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TSO-DSOs Stable Cost Allocation for the Joint Procurement
of Flexibility: A Cooperative Game Approach

Anibal Sanjab, Hélène Le Cadre, and Yuting Mou

Abstract—In this paper, a transmission-distribution systems
flexibility market is introduced, in which system operators (SOs)
jointly procure flexibility from different systems to meet their
needs (balancing and congestion management) using a common
market. This common market is, then, formulated as a cooper-
ative game aiming at identifying a stable and efficient split of
costs of the jointly procured flexibility among the participating
SOs to incentivize their cooperation. The non-emptiness of the
core of this game is then mathematically proven, implying the
stability of the game and the naturally-arising incentive for
cooperation among the SOs. Several cost allocation mechanisms
are then introduced, while characterizing their mathematical
properties. Numerical results focusing on an interconnected
system (composed of the IEEE 14-bus transmission system
and the Matpower 18-bus, 69-bus, and 141-bus distributions
systems) showcase the cooperation-induced reduction in system-
wide flexibility procurement costs, and identifies the varying costs
borne by different SOs under various cost allocations methods.

I. INTRODUCTION

The increasing integration of distributed energy resources
(DERs) and electrification of the consumer energy space
(e.g., transportation and heating) pose challenges for grid
operation, due to the induced uncertainty and changing load
patterns. However, this new energy landscape also enables an
unprecedented growing volume of invaluable flexibility1 (from
different voltage levels of the grid) thereby providing essential
services (e.g., congestion management and balancing) for
transmission system operators (TSOs) and distribution system
operators (DSOs). In this respect, the introduction of market
mechanisms for the procurement of flexibility from flexibility
services provides (FSPs) has been increasingly recommended
in policies [1], and has been the center of several recent works
in the literature [2]–[7] and demonstration projects [8].

As FSPs could provide their flexibility as a service to
different system operators (SOs), a major branch of the
literature has focused on the SOs’ joint procurement (i.e.
co-optimization) of flexibility [3], [6], to maximize the grid
and system-level value of this flexibility. In particular, a key
focus has been shed on the need for coordination between
SOs to achieve joint procurement, not only for optimization
of economic efficiency but also to ensure that the activated
flexibility meets grid operational constraints of all the grids
involved [2]–[5], [9], [10]. However, when jointly procuring
flexibility, it is paramount to decide on how the costs of
this flexibility should be divided among the participating SOs
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1Flexibility is the ability to dynamically modify consumption and genera-
tion patterns providing, as a result, a service to system operators.

in the most efficient and fair way, and most importantly,
in a manner that incentivizes system operators to naturally
collaborate and jointly procure flexibility rather than running
their disjoint markets. To the best of our knowledge2, no
work in the literature has presented a fundamental analysis
and comprehensive solution to this joint cooperation and cost
allocation problem, as is the goal of the current work.

In this paper, we develop a novel cooperative game-
theoretic3 approach in which 1) we develop the concept of
cooperation stability between the TSO and DSOs in a joint
flexibility market, 2) determine whether cooperation between
the TSO and DSOs is naturally incentivized and the conditions
therefore, and 3) derive several cost allocation mechanisms and
analytically investigate their properties focusing on concepts
such as stability, efficiency, and computational complexity.

Towards this end, we first introduce a novel flexibility
market model including a TSO and multiple DSOs for jointly
procuring congestion management and balancing services
while explicitly accounting for grid constraints. This frame-
work is developed by first introducing disjoint TSO and DSO
level markets and joining them in a common market setting.
We then formulate the joint procurement of flexibility between
any subset of SOs as a cooperative (cost allocation) game and
analyze its properties. We subsequently prove the concavity of
this game, hence, guaranteeing the non-emptiness of its core4

under several pricing mechanisms. This, as a result, proves that
all SOs would be better off joining the grand coalition (i.e.,
the set of all SOs in a common market setting) as compared
to joining any sub-coalition (i.e., a coalition of a subset
of SOs, or forming disjoint markets with no cooperation).
Then, we introduce several cost allocation mechanisms to
allocate the costs of the jointly procured flexibility among
the different SOs (namely, the Shapley value, normalized
Banzhaf index, cost gap allocation, Lagrangian-based cost
allocation, equal profit method, and proportional cost) and
investigate their stability (whether they belong to the core),
allocation adequacy, and other mathematical properties such
as: efficiency, symmetry, additivity, dummy player, anonymity,
and computational complexity.

Our analytical conclusions and results are further corrob-
orated using a flexibility market case analysis focusing on
an interconnected test system composed of the IEEE 14-
bus transmission system interconnected with three distribution

2We note that the work in [3] looks at a Retailer-DSO-TSO coordination
setting while focusing particularly on the Shapley value for the numerical
computation of cost allocation, hence, defers in scope from the current work.

3Recent years have seen a few applications of cooperative game concepts
to energy system problems, with primary focus on the residential sector and
shared energy investments, such as in [11]–[13].

4The core is a game-theoretic concept used to assess cooperation stability,
and will be formally defined in Section III.
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systems – namely, the Matpower 141-bus, 69-bus and 18-
bus systems. The numerical results highlight 1) the significant
reduction in system cost when more SOs joint the common
market grand coalition, highlighting the benefits of coopera-
tion, 2) the essential role of higher interface flows on reaping
the benefits of cooperation, and 3) the disparity that can
result from different cost allocation methods, hence, providing
indispensable inputs to SOs, regulators, and decision makers.

The rest of the paper is organized as follows. Section II
presents the disjoint and common markets formulations. Sec-
tion III introduces the cooperative game formulation. Sec-
tion IV investigates the stability of the game, while Section V
provides different cost allocation mechanisms and charac-
terizes their properties. Section VI introduces the numerical
results, and Section VII concludes the paper.

II. SYSTEMS AND MARKETS MODELS

Consider a transmission system (operated by a TSO) com-
posed of a set of nodes, N T , and set of lines, LT , represented
by a graph GT (N T ,LT ). At a subset, ND, of these nodes,
distribution systems (each operated by a DSO) are connected.
We refer to ND ⊆ N T , as the set of interface nodes,
containing ND nodes from each of which stems one of the
ND different distribution systems. We let a) pTn be the net
real power injection at node n ∈ N T , b) pT,o and dT,o be,
respectively, the vectors of anticipated base injection and load
at all transmission system nodes N T , c) PT

ij denote the real
power flow over line {i, j} ∈ LT , with maximum thermal line
limit FT,max

ij , d) T p
nT and T q

nT denote the active and reactive
power transfer to the distribution system connected to node
nT ∈ ND, and e) X(i,j),n denote the generation shift factor
of PT

ij with respect to the net injection at node n ∈ N T ,
capturing the change in the flow over line {i, j} ∈ LT due to
a change in net injection at node n ∈ N T .

