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Abstract—This work presents a fix-and-optimize matheuristic
to solve timetabling problems under uncertainty. Specifically, a
combined university timetabling and electricity storage schedul-
ing problem is considered, subject to uncertainty stemming
from renewable energy production and electricity demand. The
problem is formulated as a large Mixed Integer Program (MIP)
and the proposed solution combines Large Neighborhood Search
coupled with scenario-based robust optimization for handling
uncertainty in the objective function. First, an adequate feasible
schedule is derived considering only hard problem constraints,
in this case scheduling of recurring lecture activities. Next, the
solution is improved with a fix-and-optimize heuristic search. In
each iteration, the MIP solver explores a large neighborhood by
fixing a subset of variables and optimizing over the remaining
free variables. The process is repeated several times until a
stopping criterion is met. To address uncertainty in the objective,
probabilistic scenarios are derived from interval forecasts and the
worst-case energy cost is minimized. The results derived from
the participation in a technical challenge show that the proposed
approach provides competitive solutions relatively fast, even for
large problem instances, while also hedging against large forecast
errors.

Index Terms—fix-and-optimize, local neighborhood search,
renewable energy forecasting, robust optimization, university
timetabling.

I. INTRODUCTION

The integration of renewables in the generation mix is key to
the ongoing decarbonization process. Their stochastic nature,
however, poses an important challenge to their integration
within larger operational processes. Dealing with this stochas-
ticity typically involves a process where several prediction and
optimization components are deployed in sequence. This work
presents a methodology to tackle large size scheduling and
timetabling problems with uncertain renewable production and
electricity demand, based on the participation in the technical
challenge organized by the IEEE Computational Intelligence
Society (IEEE-CIS) [1].

In this challenge, several instances of a university
timetabling problem are considered, which can be modelled
as a Mixed Integer Program (MIP). It is known that such
problems are NP-hard, therefore, an optimal solution within
reasonable time is not attainable. The proposed solution is

guided by several challenges that revealed themselves dur-
ing the early stages of the competition. First, the limited
computational resources did not allow to solve the (multiple)
problem instances to optimality. Second, the computational
cost also hindered the ability to explore different strategies
during the validation phase, e.g. how to tackle the parameter
uncertainty. Lastly, as the time to be allocated in this challenge
was also limited, the decision was made to focus on the
optimization component at the expense of the prediction com-
ponent. Considering the above, the proposed solution adheres
to the following: i) can be implemented in a standard machine,
ii) provides competitive results relatively fast, iii) and provides
hedging against large forecast errors.

To this end, the described solution is based on a fix-and-
optimize heuristic search to iteratively improve the solution
of the MIP solver (matheuristic). Uncertainty in problem pa-
rameters (i.e., renewable production and electricity demand) is
handled with scenarios based on marginal predictive intervals.
A robust formulation is provided to minimize the worst-
case expected cost within the provided set of scenarios, thus
offering protection against miscalibrated forecasting models.

II. BACKGROUND

The individual components are briefly described in this sec-
tion. In short, the problem concerns university timetabling and
storage scheduling with the goal to minimize the total energy
cost of a university complex, subject to uncertain electricity
demand and solar production. For a detailed description of the
problem, see [1].

1) Problem formulation: The MIP formulation of the uni-
versity timetabling problem is omitted due to space limitations
(see [2], [3]] for relevant formulations). Recurring activities
(lectures) are considered hard” constraints, as they are re-
quired for a feasible schedule solution. Once-off activities
(corresponding to lab experiments) are considered “soft” con-
straints, as they are not required for a feasible solution. Re-
curring activities are repeated in a weekly basis, thus a single
set of variables per week suffices. For once-off activities, the
defined variables span the whole scheduling period.



In short, a binary variable is assigned for each activity
and each required time period. Further, an integer variable
is defined for each activity, time period, building, and room
type, to determine the number of rooms assigned. Note that
this formulation is somewhat excessive. However, modern MIP
solvers remove redundant constraints and variables during a
presolve phase, thus leading to significantly smaller problems
during the branch-and-bound search. For reference, for a large
instance the initial problem comprises approximately 9 - 103
continuous and 11 - 10° integer (4.5 - 10° binary) variables.
After the presolve phase, these are decreased to 640 continuous
and 2 - 10° integer (7.8 - 103 binary), respectively. To the
author’s opinion, the requirement of activities to be scheduled
in consecutive time slots poses the greater modeling challenge,
which is handled with the introduction of auxiliary variables
and applying a big-M reformulation of constraints.

