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Abstract: The use of bio-based materials (BBM) in buildings is an interesting solution as they are
eco-friendly materials and have low embodied energy. This article aims to investigate the hygric
performance of two bio-based materials: palm and sunflower concretes. The moisture buffering value
(MBV) characterizes the ability of a material or multilayer component to moderate the variation in
the indoor relative humidity (RH). In the literature, the moisture buffer values of bio-based concretes
were measured at a constant temperature of 23 ◦C. However, in reality, the indoor temperature of
the buildings is variable. The originality of this article is found in studying the influence of the
temperature on the moisture buffer performance of BBM. A study at wall scale on its impact on
the indoor RH at room level will be carried out. First, the physical models are presented. Second,
the numerical models are implemented in the Simulation Problem Analysis and Research Kernel
(SPARK) suited to complex problems. Then, the numerical model validated with the experimental
results found in the literature is used to investigate the moisture buffering capacity of BBM as a
function of the temperature and its application in buildings. The results show that the temperature
has a significant impact on the moisture buffering capacity of bio-based building materials and its
capacity to dampen indoor RH variation. Using the numerical model presented in this paper can
predict and optimize the hygric performance of BBM designed for building application.

Keywords: bio-based building materials; moisture buffer capacity; MBV; simulation and modeling;
palm concrete; sunflower concrete

1. Introduction

Energy-efficient, insulated and poorly ventilated buildings can have a bad indoor air
quality due to too high or too low relative humidity levels. An uncontrolled relative humid-
ity increases the risk of exposure to bacteria, viruses and mold. These can have negative
consequences on the health of occupants and reduce the comfort of indoor environments.
Air conditioning systems permit maintaining optimal relative humidity levels but consume
a lot of energy and increase the cost of bills. The moisture buffer capacity can moderate
the relative humidity within a building, resulting in a naturally improved air quality and
reduced energy consumption. Historically, the first research on the moisture buffer capacity
was carried out at the Institute for Building Physics in Fraunhofer (Germany) and Lund
University (Sweden) in 1960. Characterization of the moisture buffer value was carried out
under dynamic conditions of relative humidity, hence the establishment of the standard for
moisture buffering for experiments [1–4]. Following this method, the Padfield method [5]
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was developed which defines the moisture buffer value as a non-intrinsic property by mak-
ing an analogy with thermal capacity [5]. Others methods have recently been developed by
researchers such as the Japanese Industrial Standard [6], the NordTest project [7] and the
ISO standard [8]. These methods consist in varying the relative humidity periodically with
square or cyclic functions. These methods highlight the parameter of sorption of water
vapor to characterize the moisture buffering value. It is predicted that these studies on the
characterization of the MBV of building materials will remain a primary interest in order
to refine the design of high energy-efficient and sustainable buildings.

In the literature, various authors have studied moisture buffering in the construc-
tion sector. Reviews have presented various experimental and numerical methods to
quantify moisture buffering effects and their impact on the building scale (indoor RH
and energy reduction). Research has been conducted to elucidate the physical, chemical
and biological characteristics of building materials that have particularly high moisture
buffer values [9–22]. One of the meta-analytical studies looked to see which properties
are characterized in tandem with the moisture buffer value and which may be correlated
with it [23]. These properties are: intrinsic physical properties and hygric properties de-
pendent on relative humidity. The intrinsic physical properties are thickness, density and
porosity. The study revealed that a simple least squares regression shows no relationship
between thickness and the MBV. This may explain the fact that the majority of tests for the
characterization of the MBV are based on the NordTest method [7]. The NordTest method
is more used and is currently the main standard for characterizing the MBV of building
materials. This method requires a sample thickness that is superior to its penetration depth.
Moreover, a study carried out by Maskell et al. (2018) [24] on determining the optimum
plaster thickness to dampen the indoor relative humidity showed that the MBV increases
linearly with the thickness when it is lower than the penetration depth of the material.
By deduction, analysis of the literature data has shown that a thickness higher than the
penetration depth is a physical property of the material and is not a significant factor that
can influence the value of the MBV. A porous medium is characterized by the combination
of a solid matrix and a pore space that can be occupied by one or more fluids (liquid or
gaseous form) [25]. The structure of porous materials is characterized by bulk density
and porosity. These porous materials have a density which depends on their porosity.
High porosity leads to a light material [26,27]. Kreiger and Srubar’s [23] analysis showed
that there is a strong correlation between porosity and the MBV with an R2 of 0.46. This
is predictable because a porous material has the potential to adsorb or desorb moisture
through intra-/inter-pores. Although there is a relationship between porosity and density,
the latter property has no correlation with the MBV. An analysis of Kreiger and Srubar [23]
showed a correlation coefficient equal to 0.02 between the density and MBV. By deduction,
it is possible to discuss the influence of the thickness of the material on the MBV, but the
density has no relationship with the MBV, unlike the porosity, which has a very signifi-
cant relationship. As a result, these scientific studies showed that porous materials allow
passive and effective regulation of the indoor relative humidity thanks to their moisture
buffer capacity.