We denote a distribution system connected to a transmission
node nT ∈ ND by DSO–nT . Each DSO–nT is composed
of a radial distribution network composed of NnT

nodes
(where node nn

T

0 ∈ NnT

is the root node of DSO–nT )
and LnT

distribution lines forming a graph, GnT

(NnT

,LnT

).
In each DSO–nT , we let A(n) denote the ancestor node of
n ∈ NnT \{nnT

0 } and K(n) the set of predecessor nodes of n.
For the root node nn

T

0 , A(nn
T

0 ) = nT . For each DSO–nT , we
let a) sn

T

n = pn
T

n +jqn
T

n be the net complex power injection at
bus n ∈ NnT

, b) pn
T,o and dn

T,o be, respectively, the vectors
of anticipated base generation and demand at all distribution
system nodes NnT

, c) PnT

A(n)n and QnT

A(n)n be, respectively,
the real and reactive power flowing over the line connecting
A(n) and n, with a maximum apparent power flow denoted by
SnT,max
A(n)n , and d) vn

T

n be the magnitude squared of the voltage

at node n ∈ NnT

, with upper and lower limits specified,
respectively, by vn

T,max
n and vn

T,min
n . Here, PnT

A(nnT
0 )nnT

0

and

QnT

A(nnT
0 )nnT

0

denote the interface flows with the transmission

grid, which are equal, respectively, to T p
nT and T q

nT defined
on the transmission side. In addition, for the line parameters,
we let rn

T

A(n)n and xn
T

A(n)n be, respectively, the resistance and
reactance of line {A(n), n} ∈ LnT

.

We next introduce the formulation of disjoint transmission
and distribution markets, followed by the common market
model, which joins the distribution and transmission-level
markets.

A. Disjoint Transmission-Level Market

We consider that the TSO’s anticipated base schedule pT,o

and dT,o shows imbalance and/or line congestion which the
TSO aims to solve using resources available only from the
transmission level (hence, resulting in a disjoint market).
These resources are represented by offers to the market from
assets connected to the transmission network. Let ∆pT+

n and
∆pT−n correspond, respectively, to the volumes of increase and
reduction in generation (respectively, upward and downward
flexibility) connected at the transmission bus n. In addition, let
∆dT+

n and ∆dT−n correspond, respectively, to the volumes of
reduction and increase in demand (i.e., upward and downward
flexibility) at node n of the transmission network. In addition,
let cT+

pn
, cT−pn

, cT+
dn

, and cT−dn
represent the unit price offered

by adjustable generation and loads for, respectively, ∆pT+
n ,

∆pT−n , ∆dT+
n , and ∆dT−n . The goal of the TSO is to resolve

the balancing and congestion issues at the minimum possible
cost. Hence, the TSO’s problem can be described as follows:

min
∆pT,∆dT

∑
n∈NT

(
cT+
pn ∆pT+

n −cT−pn ∆pT−n +cT+
dn

∆dT+
n −cT−dn ∆dT−n

)
, (1)

Subject to:

pTn=pT,o
n +∆pT+

n −∆pT−n −dT,o
n +∆dT+

n −∆dT−n , ∀n ∈ N T , (2)

PT
ij =

NT∑
n=1

pTnX(i,j),n −
∑

n∈ND

T p
nX(i,j),n, ∀{i, j} ∈ LT , (3)

pTn −
∑

js.t.{i,j}∈LT

PT
ij = 0 : (λT

n ), ∀n ∈ N T \ ND, (4)

pTn − T p
n −

∑
js.t.{i,j}∈LT

PT
ij = 0 : (λT

n ), ∀n ∈ ND, (5)

−FT,max
ij ≤ PT

ij ≤ FT,max
ij , ∀{i, j} ∈ LT , (6)

0 ≤ ∆pT+
n ≤ ∆pT+,max

n , 0 ≤ ∆pT−n ≤ ∆pT−,max
n , ∀i ∈ N T , (7)

0 ≤ ∆dT+
i ≤ ∆dT+,max

i , 0 ≤ ∆dT−i ≤ ∆dT−,max
i , ∀i ∈ N T . (8)

Here, ∆pT and ∆dT are the vectors grouping, respectively,
∆pT+

n and ∆pT−n , and ∆dT+
n and ∆dT−n , at all nodes n ∈

N T . (2) defines the net injection at node n ∈ N T . (3) consists
of the power flow equations over all the transmission lines
expressed using the generation shift factors, X(i,j),n. (4) is
the energy balance equation at node n ∈ N T \ND, while (5)
is the energy balance equation at interface node n ∈ ND. λTn
denotes the Lagrange multipliers of the nodal energy balance
constraints at each node n ∈ N T . In this disjoint transmission
system market formulation, T p

n is considered to be a constant
(i.e. not dependent on any decision variable) to reflect the case
that balancing and congestion management in this case are to
be resolved using flexibility available only at the transmission
system. In addition, (6) represents the congestion prevention
constraints, while (7) and (8) capture the bid limits.
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B. Disjoint Distribution-Level Market

The disjoint market for congestion management at the
DSO–nT level uses solely distribution grid flexibility to solve
congestion issues resulting from the anticipated base gener-
ation and load profiles, pn

T,o and dn
T,o, at all distribution

system nodes NnT

. Let ∆pn
T+

n and ∆pn
T−

n correspond,
respectively, to the volumes of increase and reduction in gen-
eration (corresponding to, respectively, upward and downward
flexibility) connected at the DSO–nT node n. In addition,
we let ∆dn

T+
n and ∆dn

T−
n represent upward and downward

flexibility at node n (i.e., the volumes of reduction and increase
in demand at that node). In addition, similarly to the cost
structure on the transmission level, we let cn

T+
pn

, cn
T−

pn
, cn

T+
dn

,
and cn

T−
dn

represent the unit prices offered by adjustable
generation and loads on the distribution level for, respectively,
∆pn

T+
n , ∆pn

T−
n , ∆dn

T+
n , and ∆dn

T−
n .

As the DSO–nT ’s goal is to resolve congestion issues at
minimum cost, its problem can be formulated as follows.

min
∆pn

T
,∆dn

T
,qn

T

∑
n∈NnT

(
cn

T +
pn ∆pn

T +
n − cn

T−
pn ∆pn

T−
n

+ cn
T +

dn
∆dn

T +
n − cn

T−
dn

∆dn
T−

n

)
, (9)

Subject to:

pn
T

n =pn
T,o

n +∆pn
T+

n −∆pn
T−

n − dn
T,o

n +∆dn
T+

n −∆dn
T−

n , ∀n∈NnT

,
(10)

pn
T

n +PnT

A(n)n−
∑

k∈K(n)

PnT

nk = 0, ∀n ∈ NnT

\ nnT

0 : (λnT

n ), (11)

qn
T

n +QnT

A(n)n −
∑

k∈K(n)

QnT

nk = 0 ∀n ∈ NnT

\ nnT

0 , (12)

T p

nT −
∑

k∈K(nnT
0 )

PnT

nnT
0 k

= 0, : (λ
nnT
0

), (13)

T q

nT −
∑

k∈K(nnT
0 )

QnT

nnT
0 k

= 0, (14)

vn
T

n =vn
T

A(n)−2rn
T

A(n)nP
nT

A(n)n−2xn
T

A(n)nQ
nT

A(n)n, ∀n ∈ NnT

\ nnT

0 ,
(15)