2) Forecasting: The uncertain electricity demand and solar
production must be predicted for the whole scheduling period;
alternatively one could consider the aggregated net load. A
separate forecasting model is trained for each series provided.
Regarding solar panels, several base models, namely Random
Forest, Gradient Boosting Machines, Ridge Regression, and
Local Learning Regression, are developed and aggregated via
averaging for the final prediction.

Regarding buildings’ demand, the prediction task is more
challenging due to missing data and restrictions related to
the COVID-19 pandemic. Overall, buildings 1 and 4-6 show
relatively low demand, which in turn reduces their impact on
final energy cost. The decision was made to discard all missing
data, as most of them relate to buildings 4-6. All demand
forecasts were derived with a Random Forest model. Feature
data included the weather data provided by the organisers,
alongside categorical variables to model the calendar effect,
impact of COVID-19 restrictions, exams period, etc. For
buildings 0 and 3 a pre-processing step was included to remove
possible outliers. Lastly, a Quantile Regression Forests model
is employed to generate probabilistic forecasts for building 3,
which are subsequently used to derive a high and low impact
scenario.

3) Objective: The solutions are evaluated based on aggre-
gate energy cost, which includes a peak load tariff. A scenario-
based robust objective is derived to hedge against large fore-
cast errors. Specifically, two scenarios for aggregated net load
are derived based on the marginal predictive density of demand
in building 3. The objective is the reformulated in a standard
epigraph form, and the worst-case cost over all scenarios is
minimized. Ideally the scenarios should incorporate correlation
between the different sources of uncertainty. Due to limited
time and after a trial-and-error period, it was decided to derive
scenarios solely based on the predictive density of building 3,
which represented the largest load. Fig. [I| presents an indicative
set of forecasts for a single day. Effectively, this approach
creates a small box uncertainty set that aims to protect against
larger forecast errors.
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Fig. 1. One day of aggregated net load forecast and high/low scenarios

for Phase 2. Base Load refers to the expected buildings demand without
considering solar production.

III. METHODOLOGY

This section presents the complete methodology that builds
on the individual components discussed above. A fix-and-
optimize matheuristic is proposed to solve the MIP problem
[4], which belongs to the class of Large Neighborhood Search
(LNS) heuristics [5]]. The approach is method based, meaning
that the underlying model is the same, but the local neighbor-
hood to search an improved solution changes at each iteration.
Note that modern optimization solvers (e.g. GUROBI) require
the model to be built once and each iteration is warm-started
from the previous solution by adding or removing constraints,
which significantly speeds-up computations.

The solution process is described in the flowchart shown
in Fig. 2] The derived predictions described in the previous
Section are considered as input in this process. First, the
problem is solved once considering only “hard” constraints,
providing a minimum feasible solution, which translates into
optimizing only over recurring activities. The sample solutions
provided by the organisers are used to warm-start the solver.
Next, the iterative search begins by sampling a subset of
activities, considering both recurring (r#) and once-off (a#).
Variables related to non-selected activities are fixed to their
previous solutions and the subsequent problem is solved to
optimize over the remaining free variables. The process is
repeated several times until the maximum number of iterations
is reached (max—iter) or until the solution stops improving
after a number of iterations (patience) subject to a pre-
defined tolerance (tol). Variables related to storage remain
free during all iterations, as the computational burden in-
creased only marginally. The search algorithm is detailed in
Algorithm [T} Note, this search is greedy and random. Due
to precedence constraints, subsequent problems with fixed
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Fig. 2. Flowchart of the solution. Yellow boxes denote data input, green boxes
denote forecasting models, and blue boxes denote optimization components.

constraints are generally easier to solve close to optimality,
due to reduced feasible space. In all cases, soft time constraints
based on the current optimality gap are imposed by tracking
the progress of the branch-and-bound search within the MIP
solver through callback functions.

Algorithm 1 Fix—-and-Optimize
Input: Built GUROBI model, initial objective v*™#, search

hyperparameters
Output: Improved solution

1: Initialize counters count,iter =0

2: Set best objective v* < v

3: while iter < max-iter and count < patience

do

4:  Sample 7# recurring and a# once-off activities

5:  Variables pertaining to the selected activities are free,

the rest are fixed to previous solution
. Solve MIP, determine objective v™°*
7. if Y= > tol then
Update solution, v* < v™°?, count =0
8: else

count+ =1
9: end if
iter+ =1
10: end while

11: return: Improved solution with objective v*

IV. EXPERIMENTS

This section provides some experimental results and details
on tuning the hyperparameters. During Phase 1 (validation),
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Fig. 3. Results on Phase 1. ”Base” denotes the initial solution, ”Full” denotes
the final solution after the fix-and-optimize search is implemented.

different strategies were explored, mainly concerning how
to deal with uncertainty in the objective function. Fig. [3|
provides a comparison between a deterministic formulation
(i.e., using point forecasts) and the scenario-based robust
approach for the Phase 1 data. Note that the validation data
includes a large demand outlier, which actually obscures the
impact of predictive accuracy in the final cost. Regardless
the objective formulation, Fig. [3] highlights that the fix-and-
optimize search significantly reduces costs, with results being
more pronounced for larger problem instances.

