
HAL Id: hal-03449827
https://hal.science/hal-03449827v1

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GUI-Mimic, a cross-platform recorder and fuzzer of
Graphical User Interface

Vincent Raulin, Pierre-François Gimenez, Yufei Han, Valérie Viet Triem Tong,
Léopold Ouairy

To cite this version:
Vincent Raulin, Pierre-François Gimenez, Yufei Han, Valérie Viet Triem Tong, Léopold Ouairy. GUI-
Mimic, a cross-platform recorder and fuzzer of Graphical User Interface. GreHack 2021 - 9th Inter-
national Symposium on Research in Grey-Hat Hacking, Nov 2021, Grenoble, France. pp.1-7. �hal-
03449827�

https://hal.science/hal-03449827v1
https://hal.archives-ouvertes.fr

GUI-Mimic, a cross-platform recorder and fuzzer of

Graphical User Interface

Vincent Raulin Pierre-François Gimenez Yufei Han
Valérie Viet Triem Tong Léopold Ouairy

CIDRE, CentraleSupelec, Inria, Univ Rennes, CNRS, IRISA, Rennes

Abstract

In program analysis, a fuzzing toolset is needed to automatically trigger software op-
erations in a natural while efficient way. Especially in dynamic analysis of malware, such
a toolset can help execute the suspicious files to unveil their malicious payloads hidden
by other benign-looking behaviors. In the fields of software testing, this tool is necessary
for triggering and testing the programmed functionalities. Nevertheless, there has not yet
been an easy-to-use tool that works on Windows for the purpose of generating activity
through the Graphical User Interface (GUI). To meet this requirement, in our work, we
develop GUI-Mimic. It is designed to integrate some useful features for stimulating dif-
ferent types of software – mouse and keyboard recording, random mouse and keyboard
inputs, editing, trimming, randomization, transformations – to deliver an easy-to-deploy
GUI fuzzer over different Operating Systems.

Keywords: GUI, fuzzing, testing, recording, macro, randomization, human interaction

1 Introduction

Monkey testing is a software testing technique that feeds random inputs and actions into a
target software to verify whether its behavior matches its specification. It is usually imple-
mented for automated unit and reliability tests of applications. Recently, monkey testing has
also been employed for dynamic analysis of malware [1, 2]. For example, Google deployed
its security service Bouncer [2] back in 2012. Bouncer uses a random event generation to
trigger malicious payloads of Android malware. Furthermore, in 2020, the Android Developer
Package has also integrated monkey exercise tools for stress test [3]. This tool can also be
used to detect abnormal behaviors of apps[4]. Besides Android, OneFuzz, a monkey testing
software for Windows 10, was open-sourced in 2020 [5] by Microsoft as a stress test tool for
its operating system.

However, the current monkey testing tools have their limits. In particular, most available
fuzzing tools for Windows are restrained to text input from terminals or I/O files. The only
tools that focus on GUI interaction are not for Windows and are often quite limited or hard
to set up. On the other hand, even when looking for macro recording tools, none possess
viable fuzzing capabilities or are also quite hard to use.

To solve these issues, we plan to extend the current monkey testing tools in the following
perspectives:

• The system needs to interact through the GUI (and not through the command line) for
simulating realistic user interaction.

• It will record a sequence of user actions and use the recorded sequences as working
material (e.g., to repeat them, reorder them, add an event in response to another or
apply custom transformations like time dilation).

1

• The recording system needs to be easy to start and stop.

• It must have randomization features since we want to fuzz the application.

• It must allow us to create usage scenarios to fuzz some components more efficiently.

• It needs to be portable to different devices and to multiple operating systems.

An extra feature that we want to achieve is deployability: indeed, we want to be able to
export all of our recording, our scenarios, and transformations into files to be accessible by
other users and by automated testing machines. This article presents GUI-Mimic, a toolset
that implements all of these new features in order to reach our requirements of GUI input,
ease to use, randomization for fuzzing and portability for our studies on dynamic analysis of
malware.

2 Related work

We identified two kinds of tools that can only achieve some of the objectives we defined in
the introduction.