αmP
nT

A(n)n+βmQ
nT

A(n)n+δmS
nT ,max
A(n)n ≤ 0, ∀m∈M, {A(n), n}∈LnT

,

(16)

vn
T ,min

n ≤ vnT
n 6 vn

T ,max
n , ∀n ∈ NnT

, (17)

qn
T ,min

n ≤ qn
T

n ≤ qn
T ,max

n , ∀n ∈ NnT

, (18)

T q,min
nT ≤ T q

nT ≤ T q,max
nT , (19)

0 6∆pn
T +

n 6 ∆pn
T+,max

n , 0 6 ∆pn
T−

n 6 ∆pn
T−,max

n , ∀n ∈ NnT

,
(20)

0 6∆dn
T +

n 6 ∆dn
T+,max

n , 0 6∆dn
T−

n 6 ∆dn
T−,max

n , ∀n ∈ NnT

.
(21)

Here, ∆pn
T

and ∆dn
T

are vectors grouping, respectively,
∆pn

T+
n and ∆pn

T−
n , and ∆dn

T+
n and ∆dn

T−
n at each n ∈

NnT

. (10) returns the net generation, pn
T

n , which depends on
the base generation and load profiles and the activated flexi-
bility at node n. The equality constraints in (11)-(15) follow
directly from the LinDistFlow formulation [14], representing
the linearized power flow equations in radial distribution

networks. In a local market mechanism (i.e. disjoint DSO–
nT level market), the interface flow T p

nT is considered to
be constant, i.e., not a decision variable nor a dependent
variable to be optimized. Hence, this reflects that congestion
management on the distribution level is to be resolved solely
using flexibility provided from within the distribution system.
We denote the Lagrange multiplier of constraint (11) and (13)
by λn

T

n . Constraint (16) is a linearization of the complex flow
limit constraint. This linearization, as proposed in [15], is a
polygonal inner-approximation that transforms the feasibility
region of the flow limit constrain from a circle of radius
SnT ,max
A(n)n into a polygon whose number of edges are given

by the size of the approximation set M. The values of αm,
βm, and γm define this polygon such that all its vertices
would lie on the original feasibility circle of radius SnT ,max

A(n)n
(a detailed explanation of this approximation is presented
in [15]). Constraints (17) and (18) capture the limits on
the nodal voltage magnitudes and reactive power injections,
to ensure operational stability and the real-reactive power
operational and capacity limits of load and generation, while
(19) enforces a limit on the reactive power transfer with the
transmission grid, T q

nT . Constraints (20) and (21) reflect the
limits of the submitted bids.

C. Common Market Model

In the common market, the TSO can readily use resources
offered from within the different distribution systems con-
nected to its transmission network as well as resources con-
nected to its transmission network to perform balancing and
congestion management. Concurrently, the DSOs can use re-
sources offered from their distribution networks for congestion
management. In the common market, flexibility resources (i.e.
submitted bids) are accessible to all participating SOs and
the market is jointly cleared, in a collaborative manner, to
optimally meet the needs of all the SOs while abiding by the
operational limits (i.e. constraints) of all the grids involved.
The proposed common market formulation, incorporating the
TSO and the ND DSOs, combines the disjoint market models
as follows:

min
∆p,∆d,q

[ ∑
n∈NT

(
cT+
pn∆pT+

n −cT−pn∆pT−n +cT+
dn

∆dT+
n −cT−dn ∆dT−n

)
+
∑

nT∈ND

∑
n∈NnT

(
cn

T+
pn ∆pn

T+
n −cn

T−
pn ∆pn

T−
n +cn

T+
dn

∆dn
T+

n −cn
T−

dn
∆dn

T−
n

)]
,

(22)

Subject to:
(2)–(8), (10)–(21)∀nT ∈ ND, (23)

and T p,min
nT ≤ T p

nT ≤ T p,max
nT ∀nT ∈ ND. (24)

∆p and ∆d are the vectors of generation and demand
flexibility variables (i.e., respectively, ∆pT and ∆pn

T

for
all nT ∈ ND, and ∆dT and ∆dn

T

for all nT ∈ ND).
In addition, q is the vector of qn

T

for all nT ∈ ND. The
common market formulation sums the objective functions of
the disjoint markets and uses all the operational and bid level
constraints from these markets. An additional constraint in
the common market is (24). In this regard, in contrast to the
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disjoint markets, the common market model treats T p
nT as a

dependent variable (rather than a constant as in the disjoint
markets) with limits shown in (24). This enables the interaction
between the previously disjoint markets to jointly procure the
flexibility needed by all SOs.

Remark II.1. We note that the common market formulation
in (22)–(24) can be readily adapted to reflect a sub-common
market setting joining any subset of the SOs. This is readily
achieved by replacing ND by any defined subset of DSOs in
(22)–(24), and by optionally including or excluding the TSO-
level market from the formulation.

D. Compact Formulation

Due to it’s linearity, and for ease of notation, the common
market model can be readily expressed using a compact linear
programming formulation. This is carried out next, which will
be useful in defining the cooperative game framework.

We introduce x0 as the column vector that
contains the TSO’s decision variables: x0 ,
col
(
∆pT+,∆pT−,∆dT+,∆dT−

)
. The TSO’s feasibility

set X0 is defined based on the constraints that depend
only on the TSO’s decision variables. Each DSO–nT ’s
decision variable column vector, denoted by xnT , contains
xnT , col

(
∆pn

T+,∆pn
T−,∆dn

T+,∆dn
T−, qn

T
)

. We
define XnT as the feasibility set of DSO–nT . The set
is made of constraints that depend only on the DSO’s
decision variables. We let x ∈ X0 ×

∏
nT XnT be the

vector that contains the joint decisions of the TSO and
DSOs. Dependent variables, which can be expressed as
functions of the TSO and DSOs’ decision variables, are
concatenated in a column vector z. Precisely, we set: z ,
col
(
pT ,P T , (pn

T

)nT∈ND , (P nT

)nT∈ND , (QnT

)nT∈ND ,

(vn
T

)nT∈ND ,T p,T q
)

. Constants such as pT,o, dT,o,

(pn
T,o)nT∈ND , (dn

T,o)nT∈ND , ∆pT+,max,∆pT−,max,
∆dT+,max, ∆dT−,max, (∆pn

T+,max,∆pn
T−,max,

∆dn
T+,max, ∆dn

T−,max)nT∈ND , (vn
T ,max)nT∈ND ,

(vn
T ,min)nT∈ND , (qn

T ,max)nT∈ND , (qn
T ,min)nT∈ND ,

T q,max, T q,min, T p,max, T p,min, Ξ
(
(i, j), n

)
= X(i,j),n,

(rn
T

, xnT

)nT∈ND , α,β, δ, F T,max, and (SnT,max)nT∈ND ,
are taken as input parameters. We also define the TSO’s cost
vector c0 ,

(
cT+
p ,−cT−p , cT+

d ,−cT−d
)

and DSO–nT ’s cost

vector cnT ,
(
cn

T+
p ,−cnT−

p , cn
T+

d ,−cn
T−

d ,0
)
.