Regarding the Phase 2 (testing phase), all experiments
are conducted using a standard machine with an Intel
17@2.30GHz and 32GB of RAM. The problems are modeled
and solved with GUROBI using the Python-API. For refer-
ence, the required time to build a model is approximately 200-
250 sec for small instances and 900-950 sec for large ones.
To create the aggregated net load scenarios, the 10% and 90%
quantile of the predictive marginal density of building 3 are
selected. For the initial feasible solution a hard time limit of
2 hours is set, although a smaller time limit would also suffice.
Subsequent iterative solutions are solved with a hard time limit
of 20 min. A soft time limit of 5 min, if the optimality gap is
below 0.005%, is also set. The total number of iterations is set
at max-iter = 150, the patience is set at patience = 15,
and the improvement tolerance is set at tol = 0.001%. Lastly,
at each iteration the number of sampled activities are 7# = 10
for recurring and a# = 5 for once-off, same for both small
and large problem instances. The code is provided in [6]. For
reference, Fig. [] shows the evolution of the objective value
for a large instance in the testing phase.

V. DISCUSSION

This section provides a brief discussion on how to improve
the performance of the proposed solution, insights gained from
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Fig. 4. Progression of the local search.

the participation in the technical challenge, and promising
research directions. Regarding the performance of the final
submission, several improvements could be made. First, con-
sidering better informed scenarios could improve the solution.
The decision to base scenarios solely on the predictive density
of building 3 is somewhat arbitrary; considering scenarios
that account for the correlation between different sources of
uncertainty could improve final performance. Second, improv-
ing the formulation of the timetabling problem could reduce
computational costs. Third, note that the performance of the
iterative search procedure is bounded by the solution to the
full MIP problem. Smaller problem instances could probably
be solved to optimality within reasonable time, given adequate
time and computational resources. Moreover, the search is
greedy and random; considering precedence constraints and
sampling blocks of activities instead of individual activities
could also improve the performance. Overall, it is the author’s
opinion that the iterative search proposed offers higher utility
for larger problem instances. Lastly, the optimization window
changed during Phase 2 to match the forecasting window. As
a result, additional effort was required to modify the opti-
mization code to the new setting, which somewhat hindered
the ability to properly evaluate results in the validation data.
Avoiding modeling errors also proved important, as it hindered
the ability to exploit and evaluate different solutions during
within the timeframe of this challenge.

The impact of forecast uncertainty on optimization efficacy
in this challenge, to the author’s opinion, remains somewhat
obscure. The validation data (Phase 1) included an extremely
large demand outlier, which affected the peak demand and
the respective tariff. In turn, this mitigated the impact of the
objective formulation (deterministic versus robust). Further,
examining the results on validation data (Phase 1) showed
that, at least for the large instances, the peak demand tariff

comprised the biggest part of total energy cost. However, the
magnitude of the load to be scheduled during Phase 2 (relating
to the respective activities), was significantly smaller. If the
problem instances are viewed as data points from a problem
distribution to be learned [7], this could be considered as a
change in the underlying distribution. Overall, the peak tariff
became less important during Phase 2, which to the author’s
opinion, somewhat obscures the impact of forecast accuracy
in total costs.

Finally, increased predictive accuracy does not always trans-
late into improved optimization performance. An interesting
avenue to explore would be to train the model to directly
minimize downstream optimization costs. For example, [§]]
proposes training deep learning models in conjunction with
combinatorial optimization problems to improve the utility of
the predictions (i.e., forecast value).

VI. CONCLUSIONS

This report detailed the participation in a technical challenge
organized by IEEE-CIS. Specifically, a robust fix-and-optimize
matheuristic to tackle large scale timetabling and scheduling
problems under uncertainty was described. Uncertainty in
renewable production and electricity demand is modelled with
scenarios and the worst-case energy cost is minimized. The
results show that the proposed solution provides fast solutions
that achieve competitive performance, while also hedging
against large forecast errors.
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