Macro recorders are designed to record keyboard or mouse inputs and replay these
actions. Most of them only allow replaying identical sequences, which is not suited for fuzzing
tests since they require a lot of different sequences of actions, most generally random. Most
of these recording tools like Mouse and Keyboard Recorder[6], Free Macro Recorder[7] or
Mousekey Recorder[8] only do this simple record/playback task.

Nevertheless, Macro Recorder [9] has a useful feature that makes it closer to fuzzing: it
allows for editing (trimming, recording, rearranging) and even some conditional structures to
reorder the sequences. Unfortunately, saving a sequence requires setting many parameters
for each event through dialog boxes, making the process much more complicated and time-
consuming. For example, a five minutes recording can take half an hour to configure.

Fuzzing test tools, such as Zzuf fuzzer [10], Killerbeez [11], LibFuzzer [12], AFL [13],
and FOE [14], often don’t support GUI. There exist a few GUI fuzzers, though, but they
have serious limitations. For example, the tools from fuzzingbook[15] are either adapted to
web applications or require drivers to handle a specific application. AutoIt[16] is a scripting
language dedicated to building fuzzing scenarios. It is powerful but requires extensive work to
generate even simple scenarios. Some Android tools like GroddDroid[17] can systematically
trigger reactions from the graphical elements. However, it is designed for Android only and
benefits from Android’s easy-to-access GUI (XML extensive UI description) that makes it
inapplicable to Windows. Finally, Guifuzz[18] is a tool able to interact with the GUI of
Windows applications in a random fashion. However, this project was abandoned at an early
stage of development in 2019 and can only fuzz Calc.exe. One close work is Monkey [3]
from Android, which is equipped with our expected functions but runs under Android only.
Moreover, it does not allow for customizing actions/recordings.

In contrast, GUI-Mimic is a GUI-boosted fuzzing test tool that can record a user per-
forming tasks, build scenarios with those recordings, and add a lot of randomization to reach
adequate fuzzing capabilities.

3 Contribution

GUI-Mimic is written in Python and is freely available on https://gitlab.inria.fr/vraulin/

GUI-Mimic.
One can use GUI-Mimic in a few steps: recording sequences of events, editing those

sequences, creating a scenario, and finally playing back those scenarios. During the recording,
the user records their interactions with a targeted software. When creating a sequence, it

2

https://gitlab.inria.fr/vraulin/GUI-Mimic
https://gitlab.inria.fr/vraulin/GUI-Mimic

is best to focus on one kind of interaction with the target software, like starting it, saving
a file, etc. These sequences are then used as building blocks to create a scenario that will
interact with the entire software. By creating chaining rules for all the recorded sequences,
the user can explore complex interactions in a relevant way (for example, not saving a file
before creating one). It is also possible to manually add events to create random or organized
inputs from the mouse or the keyboard. Different transformations can also be applied to
sequences of events. Eventually, the project can be exported for later editing, playing one of
the scenarios, or deploying to other machines.

Besides, GUI Mimic is lightweight. All its default operations have a linear time and space
complexity. Only custom transformations could get higher complexity. In our experiments,
GUI Mimic didn’t use more than 50MB of RAM while recording or playing.

In the following, we explain in more details how GUI Mimic works with the sequences of
events. To illustrate its inner working, we will take the example of the creation of fuzzing
scenarios for Notepad.exe.

3.1 Sequence of events

The sequences of events handled by GUI-Mimic are based on atomic events that are indivisible
hardware events, such as a mouse movement or a released key on the keyboard. More precisely,
we use six atomic events: Keyboard press, Keyboard release, Mouse move, Mouse press, Mouse
release, and Mouse scroll. Besides, each atomic event includes some parameters, such as time
of occurrence since the last event, coordinates of mouse events, key for keyboards events.