Based on this compact notation, the TSO’s objective func-
tion can be written as Φ0(x0) , ct0x0, while the objective
function of each DSO-nT is given by Φn(xnT ) , ctnTxnT ,
where .t is the transpose operator. The social cost of the
common market, introduced in (22), is defined as the sum
of the TSO and DSOs’ objective functions, i.e., Φ(x) ,
Φ0(x0) +

∑
nT∈NT ΦnT (xnT ). To write the common market

model (22)-(24) in a compact matrix form, a change of
notations is needed. For that purpose, we order the DSOs in
ascending order form 1 to N = |ND| based on the values of
their initial nT . In addition, we denote x ,

(
x0, (xn)n

)
as

the concatenation of the TSO and DSOs’ decision variables.

As the common market model in (22)-(24) is linear, it can
readily be presented as a standard compact linear program
(LP), using our defined vector notation, as follows:

(LP) min
x,z

Φ(x), (25a)

s.t. Ax+Bz ≤ d, (λ) (25b)
x0 ∈ X0, (25c)
xn ∈ Xn, ∀n ∈ N , (25d)
z ∈ Z. (25e)

The steps towards this compact formulation are presented
in the Appendix. Note that (25b) can be equivalently written
as (A0x0+B0z0)+

∑
n(Anxn+Bnzn) ≤ d to differentiate

between the TSO and the different DSO n’s variables. We let
λ be the dual variable of (25b).

Constraints (25c) and (25d) can be analytically written as
Ψ0(x0) ≤ 0 and Ψn(xn) ≤ 0,∀n ∈ N respectively. We
denote µ0 and (µn) as the associated dual variables.

The Lagrangian function associated with the optimization
problem (25) is defined as follows:

L(x,z,λ,µ) ,Φ(x) + λt
(
Ax+Bz − d

)
+ µt

0Ψ0(x0)

+
∑
n

µt
nΨn(xn). (26)

In addition, we introduce the relaxed formulation of (25)
where the coupling constraint (25b) is replaced by a penalty
in the objective:

max
λ≥0

min
x∈X ,z∈Z

(
Φ(x) + λt(Ax+Bz − d)

)
, (27a)

s.t. x0 ∈ X0, (27b)
xn ∈ Xn,∀n ∈ N , (27c)
z ∈ Z. (27d)

The dual function of problem (25) is g(λ,µ) ,
minx,z L(x, z,λ,µ) where L(.) is defined in (26). The asso-
ciated dual problem is maxλ≥0,µ≥0 g(λ,µ). The duality gap
is the non-negative number Φ(x∗) − g(λ∗,µ∗) where x∗ is
solution to the primal problem (25) and λ∗,µ∗ are solutions to
the dual problem. Under constraint qualification (e.g. Slater’s
condition) for (25), strong duality implies:

min
x,z

max
λ≥0
L(x,z,λ) = max

λ≥0
min
x,z
L(x,z,λ). (28)

Since Ψ0(.),Ψn(.),∀n ∈ N and (25b), (25e) are all defined
through affine functions, Slater’s condition is not strictly
required and can be replaced with non-strict inequalities in
the (LP) feasibility set.

III. COST GAME DEFINITION

We consider a game that is populated by the non-empty set
N of the N DSOs and the TSO. We will refer to them as the
players of the game. A coalition is a subset of NG , N ∪
{TSO}. The grand coalition is the set NG of all SOs (players),
with cardinality NG. We cast this game as a characteristic
function cost game, G, formally defined as follows.

Definition 1 (Characteristic Function Cost Game [16]). A
characteristic function cost game G is given by a pair
(NG, v), where v : 2N

G → R is a characteristic function,
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which maps each coalition C ⊆ NG to a real number v(C).
The real number v(C) denotes the value of the coalition C.

The common market in (25), and its special cases for a
singleton TSO or DSO market (or any sub-common market
containing any subset of the SOs as discussed in Remark II.1),
corresponds to a characteristic function v given by:

v(C) =
∑
n∈C

ctnx
∗
n where C ⊆ NG, (29)

and (x∗n)n∈C is the optimum of the optimization problem

min
(xn)n∈C ,(zn)n∈C

∑
n∈C

Φn(xn), (30a)

s.t. Ax+Bz ≤ d, (30b)
xn ∈ Xn,zn ∈ Zn, ∀n ∈ C. (30c)

As the coalitional value v(C) (i.e., the total cost of the
common and sub-common markets) can be divided amongst
the members of C in any way that the members of C choose,
G is classified as a transferable utility (TU) game [16].

An outcome of the characteristic function game, G, consists
of two parts: i) a partition of the SOs (i.e. the players) into
coalitions, known as the coalition structure; and ii) a cost
vector, distributing the value of each coalition among its
members. These concepts are formally defined next.

Definition 2 (Coalition Structure). Given our game G =
(NG, v), a coalition structure over NG is a collection of non-
empty subsets CS = {C1, ..., Cs} such that ∪sj=1C

j = NG

and Ci ∩ Cj = ∅,∀i, j ∈ {1, ..., s} such that i 6= j.

A vector y = (y1, ..., yNG) ∈ RNG

is a cost allocation
vector for a coalition structure CS = {C1, ..., Cs} over NG

if: yn ≥ 0,∀n ∈ NG,
∑

n∈Cs′ yn ≥ v(Cs′) for any s′ ∈
{1, ..., s} (feasibility condition). The efficiency of y is defined
as follows.

Definition 3 (Efficiency). A cost allocation vector y is effi-
cient if all the coalition cost is distributed amongst coalition
members, i.e.,

∑
n∈Cs′ yn = v(Cs′),∀s′ ∈ {1, ..., s}.

The space of all coalition structures will be denoted CS . An
outcome of G is, hence, a pair (CS,y). For a cost allocation
vector y, we let y(C) ,

∑
n∈C yn denote the total cost

allocation of a coalition C ⊆ NG under y. By extension,
the social cost of the coalition structure CS will be denoted
v(CS) ,

∑
C∈CS v(C).

For the derivations that ensue, we now recall classical
definitions of two subclasses of coalitional games that will
be useful thereafter: submodular games and concave games.

Definition 4 (Submodularity [16]). A characteristic function
v is said to be submodular if it satisfies

v(C ∪ C′) + v(C ∩ C′) ≤ v(C) + v(C′),

for every pair of coalitions C,C ′ ⊆ NG. A game with a
submodular characteristic function is said to be concave.

Concave games have an intuitive characterization in terms
of players’ marginal contributions: in a concave game, a player
(i.e. an SO) is more useful (decreasing the group cost) when
it joins a bigger coalition, as formally defined next.

Definition 5 (Concavity [16]). A characteristic function game
G is concave if and only if for every pair of coalitions C,C ′

such that C ⊂ C ′ and every player n ∈ NG \C ′ it holds that
v(C ∪ {n})− v(C) ≤ v(C ′ ∪ {n})− v(C ′).

