N
N

N

HAL

open science

Automatic Algorithm Multi-Configuration Applied to an
Optimization Algorithm

Weerapan Sae-Dan, Marie-Eléonore Kessaci, Nadarajen Veerapen, Laetitia

Jourdan

» To cite this version:

Weerapan Sae-Dan, Marie-Eléonore Kessaci, Nadarajen Veerapen, Laetitia Jourdan. Automatic Algo-
rithm Multi-Configuration Applied to an Optimization Algorithm. 21st International Conference on
Hybrid Intelligent Systems (HIS 2021), Dec 2021, online, United States.

7_15. hal-03449789

HAL Id: hal-03449789
https://hal.science/hal-03449789
Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1007/978-3-030-96305-

https://hal.science/hal-03449789
https://hal.archives-ouvertes.fr

Automatic Algorithm Multi-Configuration
Applied to an Optimization Algorithm

Weerapan Sae-Dan, Marie-Eléonore Kessacil0000—-0002-4372-5162] ' Nadarajen
Veerapen!0000—0003—3699—1080] ;1 Taetitia Jourdan!0000—0002—4170—6830]

Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL 59000, Lille, France
{weerapan.saedan.etu, mkessaci, nadarajen.veerapen,
laetitia.jourdan}@univ-lille.fr

Abstract. Automatic algorithm configuration is concerned with find-
ing the best hyper-parameter values for some specific algorithm. These
values are then fixed throughout the execution of the algorithm. An-
other approach is parameter control where the values adaptively change
during execution. In this work, we explore the hybrid concept of multi-
configurations where values are still optimized before-hand, but as dif-
ferent sets of configurations that are then used one at a time during
execution. In particular we explore a number of strategies based on fixed
sequences of configurations and roulette wheel selection, and compare
them to some baselines. We evaluate the strategies in the context of It-
erated Local Search on the Permutation Flowshop Problem. Results show
that both fixed and roulette strategies are better than the baselines, but
also that roulette outperforms the fixed approach when hyper-parameters
are optimized on more diverse sets of instances. We observe that the cho-
sen values are not necessarily ones that would be considered the best in
the literature because they are used as part of the multi-configurations.

Keywords: Local Search - Automatic Algorithm Configuration - Pa-
rameter Tuning

1 Introduction

Metaheuristics are used to solve difficult optimization problems because they
usually provide a good compromise between solution quality and execution time.
Like many Al approaches, they frequently have several hyper-parameters that
impact their performance. Here onwards, we shorten hyper-parameter to param-
eter for convenience. For each instance of a problem tackled by some metaheuris-
tic, there exists a best configuration, or set of parameter values, that achieves
the best performance. Finding such a set of parameter values may be handled
via parameter tuning and parameter control [2].

Tuning the parameters of an algorithm is an offline process where the pa-
rameter values are optimized before running the algorithm to obtain a final
solution. In contrast, controlling the parameters is an online process where the
parameter values are adjusted during the execution of the algorithm. In this

2 Sae-Dan et al.

paper, we consider parameter tuning. This involves using a configurator to eval-
uate the performance of configurations for some algorithm on training instances
and then choosing the best configuration. The literature includes a number of
configurators, such as irace [5] and ParamILS [3].

Configurators usually provide a single configuration that is used during the
entirety of the execution of an algorithm. Yet, it may be beneficial to alter the
parameter values during execution. To bridge the gap between parameter tuning
and parameter control, in this paper, we use the irace configurator, without loss
of generality, to generate multiple configurations in an offline process. These are
used at different points during execution according to predetermined strategies.
We explore the benefits, or lack thereof, of using this hybrid approach compared
to standard parameter tuning, building on our previous preliminary work [8].

In order to test our idea, we consider an Iterated Local Search (ILS) [4] with
restarts. ILS is simple yet is well-known for solving combinatorial optimization
problems. It features a number of parameters that are not only numerical but also
represent some very important algorithmic design choices. They are considered
as categorical parameters. The restarts are parameters too. In particular, we
compare three main scenarios with restarts: fired multi-configuration, roulette
multi-configuration and random multi-configuration.

Our results, on Permutation Flowshop Scheduling Problem instances, show
that the fixed and roulette scenarios perform statistically better across various
instance sizes. We observe that the roulette model is more robust than the fixed
model when the configurator is asked to optimize across multiple instance sizes
(i.e. provides a more general (multi-)configuration). We also note that some
components that are generally considered less efficient are still used in the con-
figurations returned by the configurator. This indicates that they can be useful
in combination with other components. It is therefore not necessarily wise to
only provide the “best” components to the configurator, because then it could
not extract some less intuitive parameter combinations.

The rest of the paper is arranged as follows. In Section 2 we provide the details
of our multi-configuration scenarios. In Section 3 we present the permutation
flowshop problem. Section 4 describes the ILS used, including its algorithmic
components. Section 5 details the experimental protocol, and Section 6 presents
the experimental results. Section 7 contains our conclusions and perspectives.