The addition of fibrous matters from plant or animal origin to building materials
has been conducted intuitively since antiquity [28,29]. However, scientific study of fiber-
reinforced concretes made with mineral or synthetic fibers began in the early 20th century.
Recently, in many studies, vegetable and organic fibers were used to substitute mineral
or synthetic fibers in order produce bio-based building materials [29–31]. Bio-based con-
cretes (such as hemp concrete, flax concrete, palm concrete and sunflower concrete) are
dedicated to natural construction which is a means of achieving sustainable construction
over time. These materials have very high porosity. They are produced by mixing bio-
based aggregates, binder (cement, lime, etc.) and water. Bio-based concretes are a good
response to limit the impact of buildings on the environment and meet the standards of
thermal regulations (for example, RE 2020 in France) thanks to their thermal inertia and
insulation which ensure better health of the occupants, thermal comfort and indoor air



Appl. Sci. 2021, 11, 5420 3 of 18

quality (IAQ) in the habitat [9,16,26,27]. Recently, a study of Tran Le et al. 2021 [32] showed
that the combined dynamic sorption capacity (moisture and pollutant buffering capacity)
of bio-based materials such as hemp lime concrete makes it possible to reduce the level of
the indoor concentration of pollutants as well as the indoor relative humidity.

The MBV is a hygric property, which depends on the relative humidity of the sur-
rounding ambience. Other hygric properties such as the permeability to water vapor (WV),
sorption isotherm, penetration depth and mass transport coefficient may be correlated
with the MBV. These hygric properties and boundary conditions depend on the relative
humidity, which is also dependent on the temperature. Therefore, it should be noted that
the temperature is an important factor influencing moisture buffer values.

A recent literature review carried out by Kreiger and Srubar [23] and a review con-
ducted by the authors show that, to date, there is a lack of in-depth knowledge on the
impact of the ambient temperature on the moisture buffer value of bio-based building
materials. To overcome the lack of knowledge in the literature, the aim of this article is to
examine the influence of the temperature on the moisture buffer performance of highly
hygroscopic bio-based materials focusing on palm concrete (PC) and sunflower concrete
(SC). It is aimed to underline that the MBV characterizes the ability of a multilayer material
or simple layer to moderate the variation in the indoor relative humidity in buildings. In
the literature, the MBV was determined at a constant temperature (e.g., 23 ◦C), while, in
reality, the indoor temperature in buildings is under variable dynamic conditions. Some
experimental studies found in the literature on hygroscopic materials [13,33,34] showed
that the MBV is influenced by the temperature and the increase in temperature induces
an increase in the MBV. For example, MBVs of palm concrete which were measured at
23 ◦C and 10 ◦C by Chennouf et al. (2018) [13] were 2.96 and 2.03 g/(m2%RH), respectively
(with a percentage deviation of 31.42%). Therefore, it is necessary to carry out an in-depth
study on the impact of the temperature on the MBV of bio-based materials designed for
construction fields in order to predict and optimize their hygric performance. In this study,
the impact of the temperature on the moisture buffering capacity of palm and sunflower
concretes will be investigated at wall and room scales.

2. Numerical Model
2.1. Mass Transfer Model in Single-Layer Wall

In this article, we use a model based on the theory of Philip and De Vries (1957) [35].
The moisture transport within a simple layered wall can be described by one-dimensional
diffusion using the moisture content in the material as a driving force [35]. The mass
balance equation is written as

∂θ

∂t
=

∂

∂x

(
Dθ

∂θ

∂x

)
(1)

where θ is the moisture volumetric content in the material (m3 of water/m3 of material),
and Dθ is the diffusion coefficient of the moisture in the material (m2/s). The boundary
conditions (in x = 0, outdoor environment, and x = L, indoor environment) are

