abandoning the coalition structure CS
and forming a coalition of their own. Thus, in this case, the
outcome (CS,y) is unstable. The set of stable outcomes, i.e.,
outcomes where no subset of SOs (players) has an incentive
to deviate, is called the core of G.

Definition 7. The core C(G) of the characteristic function
game G = (NG, v) is the set of all efficient outcomes (CS,y)
such that y(C) ≤ v(C),∀C ⊆ NG. The core of our cost
game G can formally be defined as follows: C(G) , {y ∈
RNG |y(NG) = v(NG) and y(C) ≤ v(C), ∀C ⊆ NG}.

The constraints imposed on C(G) ensure that no TSO or
DSO has an incentive to leave the grand coalition (of all SOs in
a common market) and form any subcoalition (a sub-common
market as defined in Remark II.2, encompassing any subset
of SOs including the singleton coalitions/disjoint markets). A
cost allocation belonging to the core is efficient and meets the
Individual Rationality (IR) property [32], [34]. Definition 7,
which is the classical definition of the core of a cooperative
game, does not deal with the Incentive Compatibility (IC)
property. Therefore, in general, being in the core does not
guarantee the IC property of the cost allocation. Coping with
the IC property requires the consideration of asymmetric infor-
mation structures when formulating the TSO-DSOs game [2].
In general, attempts to determine efficient cost allocations
would be thwarted by players’ incentives to misrepresent their
preferences, e.g., to behave as free-riders. Lindhal mechanism
was introduced in [35] to achieve allocations that are efficient,
and achieve both IR and IC properties. The development of
such a mechanism constitutes relevant future work, but is out
of the scope of the current paper.

We next analyze the stability of the grand coalition in our
game and the resulting, naturally arising common benefit of
the SOs to cooperate in a common flexibility market.

IV. STABILITY ANALYSIS OF COST GAME G

For the common market to naturally arise and be sustained,
collaboration among SOs should be naturally beneficial to all
of them. This is achieved if their collaboration is stable, i.e.,
when the core of our formulated TSO-DSO game G, defined
in Definition 7, is non-empty. We next prove that the core of



7

G is non-empty and, hence, the TSO and DSOs have a natural
incentive to collaborate and form a common market.

A. Stability of Cost Game G

We first begin by proving that it is beneficial for any DSO
to collaborate with the TSO than forming a disjoint market.

Proposition 2. Any DSO n ∈ ND prefers cooperating with
the TSO than remaining alone.

Proof. It is profitable for any DSO n ∈ ND to cooperate with
the TSO if and only if:

v({TSO ∪ n}) ≤ v({n}) + v({TSO}). (32)

Considering the relaxed version of (25) which we proved
to be equivalent to (25) under weak Slater’s condition, the
inequality (32) is equivalent to the following one:

max
λ

min
x0,z0,xn,zn

[
ct0x0 + ctnxn + λt(Ax+Bz − d)

]
≤max

λ
min
x0,z0

[
ct0x0 + λt(Ax+Bz − d)

]
+ max

λ
min
xn,zn

[
ctnxn + λt(Ax+Bz − d)

]
, (33)

where x0 ∈ X0,xn ∈ Xn, z0 ∈ Z0, zn ∈ Zn. Since (33)
holds by definition, we can conclude that any DSO n ∈ ND

has an incentive to cooperate with the TSO.

We next show that, under Proposition 1, not only would any
DSO benefit from cooperating with the TSO, but also that any
DSO has an incentive to be part of the grand coalition made
of all of the ND DSOs and the TSO.

Theorem 1. If each coalition C ⊆ NG not containing a TSO
cannot unilaterally change their active power transfer between
the TSO and the connected distribution networks, (T p

n)n∈C ,
then the characteristic function cost game G has a non-empty
core. Therefore, G is stable.

Proof. If each coalition C ⊆ NG not containing a TSO
cannot change their active power transfer to the connected
distribution networks (T p

n)n∈C – i.e., each DSO n must keep
its T p

n constant unless it is part of a coalition with the TSO –
then, Proposition 1 holds. This implies that our cost game G
reduces to a linear production game, which is proven to have
a non-empty core in [33]. Therefore, G is stable.

Due to the stability of G proven in Theorem 1, it is always
beneficial for all DSOs and TSO to cooperate in a common
market. We next also analyze the stability of the game when
the assumption on the interface flow in Proposition 1 does not
hold.

B. Cost Game Asymptotic Stability

For the purpose of the derivations that ensue, we introduce
Gε , (NG, vε) with vε(C) , v(C) + ε

∑
n∈C ‖xn‖2,∀C ⊆

NG, as the ε approximation of the characteristic function game
G for some ε ∈ (0, ε̄]. The characteristic function vε of Gε

is a regularized version of the characteristic function v of G.
We start by proving an intermediate result that characterizes
the cost game Gε.

Proposition 3. The perturbed characteristic function game Gε

is concave.

Proof. We observe that LP (30) has a specific structure since
its objective function is decomposable over each agent in the
coalition and the coupling constraint (25b) is shared among
all the agents in NG. Let C ⊆ NG. Relying on LP (30)
structure, a direct application of [36], Prop. 6 enables us to
prove that the set of solutions of LP (30) over C coincides
with the set of solutions of the generalized Nash equilibrium
problem GNEP(C), which has a generalized potential game
structure, defined as:

∀n ∈ C, min
xn,zn

Φn(xn), (34)

s.t. Ax+Bz ≤ d, (35)
xn ∈ Xn,zn ∈ Zn. (36)

Let SOL(P ) be the set of solutions of problem P .
Pick any C ⊂ C ′ and any n ∈ NG \ C ′. Let
(xm)m∈C′∪{n} be a solution to LP (30) over C ′ ∪
{n}. The potential structure of GNEP(C ′ ∪ {n}) im-
plies that (xm)m∈C′∪{n} ∈ SOL

(
GNEP(C ′ ∪ {n})