To define whether a common market can naturally arise,
the stability of the cooperation between the SOs in a common
market must be defined and verified. A stable coalition is a
coalition from which no SO has an incentive to deviate. A
stable grand coalition, is the coalition including the TSO and
all DSOs and which is stable. Consider an outcome (CS,y) of
the cost game G. If y(C) > v(C) for some C ⊆ NG, the SOs
in C could do better by abandoning the coalition structure CS
and forming a coalition of their own. Thus, in this case, the
outcome (CS,y) is unstable. The set of stable outcomes, i.e.,
outcomes where no subset of SOs (players) has an incentive
to deviate, is called the core of G.

Definition 6. The core C(G) of the characteristic function
game G = (NG, v) is the set of all efficient outcomes (CS,y)
such that y(C) ≤ v(C),∀C ⊆ NG. The core of our cost
game G can formally be defined as follows: C(G) , {y ∈
RNG |y(NG) = v(NG) and y(C) ≤ v(C), ∀C ⊆ NG}.

The constraints imposed on C(G) ensure that no TSO or
DSO has an incentive to leave the grand coalition (of all SOs in
a common market) and form any subcoalition (a sub-common
market as defined in Remark II.1, encompassing any subset of
SOs including the singleton coalitions/disjoint markets).

We next prove and analyze the stability of the grand
coalition in our game and, hence, the naturally arising common
benefit of the SOs to cooperate in a common flexibility market.

IV. STABILITY OF COST GAME G

For the common market to naturally arise and be sustained,
collaboration among SOs should be naturally beneficial to all
of them. This is achieved if their collaboration is stable, i.e.,
when the core of our formulated TSO-DSO game G, defined
in Definition 6, is non-empty.

We next prove that the core of G is non-empty and hence
the TSO and DSOs have a natural incentive to collaborate and
form a common market. To this end, we first begin by proving
that it is beneficial for any DSO to collaborate with the TSO
than forming a disjoint market.

Proposition 1. Any DSO n ∈ N prefers cooperating with the
TSO than remaining alone.

Proof. It is profitable for any DSO n ∈ N to cooperate with
the TSO if and only if:

v({TSO ∪ n}) ≤ v({n}) + v({TSO}). (31)

Considering the relaxed version of (25) which we proved
to be equivalent to (25) under weak Slater’s condition, the
inequality (31) is equivalent to the following one:

max
λ

min
x0,z0,xn,zn

[
ct0x0 + ctnxn + λt(Ax+Bz − d)

]
≤max

λ
min
x0,z0

[
ct0x0 + λt(Ax+Bz − d)

]
+ max

λ
min
xn,zn

[
ctnxn + λt(Ax+Bz − d)

]
, (32)
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where x0 ∈ X0,xn ∈ Xn, z0 ∈ Z0, zn ∈ Zn. Since (32)
holds by definition, we can conclude that any DSO n ∈ N
has an incentive to cooperate with the TSO.

We next prove that not only would any DSO benefit from
collaborating with the TSO, but also any DSO has an incentive
to be part of the grand coalition made of all of the N DSOs
and the TSO. We start by proving an intermediate result that
characterizes the cost game G.

Proposition 2. The characteristic function game G = (NG, v)
is concave.

Proof. Let C ⊆ NG. We compute v(C∪{n})−v(C) = ctnx
∗
n

where x∗n solves (30), and observe that v(C ′∪{n})−v(C ′) =
v(C ∪ {n})− v(C) for any coalition C ′ ⊂ C. The concavity
property introduced in Definition 5 holds.

Corollary IV.1. The characteristic function cost game G is
submodular.

Proof. This results follows directly from Proposition 2. In-
deed, every concave game is necessarily submodular [16].

This, hence, allows us to prove the non-emptiness of the
core, as shown next.

Theorem 1. The core of the characteristic function cost game
G is non-empty and the grand coalition of G is stable.

Proof. Consider the following allocation linear program:

max
y

∑
n∈NG

yn, (33a)

s.t.
∑
n∈C

yn ≤ v(C), ∀C ⊆ NG. (33b)

It is quite obvious that C(G) 6= ∅ if and only if the
optimum value of the linear program (33) is equal to v(NG),
in which case any optimal solution to (33) lies in C(G). Taking
the linear program dual to (33), an equivalent condition for
C(G) 6= ∅ can be obtained based on the concept of balanced
sets. A collection B of nonempty subsets of NG is balanced if∑

C∈B γC .v(C) ≤ v(N ) holds for every balanced collection
B with weights (γC)C∈B. A game has a non-empty core if
and only if it is balanced [17].

The cost game G being submodular from Corollary IV.1,
(33) is equivalent to:

max
y

∑
n∈NG

yn, (34a)

s.t.
∑

n∈NG

yn =
∑

n∈NG

Φn(x∗n), (34b)

x∗ = arg min
x,z

∑
n∈NG

Φn(xn), (34c)

s.t. Ax+Bz ≤ d, (34d)
x ∈ X ,z ∈ Z. (34e)

By construction, the Shapley5 value of the cost game G is
solution to (34) and as such, belongs to the core of the game
[16], [18]. This implies that the core of G is never empty.

5The Shapley value is introduced in detail and analyzed in Section V-A.

Theorem 1, hence, proves that it is beneficial for all DSOs
and TSO to cooperate in a common market. In the derivation,
cn was used in the cost function of the players, which
would reflect a cost-based market clearing or a pay-as-bid
mechanism. However, Theorem 1 can be readily extended
beyond pay-as-bid for other pricing schemes, such as nodal
pricing (i.e., locational marginal pricing) as shown next.

Proposition 3. The core of the cost game G is non-empty
under nodal pricing.

Proof. Under nodal pricing, the cost game G coalitional value
becomes v(C) =

∑
n∈C λ

t
nx
∗
n where C ⊆ NG, and (x∗n)n∈C

is the optimum of (30) where Φn(xn) is replaced with λt
nxn.

Using the same reasoning as in the proof of Proposition 2, it
is straightforward to check that cost game G is concave under
both pricing schemes, rendering the core of the cost game G
non-empty under nodal pricing.

After proving the stability of the cooperation of the SOs in
the common market, we next present several cost allocation
methods – based on which the total cost of flexibility procure-
ment in the common market can be split – and analytically
characterize their properties.

V. ALLOCATION MECHANISMS

We introduce several cost allocation mechanisms and study
their properties for our TSO-DSOs cooperative game, based
on efficiency, stability, and fairness criteria, which measure
how well each SO allocated cost reflects its contribution to
the total cost. The properties for evaluating a cost allocation
mechanism, Φ(G), are defined as follows:

(i) efficiency:
∑

n Φn(G) = v(NG).
(ii) dummy player: if a player n is a dummy in G, i.e.,

v(C ∪ {n}) = v(C),∀C ⊆ NG \ {n}, then Φn(G) = 0.
(iii) symmetry (equal treatment of equals): if n and n′

are equivalent in G, in the sense that v(C ∪ {n}) = v(C ∪
{n′}),∀C ⊆ NG, then Φn(G) = Φn′(G).