− ρl

(
Dθ

∂θ

∂x

)∣∣∣∣
x=0,e

= hM,e(ρve,a,e − ρve,s,e) (2)

− ρl

(
Dθ

∂θ

∂x

)∣∣∣∣
x=L,i

= hM,i(ρve,s,i − ρve,a,i) (3)

where ρve,a,i and ρve,a,e are concentrations of water vapor in inside and outside air (kg/m3),
ρve,s,i and ρve,s,e are concentrations of water vapor in the surface layers (inside and outside,
(kg/m3)) and hM,e and hM,i are coefficients of exchange of water vapor by convection (m/s)
for the external and internal surfaces.
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The diffusion coefficient Dθ is the total mass transport coefficient which is the sum of
the liquid and vapor water phase:

Dθ = Dθ, v + Dθ,l (4)

In this article, we focus on the hygroscopic domain and the mass transport coefficient
due to the liquid phase being negligible compared to that of water vapor (Dθ, l � Dθ, v),
and therefore [36]

Dθ = Dθ, v =
πPv,s(T)

ρl

∂HR
∂θ

(5)

The moisture sorption isotherm curve is a particularly important hygric property
because it provides a true hygro-structural identity card of porous materials. It also impacts
on the hygrothermal behavior of hygroscopic materials. Bio-based materials have high
porosity and high sensitivity to moisture. These materials have the ability to adsorb and
desorb water vapor, allowing for regulating the variation in the indoor relative humidity
level in buildings [30]. When the humidity of the surrounding air increases, it results in
an increase in mass. This mass gain is due to the phenomenon of physical adsorption.
It allows water molecules to be fixed on surface pores in a reversible way. Likewise, a
decrease in the humidity of the surrounding air results in an apparent loss of mass. This is
the phenomenon of physical desorption.

Many theories analyze the shape of the experimental sorption isotherm curves. Lang-
muir’s model describes a monomolecular adsorption. The first adsorption layer for
a porous middle is only verified at low humidity [37]. The Brünauer-Emmett-Teller
model [38] is an extension of Langmuir theory, and it was developed to analyze mul-
tilayer adsorption. Additionally, the Guggenheim-Anderson-de Boer model [39,40], which
was developed from two other models, will be used in this article to describe the sorption
isotherm curves of the studied bio-based building materials. The GAB model [41] takes
into account the heat of adsorption for all molecular layers and describes the dependence of
the adsorption isotherm on the temperature. Using the GAB model has many advantages
such as having a viable theoretical basis and giving a good description of the sorption
behavior of bio-based concretes such as hemp lime concrete [42,43]. The GAB model can
be written as follows [41]:

w =
wm CKϕ

(1 − Kϕ)(1 + KCϕ − Kϕ)
(6)

where wm is the water content (kg/kg). The parameters C and K are energy constants
(J/mol) of the GAB model [40,41].

2.2. Effective Capacitance Model

The effective capacitance model assesses the impact of the use of hygroscopic materials
on the variation in the indoor relative humidity of a room. The moisture buffering values
which are obtained by experimental studies or by the numerical method will be used
as input data in this model. Other parameters such as the ventilation rate, the effective
exposed surface area, the source of water vapor, the exposure time and the room volume
are also taken into account in the model. Note that the moisture buffering capacity of the
simple wall is considered to be in equilibrium with the ambient conditions of the room [44].
The model which is established from the moisture balance for the room air can be written
as follows (Equations (7) and (8)):(

V
RvTi

+
100HIR ∗ V

Pv,sat(Ti)

)
·∂Pvi

∂t
= (Pv,e − Pv,i)·

nV
3600RvTi

+ Gv,p (7)

HIR∗ = (∑
k

Sk MBVk)/V (8)
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where Sk is the exposed area of wall k (m2); V is the volume of the room (m3); HIR∗
is the hygric inertia of the room (kg/(m3%HR)); Rv is the gas constant for water vapor
(462 J/(kg·K)); Ti is the indoor air temperature (K); Pv,e is the partial vapor pressure of the
outdoor air (Pa); Pv,i is the partial vapor pressure of the indoor air (Pa); Pv,sat is the saturation
vapor pressure (Pa); MBVk is the moisture buffer capacity of material k (g/(m2%RH)); Gv,p
is the indoor water vapor production (kg/s); n is the ventilation rate (1/h).

The Simulation Problem Analysis and Research Kernel (SPARK) developed by the
Lawrence Berkeley National Laboratory-USA, a simulation environment allowing for
efficiently solving differential equation systems, has been used to solve this set of equations
presented above [9,45–47]. Note that the SPARK describing the model has been solved
using the finite difference technique with an implicit scheme.