)
if

and only if (xm)m∈C∪{n} ∈ SOL
(
GNEP(C ∪ {n})

)
and

(xm)m∈C′\(C∪{n}) ∈ SOL
(
GNEP(C ′ \ (C ∪ {n}))

)
, which

is equivalent to (xm)m∈C∪{n} is solution to LP (30) over
C ∪ {n} and (xm)m∈C′\(C∪{n}) is solution to LP (30) over
C ′ \(C∪{n}). Now, we compute v(C∪{n})−v(C) = ctnx

∗
n

where x∗n solves LP (30) over C ∪ {n}, and
(
v(C ′ ∪ {n})−

v(C ′)
)
−
(
v(C ∪ {n}) − v(C)

)
= ctn(x∗∗n − x∗n) for any

C ⊂ C ′ and any n ∈ NG \C ′ where x∗∗n solves LP (30) over
C ′ ∪ {n}. For the concavity property introduced in Definition
6 to hold, we need to check that x∗∗n − x∗n ≥ 0. However,
though we know the optimal solutions of the LPs are found at
vertices of the feasibility set, they might not be unique. This
means that players of C∪{n} might choose different solutions
than players of C ′ ∪ {n}. By adding a quadratic perturbation
to the SOs’ cost functions in the form ε

∑
n∈C ‖xn‖2 for

small enough ε, the perturbed problem picks the solution
to the original problem with the smallest l2 norm [37], i.e.,
the perturbed problem has a unique solution. As such, Gε is
concave since the x∗ and x∗∗ solutions of the associated LPs
coincide.

Proposition 4. The perturbed characteristic function game Gε

approximates G for small enough ε.

Proof. From [37], Thm. 2.4, if for any C ⊆ NG, the LP (30)
has a solution and its constraints satisfy Slater’s condition,
then the iterative successive overrelaxations algorithm defined
in [37] is bounded and has an accumulation point for each
ε ∈ (0, ε̄] for some ε > 0. To check these two conditions,
we observe that the LP objective function has a finite closed
domain and is well defined at all points of the feasibility set
(30b)-(30c) defined by Ψ0(.),

(
Ψn(.)

)
n

. Therefore the LP is
feasible and Slater’s condition holds (see Remark II.3).

Corollary IV.1. The characteristic function cost game Gε is
submodular.

Proof. This results follows directly from Proposition 3. In-
deed, every concave game is necessarily submodular [32].
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This, hence, allows us to prove the non-emptiness of the
core, as shown next.

Theorem 2. The core of the perturbed characteristic function
cost game Gε is non-empty and, asymptotically (i.e., for ε
small enough), the grand coalition of G is stable.

Proof. Consider the following allocation linear program:

max
y

∑
n∈NG

yn, (37a)

s.t.
∑
n∈C

yn ≤ v(C), ∀C ⊆ NG. (37b)

It is quite obvious that C(G) 6= ∅ if and only if the
optimum value of the linear program (37) is equal to v(NG),
in which case any optimal solution to (37) lies in C(G). Taking
the linear program dual to (37), an equivalent condition for
C(G) 6= ∅ can be obtained based on the concept of balanced
sets. A collection B of nonempty subsets of NG is balanced
if
∑

C∈B γCv(C) ≤ v(N ) holds for every balanced collection
B with weights (γC)C∈B. It is well-known that a game has a
non-empty core if and only if it is balanced [38].

The cost game Gε being submodular from Corollary IV.1,
(37) is equivalent to:

max
y

∑
n∈NG

yn, (38a)

s.t.
∑

n∈NG

yn =
∑

n∈NG

(
Φn(x∗n) + ε‖x∗n‖2

)
, (38b)

x∗ = arg min
x,z

∑
n∈NG

(
Φn(xn) + ε‖xn‖2

)
, (38c)

s.t. Ax+Bz ≤ d, (38d)
x ∈ X ,z ∈ Z. (38e)

By construction, for a concave cost game like Gε, the
Shapley7 value is solution to (38) and as such, belongs to
the core of the game [32], [34]. The concavity of the game
is the necessary condition for the Shapley value to be in the
core. This implies that the core of Gε is never empty.

From Proposition 4, it is possible to construct a sequence
of outcome solution of (38), by computing the Shapley value
of Gε, that converges to the core of G. Therefore, the core of
G is non-empty and its grand coalition is stable.

Theorem 2, hence, extends the stability results in the ab-
sence of the interface power condition stated in Proposition 1
by proving that asymptotically it is beneficial for the TSO and
all DSOs to cooperate in a common market.

C. Cost Game Stability Under Nodal Pricing

In the prior derivations, cn was used in the cost function of
the players, which would reflect a cost-based market clearing
or a pay-as-bid mechanism. However, Theorem 1 and Theorem
2 can be readily extended beyond pay-as-bid for other pric-
ing schemes, such as nodal pricing (i.e., locational marginal
pricing) as shown, respectively, next.

Proposition 5. Assuming that each coalition C ⊆ NG not
containing a TSO cannot unilaterally change their active

7The Shapley value is introduced in detail and analyzed in Section V-A.

power transfer between the TSO and the connected distribution
networks and that the dual variable λ∗ of (38d) is unique, the
core of the cost game G is non-empty under nodal pricing.

Proof. Under the assumption that each coalition C ⊆ NG

not containing a TSO cannot unilaterally change their active
power transfer between the TSO and the connected distribution
networks, Theorem 1 applies. Equivalently, (38) has a solution
with ε = 0. Under nodal pricing, to compute the grand
coalition value, we need to solve an optimization problem
which is a special case of the relaxed form of (38c)-(38e) with
ε = 0, where we replace A by I + A and set cn = 0,∀n.
From Theorem 1, we know it has a solution. Therefore, the
core of G is non-empty under nodal pricing.

Proposition 6. Assuming that the players coordinate in their
evaluation of the coupling constraint dual variable λ∗, and
that it is unique, the core of the cost game G is asymptotically
(e.g., for ε small enough) non-empty under nodal pricing.