(iv) additivity: Φn(G+ G̃) = Φn(G) + Φn(G̃),∀n ∈ NG.
(v) stability: the cost allocation Φ(G) belongs to the core.
(vi) anonymity: players’ relabeling does not affect their

cost allocation. If n and n′ are two players, and game G̃ is
identical to G except for exchanging the roles of n and n′,
then Φn(G)=Φn′(G̃). Note that (vi) implies (iii).

The studied cost allocation mechanisms are defined next.

A. Shapley Value (SV)

The Shapley value is a solution concept typically for-
mulated with respect to the grand coalition: it defines a
way of distributing the value v(NG) that could be obtained
by the grand coalition. The SV is based on the intuition
that the cost allocated to each agent (in our case to each
SO) should be proportional to her contribution to the grand
coalition. Define PNG as the set of permutations, e.g., one-
to-one mappings from NG to itself. We introduce Sp(n)
as the set of all the predecessors of n in p ∈ PNG , i.e.,
Sp(n) , {n′ ∈ NG|p(n′) < p(n)} where < denotes
the predecessor relationship. The SV of SO n is denoted
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SVn(G) and is given by SVn(G) , 1
NG

∑
p∈PNG

∆p(n)

where ∆p(n) , v
(
Sp(n) ∪ {n}

)
− v

(
Sp(n)

)
measures the

marginal contribution of n with respect to a permutation
p. It can equivalently be written under the extended form:
SVn(G) =

∑
C⊆NG\{n}

|C|!(NG−|C|−1)!
NG!

[
v(C∪{n})−v(C)

]
.

For each permutation (ordering) of the SOs, each SO is
imputed a cost based on how much the SO contributes to the
coalition formed by its predecessors in this permutation. The
allocated cost is averaged over all possible permutations to
guarantee the symmetry of the allocation.

By construction, SV(G) meets properties (i)-(iv) [18]. In
fact, the SV is the only cost allocation method that has the four
properties (i)-(iv) simultaneously. The anonymity property (vi)
is also met by the SV, meaning that the SV does not discrimi-
nate between the SOs solely on the basis of their indices [19].
Finally, following the proof of Theorem 1, property (v) holds
true for our cost game G. The main challenge of the SV is in
its computational complexity (NP - complete). The complexity
of the SV also hinders the interpretation of its fairness.

B. Normalized Banzhaf Index (B#)

Like the SV, the Banzhaf index B(G) measures the agents’
expected marginal contributions; however, instead of averaging
over all permutations of players, it averages over all coalitions
in the game. The Banzhaf index of an SO n is denoted Bn(G)

and is given by Bn(G) , 1

2NG−1

∑
C⊆NG\{n}

[
v(C ∪{n})−

v(C)
]
. B(G) meets properties (ii)-(iv) [16]. Similarly to the

SV, it meets also the anonymity property (vi). Because it lacks
the efficiency property (i), B(G) is not in the core. To meet
the efficiency property (i), a rescaled version of the Banzhaf
index has been proposed, called the normalized Banzhaf index:
B]

n(G) , Bn(G)∑
n′∈NG Bn′ (G) . The normalized Banzhaf index

meets properties (i)-(iii); however it loses (iv) [16]. Similarly
to Banzhaf index, it meets property (vi). We next prove that
the normalized Banzhaf index leads to a stable cost allocation.

Proposition 4. The normalized Banzhaf index B](G) meets
the stability property (v) for the cost game G.

Proof. By construction, the normalized Banzhaf index is ef-
ficient. We need to check the non-deviation property, i.e.,
that

∑
n∈C B

]
n(G) ≤ v(C),∀C ⊆ NG. We notice that the

normalized Banzhaf index is a convex combination of elements
that are constructed in the proof of Th.2.27 in [16] to exhibit
elements from the core of G. Since these elements belong
to the core by construction, the normalized Banzhaf index is
itself a convex combination of these elements, and the core of
the cost game G can be shown to be a convex set. Hence, the
normalized Banzhaf index meets the non-deviation property,
which implies that it belongs to the core of G.

Similarly to the SV, both versions of Banzhaf index share
exponential computational complexity rates, implying chal-
lenges for implementations on a large scale and no simple
interpretation of fairness.

C. Cost Gap Allocation Method (CGA)

This method coincides with the τ -value, introduced in [20].
Similarly to the SV, we define ∆ =

(
∆(n)

)
n

as the marginal
cost vector. Its n-th coordinate is the separable cost of SO
n, i.e., ∆(n) , v(NG) − v(NG \ {n}),∀n ∈ NG. For each
coalition C ⊆ NG, we define the cost gap of C by:{

g(C) , v(C)−
∑

n∈C ∆(n) if C 6= ∅,
g(∅) , 0.

The map g : 2N
G → R is the cost gap function of game

G. Note that g(NG) is equal to the non separable cost in G.
In general, we consider g ≥ 0. We define the weight vector
w such that: wn , min{C|n∈C} g(C),∀n ∈ NG. For any
characteristic function v such that g(C) ≥ 0,∀C ⊆ NG and∑

n∈NG wn ≥ g(NG), the cost gap allocation method assigns
the cost allocation:

y ,

{
∆ if g(NG) = 0,
∆ + g(NG)(

∑
n∈NG wn)−1w if g(NG) > 0.

The cost gap allocation CGA(G) meets the efficiency (i),
dummy player (ii), anonymity (vi) and, therefore, symmetry
(iii) properties [20]. CGA(G) is stable for NG < 4, but can
lead to unstable outcomes for 4 ≥ NG [20]. On the other
hand, CGA(G) gives rise to an exact analytical expression,
and therefore to a simple interpretation of fairness.

D. Lagrangian Based Allocation (L)

This method is an extension of the classical shadow price
based cost split [21], with which it coincides when weak
duality holds for the cost game G. In (25), we get the dual
λ for the coupling constraint (25b), and duals µ0, (µn)n for
the individual constraints (25c), (25d). When solving (25) for
the grand coalition, we get v(NG). The optimal dual solution
has the property that:

v(NG)=λt(Ax+Bz−d)+µt
0Ψ0(x0)+

∑
n

µt
nΨn(xn). (35)

Since our problem is linear, each SO’s contribution can
be found by computing its contribution to the dual objective
function value [21]. This cost allocation is efficient (i) under
weak duality [22]. Stability (v) is also achieved since efficiency
(i) holds and the individual rationality condition is met by
definition of the cost allocation and weak duality. From (35),
dummy player (ii) and additivity (iv) hold. However, symmetry
(iii) and anonymity (vi) do not hold in general.

Lagrangian based cost allocation L(G) requires the com-
putation of the grand coalition optimal value (e.g., solving
a linear optimization program) and all the dual variables
associated with the constraints in (25). Making use of a solver,
L(G) implementation is simple and leads to a rather intuitive
interpretation of fairness.