3. Model Validation
3.1. Material Properties Used for Model Validation

Hygrothermal properties of palm and sunflower concretes were found in the literature
and are grouped in Figure 1 [13,14]. The Guggenheim-Anderson-de Boer (GAB) model
was applied to describe experimental sorption curves of two concretes [40]. The sorption
isotherm curves modeled with the GAB model were validated by comparing with the
measured values at a constant temperature of 23 ◦C for two bio-based concretes and are
presented in Figure 1. The fitting GAB parameters (wm, C and K) of two concretes (PC and
SC) are grouped together in Table 1 and were used to carry out the simulations in SPARK.
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Table 1. Fitting parameters of GAB model.

Materials PC SC

wm 0.019 0.0171

C 1 27

K 0.86 0.76

R−2 0.98 0.99

3.2. Model Validation

In order to validate the numerical model presented above, the numerical results
obtained were compared with experimental ones found in the literature [13] carried out
on a single-layer wall of palm concrete with a thickness of 9.5 cm. The experimental
studies were performed by Chennouf et al. 2018 [13] to determine the values of the MBV at
different temperatures, 10 ◦C and 23 ◦C. During the tests, the samples were conditioned
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beforehand at a relative humidity of 50% and were exposed to a constant temperature,
while the RH was varied according to a square wave signal RH (t) having an adsorption
phase of 8 h at 75% RH, followed by a desorption phase of 16 h at 33% RH. More details
about the tests and experimental setup can be found in [13]. The experimental values of the
moisture buffering capacity obtained according to the experimental protocol recommended
in NordTest [7] are grouped in Table 2.

Table 2. Hygrothermal properties and measured MBV of studied bio-based concretes [13,14].

Hygrothermal Properties PC SC

Density ρ (kg/m3) 954 539.64

Total porosity 64% 70%

Open porosity 58% 68.6%

Thermal conductivity λ (W/(m·K)) 0.185 0.127

Specific heat capacity Cp (J/(kg·K)) 1500 -

Water vapor diffusion resistance factor µ 5.57 2.62

MBV measured at 23 ◦C
(g/(m2%RH)) 2.96 2.26

MBV measured at 10 ◦C
(g/m2%RH)) 2.03 -

This numerical study aims to determine the moisture buffer capacity of palm concrete
at two different temperatures, 10 ◦C and 23 ◦C, and then to compare with the experimental
results. The boundary conditions of the simulation are defined by a single face of the wall
which is permeable to water vapor, and the other faces are considered impermeable, as
presented in Figure 2. Note that these simulation conditions are similar to experimental
ones carried out in [13]. The interior convective mass transfer coefficient hM,i is 0.002 m·s−1.
Concerning the interior RH variation, it was chosen according to the NordTest protocol [7]
as mentioned in [13]; however, the temperatures for the two tests were fixed at 10 ◦C and
23 ◦C, respectively, to study the impact of T on the MBV. The MBV was calculated at the
equilibrium state using the following equation:

MBV =
∆m

S(RHmax − RHmin)
(9)

where ∆m is the change in mass of the sample at the equilibrium state (kg), RHmin and
RHmax are the minimum and the maximum relative humidity (% RH), respectively, and S
is the exposed surface area (m2).
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Regarding the numerical solution, the simulation time step was set to 240 s, and the
wall thickness was discretized into 50 nodes. The hygrothermal properties used for the
simulation are presented in Figure 1 and Table 2.