Proof. Under nodal pricing, the cost game Gε coalitional value
becomes vε(C) =

∑
n∈C λ

∗t
n x
∗
n+ε

∑
n∈C ‖x∗n‖2, where C ⊆

NG, (x∗n)n∈C is the optimum of (38c)-(38e) where Φn(xn)
is replaced with λ∗tn xn and λ∗ is the optimal dual variable
of (38d). First, we note that the proof of Proposition 3 can
be extended to nodal pricing. Indeed by assuming that the
players coordinate in their evaluation of the dual λ∗ and that
it is unique, we guarantee the uniqueness of the solution of the
primal problem (38c)-(38e) and the rest of the proof can be
directly transposed to the nodal pricing setting. Under nodal
pricing, to compute the grand coalition value, we need to solve
the following optimization problem:

max
λ≥0

min
(xn)n,(zn)n

[
λt
(

(I +A)x+Bz − d
)

+ ε
∑
n

‖xn‖2
]
,

(39a)

s.t. xn ∈ Xn,zn ∈ Zn, ∀n ∈ NG. (39b)

We note that it is a special case of the relaxed form of (38c)-
(38e) where we replace A by I + A and set cn = 0,∀n.
Therefore, Proposition 4, Corollary IV.1 and Theorem 2 can
be subsequently extended to nodal pricing.

After proving the stability of the cooperation of the SOs in
the common market, we next present several cost allocation
methods – based on which the total cost of flexibility procure-
ment in the common market can be split – and analytically
characterize their properties.

V. ALLOCATION MECHANISMS

We introduce several cost allocation mechanisms and study
their properties for our TSO-DSOs cooperative game, based on
efficiency, stability, and fairness criteria, which measure how
well each SO allocated cost reflects its contribution to the total
cost. We note that the assumption on the interface power flow
in Proposition 1 is highly likely to arise in practice, as it is
reasonable to consider that the interface power flow between
a TSO and DSO can only be modified if the TSO and DSO
belong to the same coalition, as this interface power exchange
affects both SOs. Hence, in the cost allocation mechanisms in
this section, we focus on this particular setting.
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The properties for evaluating a cost allocation mechanism,
Φ(G), are defined as follows:

(i) Efficiency:
∑

n Φn(G) = v(NG).
(ii) Dummy player: if a player n is a dummy in G, i.e.,

v(C ∪ {n}) = v(C),∀C ⊆ NG \ {n}, then Φn(G) = 0.
(iii) Symmetry (equal treatment of equals): if n and n′ are

equivalent in G, in the sense that v(C ∪ {n}) = v(C ∪
{n′}),∀C ⊆ NG, then Φn(G) = Φn′(G).

(iv) Additivity: Φn(G+ G̃) = Φn(G) + Φn(G̃),∀n ∈ NG.
(v) Stability: the cost allocation Φ(G) belongs to the core

of the game G.
(vi) Anonymity: players’ relabeling does not affect their

cost allocation. If n and n′ are two players, and game G̃ is
identical to G except for exchanging the roles of n and n′,
then Φn(G)=Φn′(G̃). Note that (vi) implies (iii).

The studied cost allocation mechanisms are defined next.

A. Shapley Value (SV)
The Shapley value is a solution concept that is usually

formulated with respect to the grand coalition: it defines a way
of distributing the value v(NG) that could be obtained by the
grand coalition [32]. The SV is based on the intuition that the
cost allocated to each agent (in our case to each SO) should
be proportional to its contribution. A naive implementation of
this solution would be to allocate cost to each SO according
to how much it decreases the cost of the coalition of all
other SOs when it joins it, i.e., set the cost of SO n to
v(NG) − v(NG \ {n}). However, under this cost allocation,
the total cost assigned to the SOs may differ from the value
of the grand coalition. To avoid this problem, we rely on
an ordering of the SOs (0 for the TSO, from 1 to ND

for the DSOs) and allocate cost to each SO according to
how much this SO contributes to the coalition formed by its
predecessors in this ordering. That is, player 0 pays v({0}),
player 1 pays v({1, 0}) − v({0}), etc. It is easy to see that
this cost allocation distributes the value of the grand coalition
among the players. Define PNG as the set of permutations,
e.g., one-to-one mappings from NG to itself. We introduce
Sp(n) as the set of all the predecessors of n in p ∈ PNG ,
i.e., Sp(n) , {n′ ∈ NG|p(n′) < p(n)} where < denotes the
predecessor relationship. The SV of SO n is denoted SVn(G)
and is given by

SVn(G) ,
1

NG

∑
p∈PNG

∆p(n), (40)

where ∆p(n) , v
(
Sp(n) ∪ {n}

)
− v

(
Sp(n)

)
measures the

marginal contribution of n with respect to a permutation p. It
can equivalently be written under the extended form:

SVn(G) =
∑

C⊆NG\{n}

|C|!(NG − |C| − 1)!

NG!

[
v(C ∪ {n})− v(C)

]
.

(41)

For each permutation (ordering) of the SOs, each SO is
imputed a cost based on how much the SO contributes to the
coalition formed by its predecessors in this permutation. The
allocated cost is averaged over all possible permutations to
guarantee the symmetry of the allocation.

By construction, SV(G) meets properties (i)-(iv) [34]. In
fact, the SV is the only cost allocation method that has the
four properties (i)-(iv) simultaneously. The anonymity property

(vi) is also met by the SV, meaning that the SV does not
discriminate between the SOs solely on the basis of their
indices [39]. Finally, since Theorem 1 holds, property (v) is
checked by the cost game G. The main challenge of the SV
is in its computational complexity (NP - complete).

The computation process of SV is summarized as follows:
(1) Calculate PNG , the set of all permutations.
(2) Calculate Sp(n), the set of all the predecessors of n in

p ∈ PNG .
(3) Calculate ∆p(n) , v

(
Sp(n) ∪ {n}

)
− v

(
Sp(n)

)
, the

marginal contribution of n with respect to permutation
p.