E. Equal Profit Method (EPM)

The motivation behind this cost allocation is to propose a
method which is aimed at finding a stable cost allocation,
such that the maximum difference in pairwise relative savings
is minimized. We call this method, the Equal Profit Method
(EPM) [21]. The relative savings of SO n is, then, computed
as v({n})−yn

v({n}) = 1 − yn

v({n}) . When a cost allocation is stable,
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v({n}) ≥ yn. This allocation is obtained using the solution of
a linear optimization problem:

min f, (36a)

s.t. f ≥ yn
v({n}) −

yn′

v({n′}) , ∀n, n
′, (36b)∑

n′∈C

yn′ ≤ v(C),∀C ⊆ NG, (36c)∑
n′∈NG

yn′ = v(NG), yn ≥ 0, ∀n. (36d)

EPM belongs to the core of the cost game G by con-
struction, as (36c), (36d) define efficiency and individual
rationality6 respectively. This means that it meets the effi-
ciency (i) and stability (v) properties. The symmetry property
(iii) is naturally met from (36b) at the optimum. However,
additivity (iv), anonymity (vi) and dummy player (ii) are
not met in general. EPM requires the optimal solution of
a linear constrained optimization problem. Making use of a
solver, its implementation is simple and leads to an intuitive
interpretation of fairness.

F. Proportional Cost Allocation (PCA)

A straightforward allocation is to distribute the total cost of
the grand coalition (i.e., the total cost of the common market),
v(NG), among the SOs according to how much flexibility is
used by each of them. This is expressed by yn = wn.v(NG),
where wn is equal to SO n’s share of the total activated
flexibility, and wn ≥ 0,∀n ∈ NG,

∑
n′∈NG wn′ = 1, or,

alternatively in case stand-alone costs are used, it is equal to
v({n})∑

n′∈NG v({n′}) [21].
The proportional cost allocation method is easy to under-

stand, implement, and compute. Besides, it is stable if and only
if
∑

n∈C wn ≤ v(C)
v(NG)

,∀C ⊆ NG. In case stand-alone costs
are used (we refer to this specifically as PCA), the proportional
allocation is stable, meeting (v). The efficiency property (i)
is always met due to the normalization of the weights. The
symmetry property (iii) also holds, but neither anonymity (vi)
nor dummy player (ii) hold.

As PCA gives rise to an exact analytical expression, it yields
a simple, intuitive interpretation of fairness.

A comparison of the properties of the different proposed
cost allocation methods is provided in Table I.

VI. NUMERICAL RESULTS

For the numerical results, we consider an interconnected
system composed of the IEEE 14-bus transmission network
connected to three distribution networks – namely, the Mat-
power 18-bus, 69-bus, and 141-bus systems. All network
parameters are based on the corresponding cases in Mat-
power [23]. We add base demand to the buses and adapt
the capacity limit of lines, so that the initial system state
(without any flexibility activation) show anticipated conges-
tions and system imbalance. Flexibility bids for both upward
and downward flexibility are created over the different nodes.

6A cost allocation vector y for a coalition structure CS satisfies the
individual rationality property if yn ≤ v({n}), ∀n ∈ NG, i.e., each SO
weakly pefers being in the coalition structure to being on his own.
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Fig. 1: Total cost reduction when different coalitions are formed
in three cases of interface flow limit, where: C1=

{
{TN}, {DN18},

{DN69}, {DN141}
}

, C2=
{
{TN, DN18}, {DN69}, {DN141}

}
,

C3=
{
{TN, DN141}, {DN18}, {DN69}

}
, C4=

{
{TN, DN69},

{DN18}, {DN141}
}

, C5=
{
{TN, DN18, DN69}, {DN141}

}
,

C6=
{
{TN, DN18, DN141}, {DN69}

}
, C7=

{
{TN, DN69, DN141},

{DN18}
}

, C8=
{
{TN, DN18, DN69, DN141}

}
.

The submitted bids are drawn from a uniform distribution in
the range of [10, 15]e/MWh for downward bids and [50, 55]
e/MWh for upward offers, not to induce biases stemming from
the submitted bids/offers.

We first showcase the benefit of cooperation in reducing
the total system costs. Fig. 1 shows the incremental benefit
of cooperation when adding additional DSOs up to the grand
coalition as well as the impact that the interface flow limits
have on the cooperation benefit. We consider first each SO
alone (i.e. disjoint markets), then incrementally add one DSO
to the coalition and compute the total costs. The coalition
formed are denoted C1 to C8 (defined in Fig. 1), where C1

represents the case of disjoint markets (i.e., singleton SOs)
and C8 the case of the grand coalition forming a common
market. The process is repeated for three different levels of
maximum interface flow limits, where the 50% × T p,max and
20%× T p,max cases reduce the interface flow maximum limit
for each DSO to, respectively, 20% and 50% of its original
value, T p,max. As can be seen from Fig. 1, adding more DSOs
in the cooperation further reduces the total costs. For example,
by comparing C1, C2, C5 and C8, we can observe the way
the sequential addition of DN18, DN69, and DN141 to the TSO
(TN) led to a significant decrease in total system costs for all
values of interface flow limits (C8 achieves 29%, 28%, and
12% reduction with respect to C1 for, respectively, T p,max,
50% × T p,max, and 20% × T p,max). This also highlights the
effect of allowing a higher level of interface power exchange
on achieving a more efficient procurement of flexibility, as
out of the three interface flow limits, the 20% × T p,max case
achieves the least amount of savings.

Indeed, Fig. 1 further showcases the way in which a
tighter interface flow limit reduces the benefits introduced
by cooperation, by showcasing the increased total cost under
each coalition for the three limits T p,max, 50% × T p,max, and
20% × T p,max. However, the impacts of the interface flow
limits on different DSOs vary significantly. By comparing
bars of the same color in C2, C3 and C4, we can see that
C2 shows the most severe variation in costs for a tighter
interface flow limit. This reflects the fact that DN18 is affected
more significantly, as in this case study, DN18 has the largest
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TABLE I: Properties of the Cost Allocation Methods for cost game G.

Properties SV B] CGA L EPM PCA
Efficiency X X X X X
Dummy player X X X X
Symmetry X X X X X
Additivity X X X X
Stability X X if NG < 4 X X X
Anonymity X X X
Complexity NP-complete NP-complete exact O(NG) O(NG) exact
Simplicity X X X X

TABLE II: Total costs when identical DSOs located at differ-
ent buses cooperate with the TSO.

Coalition Total Costs [e]{
{TN}, {DNA}, {DNB}, {DNC}

}
43.15{

{TN, DNA}, {DNB}, {DNC}
}

39.81{
{TN, DNB}, {DNA}, {DNC}

}
38.74{

{TN, DNC}, {DNA}, {DNB}
}

40.4

contribution to the total cost reduction in the common market.
Hence, when its flow with the TSO is more limited, the benefit
from cooperation significantly decreases.

In addition to the flexibility bids (prices and quantities)
submitted from a given distribution network, the location of
the distribution network itself within the system (i.e., the node
in the transmission system to which the distribution network
is connected) also plays a key role in its contribution to the
cost reduction of the coalition. For example, we consider a
case in which we place three identical 18-bus distribution
networks including the same set of bids (denoted DNA, DNB ,
and DNC) at different buses of the transmission network and
evaluate the total costs when each DSO cooperates with the
TSO. The numerical results are shown in Table II. Even though
the distribution systems and the set of submitted bids from
those systems are the same, the resulting cooperation-induced
reduction in system costs are different – as shown Table II
– due to the location of transmission system congestions. As
shown Table II, the total cost is reduced by 10.2% when the
TSO cooperates with DNB (third row in Table II), but this
saving drops to only 6.4% when the TSO cooperates with
DNC (fourth row in Table II).