The numerical results obtained are the mass variation curves at the equilibrium state
of the palm concrete at different temperatures, 10 ◦C and 23 ◦C. They are then compared
to the ones obtained experimentally by Chennouf et al. (2018) [13], which are shown in
Figures 3 and 4. We remark that the change in mass follows the change in the indoor
relative humidity due to the sorption phenomenon. Using the numerical results, the
numerical values of the MBV of palm concrete at various temperatures, 10 ◦C and 23 ◦C,
were calculated and are grouped in Table 3. Note that, in addition to the PC case, the model
was used to calculate the MBV of SC at 23 ◦C, and the results are presented in Table 3.
The comparison between numerical results obtained and the experimental values found
in the literature shows a very good agreement. Note that MBV values of palm concrete
at 10 ◦C and 23 ◦C are classified as excellent according to the NordTest classification [7].
It can also be observed that, concerning PC, there is a significant difference between the
two MBVs obtained at two different temperatures, in which the MBV obtained at 23 ◦C
(MBV = 2.96 g/(m2%RH) is higher than the one obtained at 10 ◦C (MBV = 2.03 g/(m2%RH).
The difference observed between the MBV values at different temperatures can be explained
by the fact that the temperature influences the adsorption and desorption equilibrium
between the material and the surrounding environment due to the different levels of water
vapor pressure. In Table 4, it can be seen that the saturation pressure of water vapor at
10 ◦C is 1241.2 Pa compared to 2842.1 Pa at 23 ◦C; therefore, for the same relative humidity,
the water vapor pressure (Pv) should be different, which depends on the temperature. At
10 ◦C, when RH varies from 33% to 75%, Pv increases from 409.6 to 930 Pa (∆Pv = 521.3 Pa)
compared to the variation from 937.9 to 2131.6 Pa (∆Pv = 1193.7 Pa) when T = 23 ◦C.
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As it is shown in Figures 3 and 4, the comparison shows a good agreement between the
numerical results and experimental ones, and the numerical model satisfies investigating
the hygric behavior of bio-based building materials at different temperatures.
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Table 3. Experimental and numerical MBVs of PC and SC concretes.

Materials Experimental MBV
(g/(m2%RH)) [13,14]

Numerical MBV
(g/(m2%RH))

PC 2.03 at 10 ◦C
and 2.96 at 23 ◦C

2.01 at 10 ◦C
and 2.99 at 23 ◦C

SC 2.26 at 23 ◦C 2.29 at 23 ◦C

Table 4. Influence of temperature on vapor pressure and water vapor concentration.

T (◦C) Pv,sat (Pa) ρv,e (g/m3)
at 33%

Pv (Pa)
at 33%

ρv,e (g/m3)
at 75%

Pv (Pa)
at 75%

10 1241.2 3.13 409.6 7.1 930.9

15 1724.2 4.3 569 9.7 1293.1

20 2364.9 5.8 780.4 13.1 1773.7

23 2842.1 6.9 937.9 15.6 2131.6

25 3205.2 7.7 1057.7 17.5 2403.9

30 4295 10.1 1417.7 23 3221.3

35 5693.8 13.2 1879 30 4270.4

4. Numerical Study and Discussions
4.1. Influence of Temperature on the Moisture Buffering Capacity and Classification of Bio-Based
Materials

The experimental studies carried out on palm concrete (PC) showed that the temper-
ature has a significant impact on the MBV. Therefore, a study focusing on the influence
of the temperature on the moisture buffering capacity is necessary in order to evaluate,
analyze and optimize the hygric performance of bio-based materials.

In this section, the physical model and the boundary conditions are the same as the
ones used in the section dedicated to the model validation. A wall thickness of 10.0 cm is
considered for both bio-based concretes (PC and SC). The simulations are performed on a
range of temperatures which vary from 10 to 35 ◦C, with a step of 5 ◦C. The hygrothermal
properties used are the ones obtained experimentally and presented in Figure 1 and Table 2.
The outputs of the simulation are the mass variation of the samples according to the variation
in the indoor relative humidity and MBV at different temperatures. The numerical values of
the MBV of two materials are calculated, compared and presented in Figure 5.
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In Figure 5, it can be observed that increasing the temperature will increase the
moisture buffer value. As explained above, this is due to the fact that increasing the interior
temperature will influence the vapor pressure gradient of the surrounding environment.
Table 4 and Figure 6 show the dependence of the saturation pressure of water vapor on the
studied range of temperatures, going from 10 to 35 ◦C, and the vapor pressure/water vapor
concentration as a function of the temperature and relative humidity. At a temperature of
10 ◦C, when the surrounding relative humidity varies from 33% to 75%, the water vapor
pressure Pv varies from 409.6 to 930.9 Pa (∆Pv = 521.3 Pa) compared to the variation from
1879 to 4270.4 Pa (∆Pv = 2391.4 Pa) at a temperature of 35 ◦C. This significant difference in
the water vapor pressure gradient results in a significant influence on the MBV obtained
and classification, as shown in Figure 5.
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Most bio-based concretes are excellent regulators of indoor relative humidity. This is
due to the microstructure of vegetal particles (see Figures 7 and 8) that are incorporated
in bio-based concretes. As it is shown in Figures 7 and 8, these vegetal particles have a
tubular structure with interconnected pores very permeable to water vapor. The MBV
values vary from 1.44 to 3.33 and from 2.01 to 4.33 g/(m2%RH) for SC and PC when
the temperature varies from 10 to 35 ◦C, respectively. According to the classification of
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moisture buffer values of building materials suggested in the NordTest project [7], it can be
seen that sunflower concrete is classified as good for the studied temperatures, ranging
from 10 to 15 ◦C, and is classified as excellent beyond this temperature range, while for the
palm concrete case, it is classified as excellent for all temperatures, as shown in Figure 5.
The difference between the moisture buffering capacity of the two bio-based materials
can be explained by sorption curves, as shown in Figure 1. It can be seen that they are
similar when the RH is lower than 50% RH, but after that, the palm concrete has a higher
adsorption capacity compared to SC. This reflects a very high hygroscopic property of
palm concrete which is very interesting for regulating the surrounding relative humidity
thanks to its sorption capacity of vapor water.
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This present study shows that the temperature influences the MBV of bio-based
concretes and the classification of the moisture buffer capacity. Note that in the studied
range of temperatures, the MBV increases quite linearly as a function of the temperature
due to the increasing water vapor pressure as well as the density of the water vapor (ρv,e)
with increasing temperature. The numerical results permit establishing a relationship
between the MBV and temperature. Two linear models are proposed and presented in
Figure 9, MBVPC(T) and MBVSC(T) for PC and SC concretes, respectively:

MBVPC(T) = 0.0928 T + 0.9848 (10)

MBVSC(T) = 0.0759 T + 0.5959 (11)
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Based on the obtained results, a regression coefficient (slope) of 0.0844 for other
hygroscopic bio-based materials can be defined, but further experimental studies need to
be conducted to verify this assumption.

4.2. Impact of the Moisture Buffering Capacity on Indoor Relative Humidity of an Office Room
4.2.1. Description of Studied Case and Simulation Conditions

In the previous sections, it was shown that the moisture buffering capacity is a property
which depends on several factors such as porosity and temperature. The indoor relative
humidity is one of most important factors to consider for evaluating indoor air quality
and hygrothermal comfort [23]. Low and high indoor humidity (lower 40% or upper
60%) promotes the dehydration of materials and people (fissure and health problem),
the development of molds and the survival of viruses and bacteria and increases the
concentrations of polluting particles [32,50]. Therefore, to meet the hygrothermal comfort
conditions, it is interesting to elucidate the impact of the moisture buffering capacity on the
indoor relative humidity. This section aims is to study the effect of the moisture buffering
capacity at different temperatures of palm and sunflower concretes on the indoor relative
humidity of an office room. In addition, the impact of the MBV will be assessed by a
sensitivity study.

In this section, the impact of the MBV on the hygric performance was investigated
by considering an office room of 55 m3 (4 m × 5.5 m × 2.5 m), depicted in Figure 10. The
effective capacitance model presented in Section 2.2. was used [44]. An effective surface
area of 37.5 m2 is considered as the reference case (the roof and the floor are considered
impermeable to water vapor; therefore, they are without moisture buffering capacity). The
outdoor relative humidity is 50%. The office room is occupied from 9:00 a.m. to 17:00 p.m.
(8 h a day) by two persons, and a ventilation rate of 0.65 ACH is considered. The values of
the moisture buffering capacity obtained by the simulation at different temperatures in the
previous section are used to perform the simulations.
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Figure 10. Studied configuration of the office room occupied by two persons [32].

4.2.2. Impact of Moisture Buffering Capacity Classification on Indoor RH

In this subsection, the impact of the MBV classification proposed in the NordTest
project [7] on the indoor relative humidity at the room scale is studied. For this purpose,
simulations were carried out by varying the MBV value from 0 to 4 g/(m2%RH), with a
step of 0.5. Figure 11 shows the results of the comparative study of the influence of the
MBV value on the indoor RH variation. It can be seen that, at the equilibrium state, the
indoor RH variation is periodic (according to the occupied period) and the impact of the
MBV on the variation in the indoor relative humidity is significant. A higher MBV results
in a lower indoor relative variation. Numerically, as it is shown in Figure 11 and Table 5,
when the hygric inertia of the walls is neglected (MBV = 0 g/(m2%RH), the case without
moisture buffering capacity), the amplitude (AMBV=0) is 23% compared to A(MBV=1) = 15%,
A(MBV=2) = 8%, A(MBV=3) = 6% and A(MBV=2) = 5% when the MBVs are equal to: 1, 2, 3 and
4 g/(m2%RH), respectively. These obtained results show that the moisture buffering
capacity can reduce the indoor RH variation and needs to be taken into account in
building design.
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Table 5. Impact of moisture buffer on indoor relative humidity variation.