(4) Calculate SVn(G) , 1
NG

∑
p∈PNG

∆p(n).

B. Normalized Banzhaf Index (B#)
Like the SV, the Banzhaf index B(G) measures the agents’

expected marginal contributions; however, instead of averaging
over all permutations of players, it averages over all coalitions
in the game. The Banzhaf index of an SO n is denoted Bn(G)
and is given by:

Bn(G) ,
1

2NG−1

∑
C⊆NG\{n}

[
v(C ∪ {n})− v(C)

]
. (42)

B(G) meets properties (ii)-(iv) [32]. Similarly to the SV, it
meets also the anonymity property (vi). Because it lacks the
efficiency property (i), B(G) is not in the core of G. To meet
the efficiency property (i), a rescaled version of the Banzhaf
index, called the normalized Banzhaf, has been proposed as:

B]
n(G) ,

Bn(G)∑
n′∈NG Bn′(G)

. (43)

The B](G) meets properties (i)-(iii); however it loses (iv)
[32]. Similarly to B(G), it meets property (vi). We next prove
that B](G) leads to a stable cost allocation.

Proposition 7. The normalized Banzhaf index B](G) meets
the stability property (v) for the cost game G.

Proof. By construction, the normalized Banzhaf index is ef-
ficient. We need to check the non-deviation property, i.e.,
that

∑
n∈C B

]
n(G) ≤ v(C),∀C ⊆ NG. We notice that the

normalized Banzhaf index is a convex combination of elements
that are constructed in the proof of Th.2.27 in [32] to exhibit
elements from the core of Gε. Since these elements belong
to the core by construction, the normalized Banzhaf index is
itself a convex combination of these elements, and the core of
the cost game G can be shown to be a convex set. Hence, the
normalized Banzhaf index meets the non-deviation property,
which implies that it belongs to the core of G.

Similarly to the SV, both versions of Banzhaf index share
exponential computational complexity rates, implying chal-
lenges for implementations on a large scale.

The computation process of B] is summarized as follows:
(1) Calculate C ⊆ NG \ {n}, the set of coalitions without

agent n.
(2) Calculate v(C ∪{n})−v(C), marginal contribution of n

with respect to a coalition C.
(3) Calculate the Banzhaf index Bn(G) according to (42).
(4) Calculate the normalized Banzhaf index B]

n(G) accord-
ing to (43).
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C. Cost Gap Allocation Method (CGA)
This method coincides with the τ -value, introduced in [40].

Similarly to the SV, we define ∆ =
(
∆(n)

)
n

as the marginal
cost vector. Its n-th coordinate is the separable cost of SO n:

∆(n) , v(NG)− v(NG \ {n}),∀n ∈ NG. (44)

For each coalition C ⊆ NG, we define the cost gap of C by:

{
g(C) , v(C)−

∑
n∈C ∆(n) if C 6= ∅,

g(∅) , 0.
(45)

The map g : 2N
G → R is the cost gap function of game

G. Note that g(NG) is equal to the non separable cost in G.
In general, we consider g ≥ 0. We define the weight vector
w such that: wn , min{C|n∈C} g(C),∀n ∈ NG. For any
characteristic function v such that g(C) ≥ 0,∀C ⊆ NG and∑

n∈NG wn ≥ g(NG), the cost gap allocation method assigns
the cost allocation:

y ,

{
∆ if g(NG) = 0,
∆ + g(NG)(

∑
n∈NG wn)−1w if g(NG) > 0.

(46)

The cost gap allocation CGA(G) meets the efficiency (i),
dummy player (ii), anonymity (vi) and, therefore, symmetry
(iii) properties [40]. CGA(G) is stable for NG < 4, but can
lead to unstable outcomes for 4 ≥ NG [40]. On the other
hand, CGA(G) gives rise to an exact analytical expression.

The computation process of CGA is summarized as follows:
(1) Calculate ∆(n), the marginal cost of agent n according

to (44).
(2) Calculate g(C), the cost gap of C according to (45).
(3) Calculate the weight wn , min{C|n∈C} g(C),∀n ∈ NG.
(4) Calculate the CGA according to (46).

D. Lagrangian Based Allocation (L)

This method is an extension of the classical shadow price
based cost split [41], with which it coincides when weak
duality holds for the cost game G. In (25), we get the dual
λ for the coupling constraint (25b), and duals µ0, (µn)n for
the individual constraints (25c), (25d). When solving (25) for
the grand coalition, we get v(NG). The optimal dual solution
has the property that:

v(NG)=λt(Ax+Bz−d)+µt
0Ψ0(x0)+

∑
n

µt
nΨn(xn). (47)

Since our problem is linear, each SO’s contribution can
be found by computing its contribution to the dual objective
function value [41]. This cost allocation is efficient (i) under
weak duality [33]. Stability (v) is also achieved since efficiency
(i) holds and the individual rationality condition is met by
definition of the cost allocation and weak duality. From
(47), dummy player (ii), and additivity (iv) hold. However,
symmetry (iii) and anonymity (vi) do not hold in general.
Indeed, since players who are equivalent in the game G can be
discriminated based on price depending on their location on
the network, the symmetry property (iii) does not hold. This
means that the anonymity property (vi) cannot hold neither.

Lagrangian based cost allocation L(G) requires the com-
putation of the grand coalition optimal value (e.g., solving
a linear optimization program) and all the dual variables
associated with the constraints in (25). Making use of a solver,
the L(G) implementation is practically simple.