We next investigate the resulting cost for each SO under the
different cost allocation methods. The stacked bars in Fig. 2
showcase the cost allocated to each system operator via the
different mechanisms presented in Section V and summarized
in Table I. Fig. 2 highlights the varying proportions of the total
cooperation cost to be taken up by each SO under different
cost allocation methods. For example, in the results of Fig. 2,
considering the nominal T p,max case, the Shapley value leads
all DSOs to bear a higher portion of the total cost as compared
to, e.g., the PCA method. The results show that the SV, in this
numerical setting, induces a shift in total cost from the TSO
to the DSOs as compared to the PCA. Under this setting, the
CGA is more favorable to the TSO as compared to the SV,
while the PCA is less favorable, which is the opposite case to
that of the DSOs. In addition, the EMP, for example, can help
reducing the cost allocated to DN18, who, in general, bears
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Fig. 2: SOs’ costs under different cost allocation methods and
interface flow limit.

the highest cost in all the allocation methods. However, the
CGA and EPM do not cover some of the essential properties
for adequate cost allocation (as shown in Table I).

The interface flow limits have also a direct effect on the
disparity of the costs borne by each SO. For example, as shown
in Fig. 2, the 20%×T p,max limit increases the cost borne by
the TSO for all cost allocation methods, while this limit helps
reducing the cost borne by DN18 under the Lagragian-based
allocation method. In general, Fig. 2 shows that the tighter the
interface flow limits the lower the difference in costs under the
different cost allocation methods as cooperation becomes more
limited and, hence, less consequential.

The presented numerical results are specific to our numeri-
cal case analysis. However, they serve to highlight the fact that
different cost allocations and interface flow limits can lead
to disparity in the cost borne by each SO. Hence, choosing
an adequate allocation scheme (meeting key properties in
Table I) while reducing this disparity, are essential to achieving
beneficial, stable, efficient, and fair cooperation among SOs for
the joint procurement of flexibility resources.

VII. CONCLUSION

In this paper, we have introduced a common market model
for the joint TSO-DSOs procurement of flexibility. We have
then developed a cooperative game approach to analyze the
cooperation potential of SOs in the common market. In this
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regard, we have proven the stability of their cooperation,
implying that cooperation in this common market can naturally
arise without external intervention. In addition, we have ana-
lyzed several possible cost allocation mechanisms, to split the
cost of the jointly procured flexibility among the participating
SOs in a stable and adequate manner, while analyzing the
properties of each of those methods. Our numerical results
have further highlighted the benefits of this cooperation. In
addition, the results have shown the paramount effect of the
interface flow limits on the benefits of cooperation, high-
lighting the need for further investments to improve power
exchange capabilities among the different grids. The numerical
results also highlighted the disparity that can be introduced by
different cost allocation methods, where some methods lead to
a shift in the costs borne by different SOs for the same market.
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APPENDIX
COMPACT LP FORMULATION OF THE COMMON MARKET

We aim at expressing (22)-(24) in the compact lin-
ear matrix form in (25). To that purpose, we introduce
MnT

adj ∈ Mat(NnT

,NnT

) as the adjacency matrix of graph
GnT

(NnT

,LnT

), where MnT

adj(i, j) = 1 if there exists a link
connecting node i ∈ NnT

to node j ∈ NnT

; 0 otherwise.
Similarly, we define MT

adj ∈Mat(N T ,N T ) as the adjacency
matrix of GT (N T ,LT ), where MT

adj(i, j) = 1 if there exists a
link connecting node i ∈ N T to node j ∈ N T ; 0 otherwise. In
addition, we consider the generation shift factor (GSF) matrix
Ξ ∈ Mat(LT ,N T ) such that Ξ

(
(i, j), n

)
= X(i,j),n is the

GSF of line (i, j) ∈ LT and node n ∈ N T . Moreover, for
notation simplicity, we introduce vector 1nT of size 1×NT ,
with 1nT (nT ) = 1; 0 otherwise. Similarly, for any i ∈ NnT

,
we introduce vector 1nT

i of size 1×NnT

, with 1nT

i (i) = 1; 0
otherwise. The square matrix with vector x on its main
diagonal is denoted diag(x). M(n, :) denotes the n-th row
of matrix M , while M(:, n) denotes its n-th column.

We start with the transmission side. It is clear that (2) is
linear in x0 and z. It can be written under the compact form:(
1n − 1n 1n − 1n

)
x0 −

(
0 1n 0

)
z = dT,o

n − pT,o
n ,∀n ∈

N T . Then, (3) is linear in z leading to the compact linear
formulation: −pT t

Ξ(l, :)t + P T (i, j) + T pΞ(l, :)t = 0,∀l =
{i, j} ∈ LT . Equation (4) applies to nodes on the transmission
network, excluding nodes at the interface with the distribution
networks. Equation (4) is also linear in z, taking the form:
pTn −MT

adj(n, :)(P
T (n, :))t = 0,∀n ∈ N T \ ND. Equation

(5) focuses on nodes at the interface between the transmission
and the distribution networks. It takes the compact form below,
which is again linear in z: pTn−T p

n−MT
adj(n, :)(P

T (n, :))t =

0,∀n ∈ ND. Finally, (6)–(8) provides lower and upper-bounds
on the variables P T (i, j) in z and on x0, respectively.

At the distribution side, we consider any DSO–nT ∈ NnT

.
(10) is linear in xnT and z:

(
−1nT

n 1nT

n −1nT

n 1nT

n 0
)
xnT +(

0 1nT

n 0
)
z = 1nT

n

(
pn

T ,o−dnT ,o
)
,∀n ∈ NnT

. (11) is linear

only in z, and can be written as follows: pn
T

n + 1nT

n P nT

(n, :

)−MnT

adj(n, :)(P nT

(n, :))t = 0. (12) is linear in xnT and z:
qn

T

n +1nT

n QnT

(n, :)−MnT

adj(n, :)(QnT

(n, :))t = 0, (13)-(14)
are linear in z, giving rise to: T p

nT−MnT

adj(nn
T

0 , :)(P nT

(nn
T

0 , :

))t = 0 and T q
nT −MnT

adj(nn
T

0 , :)(QnT

(nn
T

0 , :))t = 0. For
(15), we get: vn

T

n −vn
T

A(n) +2.MnT

adj(n, :)
(
diag(rn

T

)(P nT

(n, :

))t− diag(xnT

)(QnT

(n, :))t
)

= 0 ∀n ∈ NnT \nnT

0 . (16) can
be expressed as a function of z: αmP

nT

(i, j)+βmQ
nT

(i, j)+

δmS
nT max(i, j) ≤ 0,∀m ∈ M ∀{i, j} ∈ LnT

. Finally,
(17)-(21) impose lower and upper-bounds on xnT

and z
components.
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