MBV
(g/(m2%RH)) RHi,max RHi,min

A
(Amplitude) f = A/A0

0 0.73 0.50 A0 = 0.23 1

0.5 0.7 0.51 0.19 0.83

1 0.67 0.52 0.15 0.65

1.5 0.65 0.54 0.11 0.48

2 0.63 0.54 0.09 0.39

2.5 0.62 0.55 0.07 0.32

3 0.62 0.56 0.06 0.27

3.5 0.61 0.56 0.05 0.22

4 0.61 0.56 0.05 0.22

In order to quantify the hygric regulation capacity, we define a coefficient, f = A/A0,
which represents the ratio between the amplitude of variation in the indoor RH with and
without taking into account the hygric buffer capacity of the walls (A < A0 in which A0
corresponds to the case without moisture capacity). A low f ratio represents a higher quality
of comfort. The results obtained are presented in Figure 12 and Table 5. Figure 12 shows
the variation in the f coefficient according to the classification of the MBV suggested by the
NordTest project [7]. Note that the f value decreases with increasing moisture buffering
capacity; therefore, a lower f coefficient is observed for a higher MBV value, as shown
in Figure 12 and Table 5. When the MBV is classified from negligible to moderate, the f
value decreases from 1 to 0.65 compared to 0.39 to 0.22 for the excellent MBV classification.
Note that beyond the MBV value of 3.5 g/(m2%RH), the f value decreases very slowly and
tends towards an asymptotic value which means that the moisture buffering potential of
BBM has been fully utilized. In addition, it can be observed in Table 5 that indoor RHmin
increases with the increased MBV value, contrasting with RHmax, which can be explained
by the phenomenon of water vapor sorption (adsorption and desorption) of BBM.
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The results obtained are interesting and confirm that the use of bio-based building
materials which are hygroscopic thanks to the microstructure of vegetal fibers results in
higher hygrothermal comfort in buildings. This conclusion is supported by other studies
in the literature [30,32,51].
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4.2.3. Impact of Temperature on the Performance of PC and SC

In order to study the influence of the temperature on the performance of PC and SC on
indoor relative humidity of the studied office room, the following different temperatures
were considered: 15 ◦C, 18 ◦C, 23 ◦C, 28 ◦C and 30 ◦C. To perform the simulations, the
values of the moisture buffering capacity as a function of the temperature calculated from
Equations (7) and (8) were used. Figure 13 and Table 6 show the results of the comparative
study of the two studied concretes (PC and SC). It can be seen that the impact of the
temperature on the indoor RH variation is significant for the two bio-based concretes.
When the temperature increases, the f coefficient decreases because the MBV increases
for the two bio-based concretes. However, the impact also depends on the considered
temperature; beyond 28 ◦C, the f values for PC and SC are quite stable and equal 0.22 and
0.30, respectively. It can be concluded that the indoor temperature influences the moisture
buffering capacity of the bio-based concretes which in turn impacts the indoor RH variation
in buildings. This impact should be taken into account to correctly predict the moisture
buffering performance of bio-based building materials.
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Table 6. Impact of moisture buffering capacity as function of T on indoor RH for PC and SC.