E. Equal Profit Method (EPM)
The motivation behind this cost allocation is to propose a

method which is aimed at finding a stable cost allocation, such
that the maximum difference in pairwise relative savings is
minimized. We label this method, the Equal Profit Method
(EPM) [41]. The relative savings of SO n is computed as:

v({n})− yn
v({n}) = 1− yn

v({n}) . (48)

When a cost allocation is stable, v({n}) ≥ yn, this alloca-
tion is obtained using the solution of an LP problem:

min f, (49a)

s.t. f ≥ yn
v({n}) −

yn′

v({n′}) , ∀n, n
′, (49b)∑

n′∈C

yn′ ≤ v(C),∀C ⊆ NG, (49c)∑
n′∈NG

yn′ = v(NG), yn ≥ 0, ∀n. (49d)

EPM belongs to the core of the cost game G by con-
struction, as (49c), (49d) define efficiency and individual
rationality8 respectively. This means that it meets the efficiency
(i), and stability (v) properties. The symmetry property (iii) is
naturally met from (49b) at the optimum. However, additivity
(iv), anonymity (vi) and dummy player (ii) are not met in
general. EPM requires the optimal solution of a constrained
LP. Making use of a solver, its implementation is relatively
simple.

F. Proportional Cost Allocation (PCA)
A straightforward allocation is to distribute the total cost of

the grand coalition (i.e., the total cost of the common market),
v(NG), among the SOs according to how much flexibility is
used by each of them. This is expressed by

yn = wn.v(NG), (50)

where wn is equal to SO n’s share of the total activated
flexibility, and wn ≥ 0,∀n ∈ NG,

∑
n′∈NG wn′ = 1, or,

alternatively in case stand-alone costs are used, it is equal to
SO n’s own cost when no coalitions are formed [41]:

wn.v(NG) = v({n})⇔ wn =
v({n})
v(NG)

. (51)

Note that a cost allocation is said to be individually rational
if no SO pays more than its stand-alone cost, e.g., wn ≤
v({n})
v(NG)

,∀n ∈ NG. The proportional cost allocation method is
easy to understand, implement, and compute. Besides, it is
stable if and only if:∑

n∈C

wn ≤
v(C)

v(NG)
, ∀C ⊆ NG. (52)

In case stand-alone costs are used (we refer to this specif-
ically as PCA), the proportional allocation is stable, meeting
(v). The efficiency property (i) is always met due to the
normalization of the weights. The symmetry property (iii) also
holds, but neither anonymity (vi) nor dummy player (ii) hold.

8A cost allocation vector y for a coalition structure CS satisfies the
individual rationality property if yn ≤ v({n}), ∀n ∈ NG, i.e., each SO
weakly pefers being in the coalition structure to being on his own.
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Fig. 1: Topology of the interconnection between the transmis-
sion (TN) and distribution networks. DN18, DN69 and DN69

are connected to node 2, 6 and 14 of TN, respectively.

As PCA gives rise to an exact analytical expression. The
computation process of PCA follows (50) and (51).

A comparison of the derived properties of the different
proposed cost allocation methods is provided in Table I.
Regarding complexity (as shown in Table I), while CGA and
PCA have closed form expressions, SV and B] are weighted
sums of the SOs’ contributions to each coalition structure,
i.e., they both require to span the full set of the partitions
of SOs into coalitions. In other words, they are NP-complete
and cannot be solved in polynomial time. On the contrary, L
and EPM are O(NG), i.e., their complexity grows linearly in
the number of SOs. In terms of performance, only exact or
O(NG) methods are scalable to a large number of SOs. NP-
complete methods like SV or B] cannot be applied to large
scale problems, though they can be approximated efficiently
relying on sampling methods [42].

VI. NUMERICAL RESULTS

For the numerical results, we consider an interconnected
system composed of the IEEE 14-bus transmission network
connected to three distribution networks – namely, the Mat-
power 18-bus, 69-bus, and 141-bus systems. The topology of
the interconnection is shown in Fig. 1. All network parameters
are based on the corresponding cases in Matpower [43], while
the interface real and reactive power capacities are limited at
[−1,+1] MW and [−1,+1] MVAr, respectively. We add base
demand to the buses and adapt the capacity limit of lines,
so that the initial system state (without any flexibility acti-
vation) shows anticipated congestions and system imbalance.
Flexibility bids for both upward and downward flexibility are
created over the different nodes. The submitted bids are drawn
from a uniform distribution in the range of [10, 15]e/MWh for
downward bids and [50, 55] e/MWh for upward offers, not to
induce biases stemming from the submitted bids/offers. The
full network data and list of bids, i.e., order book, used in the
case study are available at [44].

We first showcase the benefit of cooperation in reducing
the total system costs. Fig. 2 shows the incremental benefit

of cooperation when adding additional DSOs up to the grand
coalition as well as the impact that the interface flow limits
have on the cooperation benefit. We consider first each SO
alone (i.e. disjoint markets), then incrementally add one DSO
to the coalition and compute the total costs. The coalition
formed are denoted C1 to C8 (defined in Fig. 2), where C1

represents the case of disjoint markets (i.e., singleton SOs) and
C8 the case of the grand coalition forming a common market.
The notation in the coalition structures C1 to C8 of Fig. 2
uses internal brackets to group together SOs that are part of the
same coalition in each of the coalition structures. For example,
in C4, TN and DN69 form a coalition, while DN18 and
DN141 each form a singleton coalition (i.e., does not cooperate
with any other SO). Fig. 2 shows the resulting total cost
per coalition structure for three different levels of maximum
interface flow limits, where the 50%×T p,max and 20%×T p,max

cases reduce the interface flow maximum limit for each DSO
to, respectively, 20% and 50% of its original value, T p,max. As
can be seen from Fig. 2, adding more DSOs in the cooperation
further reduces the total costs. For example, by comparing C1,
C2, C5 and C8 (marked in bold font in Fig. 2), we can observe
the way the sequential addition of DN18, DN69, and DN141

to the TSO (TN) led to a significant decrease in total system
costs for all values of interface flow limits (C8 achieves 29%,
28%, and 12% reduction with respect to C1 for, respectively,
T p,max, 50%×T p,max, and 20%×T p,max). For comparison, the
total cost of each SO in disjoint markets is shown in Fig. 3,
where the accumulation of these costs lead to the total cost of
C1 in Fig. 2. These costs result from the strict flexibility needs
of each SO as they reflect the costs of disjoint markets (i.e.,
without cooperation). In this regard, the resulting individually
purchased upward, downward, and total flexibility in those
disjoint markets for each SO are shown in Fig. 4.