During the recording, the atomic events are stored in a list. Once the recording is done,
these atomic events are summarized into more complex events. For example, a MousePress
event followed by a MouseRelease event is merged with it into a MouseClick event, and sev-
eral KeyboardPress and KeyboardRelease are merged into a KeyboardInput event. Besides,
mouse movement creates a lot of atomics events MouseMove that each describes an infinites-
imal movement. Therefore, a succession of MouseMove atomic events are transformed into a
MouseStart and a MouseStop event that only records the movement’s start and end points
and not the path. Once this transformation is completed, the list of atomic events is replaced
by a list that contains complex events (MouseClick, KeyboardInput, etc.) and atomic events
that could not be merged into a complex one. The latter can happen, for example, when a
MouseRelease event does not follow a MousePress event. Notice that this transformation is
not reversible (for example, the exact path of the mouse is lost) and can be disabled. This
transformation serves two goals: first, it helps keep the sequence short; second, it allows us
to manipulate the sequence easily, as explained in the following.

After a recorded sequence has been saved, it can be modified by adding random events,
removing some events from a sequence with filters (like removing all presses on Ctrl), or
changing their timestamps (for example, to make the hotkeys combinations be pressed faster).

3.2 Recording and Playback

The following subsections describe the use of GUI-Mimic with its interactive prompt. GUI-
Mimic can also be used with its graphical interface.

The recording system is made to be straightforward: the user presses a keyboard shortcut
to start and stop recording events (this shortcut can be customized). Once the recording is
finished, the user can extract the derived event sequence and trim it. To start recording for
our Notepad example, once GUI-Mimic’s interactive prompt has started, the user just needs
to press a hotkey combination (Ctrl left+Ctrl right by default) to start recording. Now,
everything the user does is recorded until they press these same hotkeys again. The user
might want to record themselves starting the app through Windows’ startup menu by typing
”Notepad” for their first sequence. Once the window opens, they can resize it and then stop

3

recording by pressing their hotkeys again. Since there is not much to do in the starting
sequence, the user can just extract it for refinement by typing:

starting = extract()

We instrument both the recording and the playback using a Python module called ”Pyn-
put”. It allows for complete control of the inputs and outputs of the mouse and the keyboard.
Once recorded, a sequence can be extracted and put in a ”user guide”. This structure is an
editing workstation. It saves a group of recordings (usually for the same application) and
allows some editing for the whole application. The user can create one and register their first
sequence by typing:

Notepad = user_guide()

Notepad.start_1 = starting

Imagine the user realizes that they should have clicked on the text zone in case their next
action is to type text. They can add this task by typing:

click = MouseClick(2000000000, 100000000, 900, 700) # time to wait (2sec),

duration of click (0.1sec), x and y positions on screen

Notepad.start_1.append(click)

In practice, the user probably want to record themselves making a specific task on the
application, such as starting the application, closing it, opening a certain file, executing a
certain functionality of the app. In the case of Notepad, the user would record some more
sequences: start 2, start 3 to open the app in different ways, save 1, save 2 to save the file
in two different ways, open 1, open 2, open 3, close 1, close 2, new 1, new 2... all of which
are accessible through Notepad. < name >. Then the user will be able to create rules to
replay these bits of recordings in a certain order, like a scenario detailing how the application
can be used. It can be for example : start the application, then play a randomly chosen use
case, then save the file under this name, then close the app or create a new file. The user can
create multiple scenarios, all of which can contain some random actions.

For notepad, the user will create two scenarios:

Notepad.scenario_1 = user_scenario("start_1", "write_2", "save_2", "close_1")

Notepad.scenario_2 = user_scenario("start.*", "write.*", "save.*", "new.*",

"write.*", "save.*", "open.*", "close.*")

In the first scenario, the user starts Notepad.exe, writes some text, saves the file, and closes
the app with specific sequences. Scenario 2 is a bit more complex. The ”. ∗ ” means that
the system will choose a random sequence in the user guide that matches the corresponding
regular expression. For example, ”start. ∗ ” would choose randomly between start 1, start 2
and start 3.

After that, the user can reload a project, modify these sequences again, create new ones,
create new scenarios, remove some, and play those scenarios. In the user’s case, saving and
reloading the project in the file Notepad.pyt (default extension) would look like this:

save("Notepad.pyt", Notepad)

Notepad = load("Notepad.pyt")

And for playback, the user can use these commands to execute these scenarios:

Notepad.simulate("scenario_1") # runs the first scenario

Notepad.simulate("scenario_1", "scenario_2") # runs the first or second scenario

sequence = Notepad.simulate() # runs a random scenario

4

Note that simulate will furthermore return the actual event sequence that has been played
for analysis. It is important for the reproducibility of experiments, as there may be random
variation in what is being played back. This feature is the focus of the next subsection.