Table A0 f (A/A0) for PC f (A/A0) for SC

15 0.35 0.43

18 0.30 0.39

23 0.26 0.35

28 0.22 0.30

30 0.22 0.30

4.2.4. Impact of Exposed Surface Area on Indoor RH Variation

The moisture buffering potential of bio-based materials will be fully utilized when
the material is directly exposed to indoor air. Regarding the material selection process
in building design, it is important to study the effect of the exposed surface area and the
loading ratio (the ratio of the wall surface area to the volume of the office room) of BBM
on the hygric performance. In this section, a parametric study is carried out by varying
the effective exposed surface area (Aef) of the room office from 0 to 37.5 m2, with a step
of 10 m2. The MBV values of PC and SC used for the simulations are those obtained at
the reference condition (at 23 ◦C). Other parameters used for the simulation are the ones
presented in Section 4.2.1. Figure 14 and Tables 7 and 8 show the influence of Aef on the
variation in the indoor humidity. It can be seen that the increasing exposed surface area
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or loading coefficient (Aef/V) will reduce the amplitude of the indoor RH variation and
f value. This can be explained by the increase in the quantity of water vapor exchanged
between the wall and the indoor environment due to the sorption phenomenon of BBM.
Compared to PC, the f value of SC is lower because its moisture buffer value is higher.
Numerically, with a loading coefficient of 0.68 m−1, the f values for SC and PC are 35%
and 30%, respectively, while they are 83% and 78% for a loading coefficient of 0.14 m−1.
The results show that the use of palm concrete (PC), which has a very high hygroscopic
property, is very interesting for regulating the indoor relative humidity. However, as it can
be seen in Figure 14, beyond a loading coefficient of 0.5 m−1, the impact of the increasing
exposed surface area on the indoor RH of the room is not significant. The results obtained
are very interesting and suggest that a reasonable combination between the MBV and the
Aef can be established in order to optimize the use of BBM in buildings.
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Table 7. Impact of exposed surface on indoor RH variation for PC.

MBV (g/(m2%RH)) at 23 ◦C of PC

Air Effective
(Aef)

Loading Coefficient
(Aef/V) RHmax RHmin ∆RH f (A/A0)

0 0.00 0.73 0.5 0.23 1.00

7.5 0.14 0.69 0.51 0.18 0.78

17.5 0.32 0.65 0.53 0.12 0.52

27.5 0.50 0.63 0.55 0.08 0.35

37.5 0.68 0.62 0.55 0.07 0.30

Table 8. Impact of exposed surface on indoor RH variation for SC.

MBV (g/(m2%RH)) at 23 ◦C of SC

Air Effective
(Aef)

Loading Coefficient
(Aef/V) RHmax RHmin ∆RH f (A/A0)

0 0.00 0.73 0.5 0.23 1.00

7.5 0.14 0.7 0.51 0.19 0.83

17.5 0.32 0.66 0.52 0.14 0.61

27.5 0.50 0.64 0.54 0.1 0.43

37.5 0.68 0.63 0.55 0.08 0.35
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5. Conclusions

The major contribution and novelty of this study are found in showing that the
moisture buffer capacity and performance of hygroscopic bio-based materials can be
influenced significantly by different parameters, and especially the temperature. The
numerical model was presented and validated. The simulations were carried out focusing
on the hygric performance of palm and sunflower concretes from wall to room levels.

At the wall scale, both numerical and experimental results confirm that the moisture
buffer value is influenced by the temperature for the two studied bio-based materials.
The higher the temperature, the higher the value of the MBV, due to the impact of the
temperature on the water vapor pressure and the water vapor density. In addition, this
study shows that the temperature needs to be taken into account to well define the MBV
classification of BBM (especially for the SC in this study). Based on the numerical results,
two models which express the moisture buffer values as a function of the temperature
(MBV = f (T)) for PC and SC were proposed for application in buildings.

At the room scale, the results obtained show that bio-based building materials (PC
and SC) can contribute to dampen the indoor RH variation. The f coefficient (f = A/A0)
was also proposed to represent the moisture buffering capacity of materials in reducing the
indoor RH variation, which is very useful for possible consideration in future standards.
The results highlight that the MBV, the temperature and the effective exposed surface
area have a significant impact on indoor hygrothermal comfort. The indoor temperature
influences the MBV, which in turn impacts the indoor RH variation in buildings, and
therefore it is necessary to take into account correctly predicting the moisture buffering
performance of BBM.

Finally, this article suggests that an adequate combination between the MBV (as a
function of T) and exposed surface area, which can be considered as key parameters, should
be established to optimize the use of bio-based concretes in building design.
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Nomenclature
C Energy constant of GAB model
Cp Specific heat at constant pressure J·kg−1·K−1

Dθ Mass (vapor and liquid) transport coefficient associated with a moisture content gradient m2·s−1

Dθ. l Liquid transport coefficient associated with a moisture content gradient m2·s−1

Dθ. v Vapor transport coefficient associated with a moisture content gradient m2·s−1

hM Convective mass transfer coefficient m·s−1

K Energy constant of GAB model
MBV Moisture buffer value g/(m2%RH)
T Temperature K
w Moisture content kg·kg−1

wm Monolayer moisture content kg·kg−1

ϕ Relative humidity %
π Water vapor permeability kg·m−1·s−1 Pa−1

θ Moisture volumetric content m3·m−3

µ Water vapor diffusion resistance factor
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