In addition to highlighting the reduction in total costs driven
by cooperation, Fig. 2 also highlights the effect of allowing a
higher level of interface power exchange on achieving a more
efficient procurement of flexibility, as out of the three interface
flow limits, the 20%× T p,max case achieves the least amount
of savings. Indeed, Fig. 2 further showcases the way in which
a tighter interface flow limit reduces the benefits introduced
by cooperation, by showcasing the increased total cost under
each coalition for the three limits T p,max, 50% × T p,max, and
20%×T p,max. However, the impacts of the interface flow limits
on different DSOs vary significantly. By comparing bars of the
same color in C2, C3 and C4, we can see that C2 shows the
most severe variation in costs for a tighter interface flow limit.
This reflects the fact that DN18 is affected more significantly,
as in this case study, DN18 has the largest contribution to the
total cost reduction in the common market (can be considered
in that sense as the most influential SO). Hence, when its flow
with the TSO is more limited, the benefit from cooperation
significantly decreases.

In addition to the flexibility bids (prices and quantities)
submitted from a given distribution network, the location of
the distribution network itself within the system (i.e., the node
in the transmission system to which the distribution network
is connected) also plays a key role in its contribution to the
cost reduction of the coalition. For example, we consider a
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TABLE I: Properties of the Cost Allocation Methods for cost game G.

Properties SV B] CGA L EPM PCA
Efficiency X X X X X
Dummy player X X X X
Symmetry X X X X X
Additivity X X X X
Stability X X if NG < 4 X X X
Anonymity X X X
Complexity NP-complete NP-complete exact O(NG) O(NG) exact
Simplicity X X X X

0 20 40 60 80 100 120 140 160 180 200

C1=
{
{TN}, {DN18}, {DN69}, {DN141}

}
C2=

{
{TN, DN18}, {DN69}, {DN141}

}
C3=

{
{TN, DN141}, {DN18}, {DN69}

}
C4=

{
{TN, DN69}, {DN18}, {DN141}

}
C5=

{
{TN, DN18, DN69}, {DN141}

}
C6=

{
{TN, DN18, DN141}, {DN69}

}
C7=

{
{TN, DN69, DN141}, {DN18}

}
C8=

{
{TN, DN18, DN69, DN141}

}

Total cost [e]

T p,max 50%× T p,max 20%× T p,max

Fig. 2: Total cost reduction when different coalitions are formed in three cases of interface flow limit
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Fig. 3: Total cost of each SO in the setting of a disjoint market.
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Fig. 4: Purchased upward, downward, and total flexibility of
each SO in the setting of a disjoint market.

TABLE II: Total costs when identical DSOs located at differ-
ent buses cooperate with the TSO.

Coalition Total Costs [e]{
{TN}, {DNA}, {DNB}, {DNC}

}
43.15{

{TN, DNA}, {DNB}, {DNC}
}

39.81{
{TN, DNB}, {DNA}, {DNC}

}
38.74{

{TN, DNC}, {DNA}, {DNB}
}

40.4

case in which we place three identical 18-bus distribution
networks including the same set of bids (denoted DNA, DNB ,
and DNC) at different buses of the transmission network
and evaluate the total costs when each DSO cooperates with
the TSO (the corresponding network data for this use case
is available in [44]). The numerical results are shown in
Table II. Even though the distribution systems and the set of
submitted bids from those systems are the same, the resulting
cooperation-induced reduction in system costs are different –
as shown Table II – due to the location of transmission system
congestions. As shown in Table II, the total cost is reduced
by 10.2% when the TSO cooperates with DNB (third row in
Table II), but this saving drops to only 6.4% when the TSO
cooperates with DNC (fourth row in Table II).

We next investigate the resulting cost for each SO, in the
grand coalition C8, under the different cost allocation methods.
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TABLE III: Relative cooperation-induced cost reduction under
different cost allocation methods compared with a disjoint
market in the case of T p,max.

DN18 DN69 DN141 TN
SV 17% 23.2% 23.1% 46.1%
B] 14.2% 29 % 29.7% 45.9%
CGA 10.6% 1.6% 0.2% 65.5%
PCA 29.2% 29.2% 29.2% 29.2%
EPM 21.2% 3.1% 0.4% 53.2%
L 6% 3.1 % 0.4% 70.1%
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Fig. 5: SOs’ costs, in the grand coalition C8, under different
cost allocation methods and interface flow limit.

The stacked bars in Fig. 5 showcase the cost allocated to
each system operator via the different mechanisms presented
in Section V and summarized in Table I. Fig. 5 first shows the
benefit of cooperation (as compared, e.g., to the disjoint market
costs in Fig. 3. Indeed, the relative cost reduction for each
SO under different cost allocation methods compared with a
disjoint market in the case of T p,max is shown in Table III.
Table III shows that in this particular setting, the TSO is
benefiting the most of the cooperation in a grand coalition
as compared to running disjoint markets. Nonetheless, all the
other DSOs also achieve cooperation-driven cost reductions
but with varying proportions. Fig. 5 also highlights the varying
proportions of the total cooperation cost to be taken up by each
SO under different cost allocation methods. For example, in
the results of Fig. 5, considering the nominal T p,max case, the
Shapley value leads all DSOs to bear a higher portion of the
total cost as compared to, e.g., the PCA method. The results
show that the SV, in this numerical setting, induces a shift in
total cost from the TSO to the DSOs as compared to the PCA.
Under this setting, the CGA is more favorable to the TSO as
compared to the SV, while the PCA is less favorable, which is
the opposite case to that of the DSOs. In addition, the EMP,
for example, can help reducing the cost allocated to DN18,
who, in general, bears the highest cost in all the allocation
methods. However, the CGA and EPM do not cover some of
the essential properties for adequate cost allocation (as shown

in Table I). The interface flow limits have also a direct effect
on the disparity of the costs borne by each SO. For example, as
shown in Fig. 5, the 20%×T p,max limit increases the cost borne
by the TSO for all cost allocation methods, while this limit
helps reducing the cost borne by DN18 under the Lagragian-
based allocation method. In general, Fig. 5 shows that the
tighter the interface flow limits the lower the difference in costs
under the different cost allocation methods as cooperation
becomes more limited and, hence, less consequential.