3.3 Generation of realistic events

A major objective of our tool is to make the generated events as realistic as possible. To
achieve that goal, a handful of random-based perturbation functions are included. They can
be applied both during editing and during playback. This built-in transformation includes:

Time dilation To simulate different users typing and mouse speeds, the user can apply a
global time dilation, like increasing the duration by 20%. The user can also add some noise
to the timestamps to make it more random. It is especially useful on generated events, like
keyboard text inputs. Such events have a fixed time interval between key presses.

GUI-Mimic is very precise in its playback, meaning that the difference between theoret-
ical timestamps and the actually played timestamps is small, thanks to the Pynput library.
Although not tested with real-time applications, it is far enough accurate for interfaces that
are intended to be used by humans.

In the case of the starting sequence the user recorded for Notepad, the user may want
to add some time noise. In particular, they may want the duration of the events to change
slightly at each run, to avoid repetition, and so that the mouse move does not last exactly 2
seconds:

Notepad.start_1.schedule_transform(time_noise(variance = 0.3)) # Variance of 30%

of added or removed time

This transform applies a Gaussian deformation to the waiting time of each event. For ex-
ample, it could change an event of 2sec wait into 2× 1.25sec wait with 1.25 being the sample
from the Gaussian distribution. The function schedule transform registers this transforma-
tion to be performed at the time of playback (so different noise can be obtained in different
playback of the same sequence). If, instead, the user wants their transformation to be done
immediately, they should use:

Notepad._start_1 = Notepad.start_1.apply_transform(time_noise(0.3))

apply transform will immediately apply this transformation and return a new event se-
quence. It is better to use schedule transform in case of randomizing transformations since
it will create a different version at each playback.

The function schedule transform can store multiple transformations and apply them in
the same order at execution.

Customized transformations on the sequences Our tool allows the user to apply user-
customized transformations to the sequences. For example, the user may want to apply a time
dilation on each event depending on its type. By describing their transformation depending
on the target event, the user can achieve that goal.

For example, the user pressed the Ctrl key but only on the left side of their keyboard.
They would prefer to use the right side. To do so, they should type the commands:

Inside of a python file

def random_side(event):

e = event.copy()

if isinstance(event, (KeyboardPress, KeyboardRelease)) and event.key ==

Key.ctrl_l:

e.key = Key.ctrl_r

5

return e

After loading the function

Notepad.apply_transform(random_side)

Note that apply transform and schedule transform can also be used on user guide, in
which case the transformations will be applied on all the registered sequences.

Generation of the new events without recording them To goal of this feature is to
give more fuzzing capabilities. The most useful one is to generate some keyboard input. It will
generate a sequence of keyboard press and keyboard release events with fixed time intervals
to type what the user wants to be written during execution. It also works with hotkeys, and
a user-defined function can provide the string at execution

The user might have wondered what are the sequences ”write. ∗ ” that we used in our
scenarios defined in the previous subsections. We are going to declare them with generated
events. In this case, we just need a single event in our sequence to generate a random text
input from the keyboard:

Notepad.write_1 = user_sequence() # Empty sequence

Notepad.write_1.append(KeyboardInput(5, "This is a text file.", 6)) # after 5

seconds, start typing this text, at a speed of 6 characters per second.

Notepad.write_2 = user_sequence()

Notepad.write_2.append(KeyboardInput(2, random_text, 8)) # where random text is a

function that returns some random text when called

Note that in Section 3.2, we used ”MouseClick”, which is also a generative event.

Randomization of mouse paths In a summarized sequence, we don’t store every atomic
mouse move. Instead, we can use the detailed information of when and where the mouse starts
and stops moving to create an adequate curved path. Our current model uses Bézier curves
of degree 2. Their intermediate control point is placed upon a random discus distribution
from a circle centered between the starting and ending points. This process ensures that the
mouse path seems conducted by real human users. It also enables the adding of randomness
into the mouse moving paths.