The presented numerical results are specific to our numeri-
cal case analysis. However, they serve to highlight the fact that
different cost allocations and interface flow limits can lead
to disparity in the cost borne by each SO. Hence, choosing
an adequate allocation scheme (meeting key properties in
Table I) while reducing this disparity, are essential to achieving
beneficial, stable, efficient, and fair cooperation among SOs for
the joint procurement of flexibility resources. In general, the
Shapley value is naturally a favorable choice, since it satisfies
all properties from efficiency to anonymity. Nevertheless,
if a large number of DSOs are involved, it would be too
computationally challenging to use the Shapley value. The
Normalized Banzhaf index is also NP-complete and suffers
from a heavy computational load. Meanwhile, it loses the
efficiency property and stability property. Therefore, B] is
the least favorable choice. CGA shows favorable properties
with low computational requirements. However, as stability
is one of the most desirable properties – as without stability
the SOs would not have an incentive to cooperate – the cost
gap allocation would likely not be adequate to implement for
NG ≥ 4, as for NG ≥ 4 CGA is not guaranteed to be
stable. The remaining three methods (L, EPM, and PCA) are
relatively easy to compute, but they show a loss of a number
of properties as compared to, e.g., the Shapley value. Hence,
the choice by policy makers regarding which cost allocation
method to choose depends on the method’s properties and
fairness, as well as on the prior knowledge by each SO of
the cost that they will bear when cooperating in a common
market under a specific cost allocation. However, in general,
for each of the cost allocations that are stable, the cost that
would be allocated for any SO in the common market is still
lower as compared to the non-cooperation case (i.e., forming
a disjoint or sub-common market), which hence encourages
cooperation.

VII. CONCLUSION AND FUTURE OUTLOOK

In this paper, we have introduced a common market model
for the joint TSO-DSOs procurement of flexibility. We have
then developed a cooperative game approach to analyze the
cooperation potential of SOs in the common market. In this re-
gard, we have proven the stability of their cooperation, imply-
ing that cooperation in this common market can naturally arise
without external intervention. In addition, we have analyzed
several possible cost allocation mechanisms, to split the cost of
the jointly procured flexibility among the participating SOs in
a stable and adequate manner, while analyzing the properties
of each of those methods. Our numerical results have further
highlighted the benefits of this cooperation. In addition, the
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results have shown the paramount effect of the interface flow
limits on the benefits of cooperation, highlighting the need for
further investments to improve power exchange capabilities
among the different grids. The numerical results have also
highlighted the disparity that can be introduced by different
cost allocation methods, where some methods lead to a shift
in the costs borne by different SOs for the same market.

This work paves the way for several future extensions
further investigating TSO-DSO cooperation for the procure-
ment of flexibility. Indeed, the investigation of the proposed
methodology to non-linear market models (e.g., second order
cone programming relaxation of optimal power flow problems)
could constitute a direct first extension of the current work.
In addition, the impact of imperfect information on the social
cost with respect to a benchmark situation in which the social
cost is evaluated under full information, was numerically
evaluated in [2]. The current approach could be extended to
adversarial learning settings, taking into account the possible
communication of false data regarding, e.g., the expected base
power and loads [45]. This constitutes an interesting future
research direction. Furthermore, we note that in this analysis,
a state of harmonization of entry requirements between the
disjoint markets, the sub-common, and the common markets is
considered, enabling FSPs to participate in the markets formed
by the SOs’ coalitions. A future extension is to look into cases
where different market structures (disjoint, sub-common, and
common) can have different entry requirements, which may
impact the potential benefits of cooperation.

REFERENCES

[1] Distribution Systems Working Group, “CEER paper on DSO procedures
of procurement of flexibility,” CEER Ref: C19-DS-55-05, 2020.

[2] H. Le Cadre, I. Mezghani, and A. Papavasiliou, “A game-theoretic analy-
sis of transmission-distribution system operator coordination,” European
Journal of Operational Research, vol. 274, no. 1, pp. 317–339, 2019.

[3] A. Vicente-Pastor, J. Nieto-Martin, D. W. Bunn, and A. Laur, “Evalu-
ation of flexibility markets for retailer–DSO–TSO coordination,” IEEE
Transactions on Power Systems, vol. 34, no. 3, pp. 2003–2012, 2019.

[4] A. Papavasiliou and I. Mezghani, “Coordination schemes for the inte-
gration of transmission and distribution system operations,” in Power
Systems Computation Conference (PSCC), 2018, pp. 1–7.

[5] A. Sanjab, Y. Mou, A. Virag, and K. Kessels, “A linear model for
distributed flexibility markets and dlmps: A comparison with the socp
formulation,” in CIRED 2021 - The 26th International Conference and
Exhibition on Electricity Distribution, vol. 2021, 2021, pp. 3181–3185.

[6] A. Roos, “Designing a joint market for procurement of transmission and
distribution system services from demand flexibility,” Renewable Energy
Focus, vol. 21, pp. 16–24, 2017.

[7] A. Hermann, J. Kazempour, S. Huang, and J. Østergaard, “Congestion
management in distribution networks with asymmetric block offers,”
IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4382–4392,
2019.

[8] T. Schittekatte and L. Meeus, “Flexibility markets: Q&A with project
pioneers,” Utilities Policy, vol. 63, p. 101017, 2020.

[9] M. Heleno, R. Soares, J. Sumaili, R. J. Bessa, L. Seca, and M. A. Matos,
“Estimation of the flexibility range in the transmission-distribution
boundary,” in IEEE Eindhoven PowerTech, 2015, pp. 1–6.

[10] F. Capitanescu, “TSO–DSO interaction: Active distribution network
power chart for TSO ancillary services provision,” Electric Power
Systems Research, vol. 163, pp. 226–230, 2018.

[11] S. Riaz and P. Mancarella, “Modelling and characterisation of flexibility
from distributed energy resources,” IEEE Transactions on Power Sys-
tems, vol. 37, no. 1, pp. 38–50, 2022.

[12] L. Lopez, A. Gonzalez-Castellanos, D. Pozo, M. Roozbehani, and
M. Dahleh, “Quickflex: a fast algorithm for flexible region construction
for the TSO-DSO coordination,” in International Conference on Smart
Energy Systems and Technologies (SEST), 2021, pp. 1–6.

[13] L. Ageeva, M. Majidi, and D. Pozo, “Coordination between TSOs and
DSOs: Flexibility domain identification,” in The 12th Mediterranean
Conference on Power Generation, Transmission, Distribution and En-
ergy Conversion (MEDPOWER), 2020, pp. 429–434.

[14] D. Mayorga Gonzalez, J. Hachenberger, J. Hinker, F. Rewald, U. Häger,
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[42] J. Castro, D. Gómez, and J. Tejada, “Polynomial calculation of the
shapley value based on sampling,” Computers & Operations Research,
vol. 36, no. 5, pp. 1726–1730, 2009.

[43] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on power systems,
vol. 26, no. 1, pp. 12–19, 2010.

[44] Y. Mou, A. Sanjab, and H. Le Cadre, “Supporting Dataset for the
Analysis on TSO-DSOs Cooperation and Stable Cost Allocation for the
Joint Procurement of Flexibility (Network and Bid List),” Feb. 2022.
[Online]. Available: https://doi.org/10.5281/zenodo.6132230

[45] E. Karangelos and L. Wehenkel, “Cyber-physical risk modeling with
imperfect cyber-attackers,” 2022. [Online]. Available: arXiv:2110.00301

APPENDIX
COMPACT LP FORMULATION OF THE COMMON MARKET

We aim at expressing (22)-(24) in the compact lin-
ear matrix form in (25). To that purpose, we introduce
MnT

adj ∈ Mat(NnT

,NnT

) as the adjacency matrix of graph
GnT

(NnT

,LnT

), where MnT

adj(i, j) = 1 if there exists a link
connecting node i ∈ NnT

to node j ∈ NnT

; 0 otherwise.
Similarly, we define MT

adj ∈Mat(N T ,N T ) as the adjacency
matrix of GT (N T ,LT ), where MT

adj(i, j) = 1 if there exists a
link connecting node i ∈ N T to node j ∈ N T ; 0 otherwise. In
addition, we consider the generation shift factor (GSF) matrix
Ξ ∈ Mat(LT ,N T ) such that Ξ

(
(i, j), n

)
= X(i,j),n is the

GSF of line (i, j) ∈ LT and node n ∈ N T . Moreover, for
notation simplicity, we introduce vector 1nT of size 1×NT ,
with 1nT (nT ) = 1; 0 otherwise. Similarly, for any i ∈ NnT

,
we introduce vector 1nT

i of size 1×NnT

, with 1nT

i (i) = 1; 0
otherwise. The square matrix with vector x on its main
diagonal is denoted diag(x). M(n, :) denotes the n-th row
of matrix M , while M(:, n) denotes its n-th column.

We start with the transmission side. It is clear that (2) is
linear in x0 and z. It can be written under the compact form:(
1n − 1n 1n − 1n

)
x0 −

(
0 1n 0

)
z = dT,o

n − pT,o
n ,∀n ∈

N T . Then, (3) is linear in z leading to the compact linear
formulation: −pT t

Ξ(l, :)t + P T (i, j) + T pΞ(l, :)t = 0,∀l =
{i, j} ∈ LT . Equation (4) applies to nodes on the transmission
network, excluding nodes at the interface with the distribution
networks. Equation (4) is also linear in z, taking the form:
pTn −MT

adj(n, :)(P
T (n, :))t = 0,∀n ∈ N T \ ND. Equation

(5) focuses on nodes at the interface between the transmission
and the distribution networks. It takes the compact form below,
which is again linear in z: pTn−T p

n−MT
adj(n, :)(P

T (n, :))t =

0,∀n ∈ ND. Finally, (6)–(8) provides lower and upper-bounds
on the variables P T (i, j) in z and on x0, respectively.

At the distribution side, we consider any DSO–nT ∈ NnT

.
(10) is linear in xnT and z:

(
−1nT

n 1nT

n −1nT

n 1nT

n 0
)
xnT +(

0 1nT

n 0
)
z = 1nT

n

(
pn

T ,o−dnT ,o
)
,∀n ∈ NnT

. (11) is linear

only in z, and can be written as follows: pn
T

n + 1nT

n P nT

(n, :

)−MnT

adj(n, :)(P nT

(n, :))t = 0. (12) is linear in xnT and z:
qn

T

n +1nT

n QnT

(n, :)−MnT

adj(n, :)(QnT

(n, :))t = 0, (13)-(14)
are linear in z, giving rise to: T p

nT−MnT

adj(nn
T

0 , :)(P nT

(nn
T

0 , :

))t = 0 and T q
nT −MnT

adj(nn
T

0 , :)(QnT

(nn
T

0 , :))t = 0. For
(15), we get: vn

T

n −vn
T

A(n) +2.MnT

adj(n, :)
(
diag(rn

T

)(P nT

(n, :

))t− diag(xnT

)(QnT

(n, :))t
)

= 0 ∀n ∈ NnT \nnT

0 . (16) can

be expressed as a function of z: αmP
nT

(i, j)+βmQ
nT

(i, j)+

δmS
nT max(i, j) ≤ 0,∀m ∈ M ∀{i, j} ∈ LnT

. Finally,
(17)-(21) impose lower and upper-bounds on xnT

and z
components.
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