4 Conclusion

Our new fuzzing toolset is developed to cover a specific case of fuzzing which most other
fuzzing tools failed to achieve. It focuses on GUI interaction, more precisely through both
mouse and keyboard. It is designed to interact with apps mimicking what a real human
user would do. At the same time, the toolset is easy to configure the testing scenarios. Its
editing tools provide extensive coverage of fuzzing tests for a given app and make its use
convenient. It is also equipped with randomization and data generation tools to increase its
test effectiveness. There are still some features to be added, like integrating some computer
vision tools to detect buttons on the screen and generating meaningful events in response.
Finally, we plan to apply this tool to monitor and capture suspicious system calls for the
dynamic analysis of malware.

References

[1] Lucky Onwuzurike, Mario Almeida, Enrico Mariconti, Jeremy Blackburn, Gianluca
Stringhini, and Emiliano De Cristofaro. A family of droids-android malware detection

6

via behavioral modeling: Static vs dynamic analysis. In 2018 16th Annual Conference
on Privacy, Security and Trust (PST), pages 1–10, 2018.

[2] H.Lockheimer. Android and security, 2020.

[3] Application exerciser monkey. https://developer.android.com/studio/test/

monkey.

[4] Hayyan Hasan, Behrouz Tork Ladani, and Bahman Zamani. Enhancing monkey to trigger
malicious payloads in android malware. In 2020 17th International ISC Conference on
Information Security and Cryptology (ISCISC), pages 65–72, 2020.

[5] J.Campbell and Mike Walker. New project onefuzz framework, 2020.

[6] http://www.robot soft.com. Mouse and keyboard recorder. https://www.robot-soft.
com/mouse-keyboard-recorder.html.

[7] Free macro recorder. https://www.mjtnet.com/simple-macro-recorder.htm.

[8] Mousekey recorder. https://mousekeyrecorder.net/.

[9] Bartels Media. Macro recorder. https://www.macrorecorder.com.

[10] Sam Hocevar. Zzuf fuzzer. http://caca.zoy.org/wiki/zzuf, 2015.

[11] https://github.com/anon8675309. Killerbeez. https://github.com/grimm-co/

killerbeez, 2018.

[12] Libfuzzer. https://llvm.org/docs/LibFuzzer.html.

[13] Micha l Zalewski. American fuzzing lop. https://lcamtuf.coredump.cx/afl/, 2013.

[14] Software Engineering Institute. Foe. https://resources.sei.cmu.edu/library/

asset-view.cfm?assetid=515311, 2013.

[15] The Fuzzing Book. Fuzzingbook. https://www.fuzzingbook.org/html/GUIFuzzer.

html.

[16] Autolt. https://www.autoitscript.com/site/.

[17] Adrien Abraham, Radoniaina Andriatsimandefitra, Adrien Brunelat, Jean-François La-
lande, and Valérie Viet Triem Tong. Grodddroid. http://kharon.gforge.inria.fr/

grodddroid.html, 2015.

[18] https://github.com/gamozolabs. Guifuzz. https://github.com/gamozolabs/guifuzz,
2019.

7

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://www.robot-soft.com/mouse-keyboard-recorder.html
https://www.robot-soft.com/mouse-keyboard-recorder.html
https://www.mjtnet.com/simple-macro-recorder.htm
https://mousekeyrecorder.net/
https://www.macrorecorder.com
http://caca.zoy.org/wiki/zzuf
https://github.com/grimm-co/killerbeez
https://github.com/grimm-co/killerbeez
https://llvm.org/docs/LibFuzzer.html
https://lcamtuf.coredump.cx/afl/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=515311
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=515311
https://www.fuzzingbook.org/html/GUIFuzzer.html
https://www.fuzzingbook.org/html/GUIFuzzer.html
https://www.autoitscript.com/site/
http://kharon.gforge.inria.fr/grodddroid.html
http://kharon.gforge.inria.fr/grodddroid.html
https://github.com/gamozolabs/guifuzz

	Introduction
	Related work
	Contribution
	Sequence of events
	Recording and Playback
	Generation of realistic events

	Conclusion