2 A Multi-Configuration Model

In this work we consider scenarios where offline tuning not only determines
which algorithm configuration to apply initially, but also after a restart of some
algorithm. Here, we instantiate this multi-configuration model on an Iterated
Local Search [4] whose components are detailed in Section 4. A restart provides a
fairly intuitive point at which it makes sense to potentially switch configuration.
The type of restart operator is a parameter in itself, as is the condition that
triggers the restart. The deciding criterion for a restart is often a number of non-
improving steps, which we use here. The other parameters to consider are for

Automatic Algorithm Multi-Configuration 3

restart restart restart restart restart restart

| c C, C ‘ C, G ‘ c C, Cs ‘ C ‘ C,

I 1 Eval ; I Eval
e=0 e=F e=0 e=FE

(a) Two-configuration model (b) Three-configuration model

Fig. 1: Fixed Model

the ILS, its building blocks, and the initialization mechanism. These are changed
according to three types of scenarios that will be detailed further: fized multi-
configuration, roulette multi-configuration and random multi-configuration.

While automatic algorithm configuration is very powerful, increasing the
number of parameters requires additional tuning time. For this reason, as well as
for the sake of simplicity, we restrict ourselves to a maximum of three different
configurations that can be returned by the configurator.

Fized Multi-Configuration. In fixed multi-configuration the configurations are
applied in a predefined sequence that loops around until the total execution
budget is used up as illustrated in Figure 1. There can be a sequence of two or
three configurations.

The trivial single-configuration variant is also used to serve as a baseline and
the same configuration (c;) is used after each restart until the stopping criterion
is reached. Our experimental protocol (Section 5) includes a special version of
this single-configuration model, where no configurator is used but exhaustive
exploration of a restricted set of parameter values is carried out.

In the two- and three-configuration versions, we start with some initial config-
uration (¢q), then switch to cq after the restart. These two configurations are then
used sequentially until the stopping criterion is met for the two-configuration
version (Figure la). The three-configuration version naturally employs a third
configuration (Figure 1b).

Roulette Multi-Configuration. For roulette multi-configuration, we consider two
and three configurations with roulette wheel selection, and dispense from using a
single trivial configuration as this is equivalent to the fixed single-configuration.

In this setting, the probability of applying each configuration is a parameter
optimized by the configurator. The application of each configuration is illustrated
in Figure 2. We always start with configuration (c¢1). Then, after each restart,
each configuration can be chosen with some fixed probability. Configuration ¢;
is assigned some percentage value p; that will trivially correspond to probability
P;. In the two-configuration case, co then automatically has probability P, =
1 — P;. In the three-configuration case, co is assigned some percentage value po
of the remaining 1 — Pj, which gives a probability P = py x (1 — P;) for ca.
Finally ¢3 automatically has probability Ps =1 — (P + P).

Random Multi-Configuration. As a baseline and sanity check, the initial config-
uration, together with the new configuration after each restart are selected at

4 Sae-Dan et al.

restart restart restart restart restart restart

| C Ci/C Ci/C l [C C1/C2/Cs C1/C2/Cs

Eval ., Eval
e=F

1
Y

e=0 e=FE e

(a) Two-configuration model (b) Three-configuration model

Fig. 2: Roulette Model

random. The restart mechanism and stagnation period are also changed each
time. No parameter tuning is used.

3 Permutation Flowshop Scheduling Problem

The flowshop scheduling problem (FSP) is a classical NP-hard combinatorial
optimisation problem where a set of IV jobs have to be processed on a set of
M machines. Each machine can process only one job at a time. A job has to
be fully processed at once on each machine and can be processed on only one
machine at a time. The sequence of machines is fixed, as is each job. In the
permutation variant (PFSP), each job is executed on the machine in the same
order. The PFSP is widely used in the literature to evaluate the performance of
metaheuristics. In this work, we consider the makespan minimization criterion
where all jobs have to be processed on all machines with the minimum of time.

The Taillard instances [10] are widely used in the literature to assess the
performance of algorithms. Different sizes are available depending on the number
of jobs and machines. For each size, ten instances are provided. In this study, to
assess the performance, we keep only larger instances with {50, 100,200} jobs and
{10, 20} machines as follows: 50x20, 100x 10, 100x20, 200x 10, and 200x20. In
addition, we generate 100 training instances per instance size for the automatic
configuration phase. This prevents overfitting parameter values and mimics real-
life situations where one would want to apply the configuration step infrequently
but use the configuration multiple times on new instances.

4 Multi-Configuration ILS

Hill-climbing is fast and easy to use, but it rarely yields the best results because
it stops at the first local optimum found. There are strategies that allow the
search to continue even after an optimal solution has been discovered. Iterated
Local Search (ILS) is among those. From the local optimum found, the following
steps are taken: (i) alter the current solution with a perturbation (ii) run this
solution via a hill-climbing algorithm, or some other local search algorithm, (iii)
select if the new optimum becomes the current solution if it is better than the
previous one, then revert to (i) until some stopping criterion is reached.

The perturbation in ILS is meant to allow the algorithm to escape from
the current basin of attraction, while still preserving most of the solution, in

Automatic Algorithm Multi-Configuration 5

the hope of ending up in a better basin. When this strategy fails, restarts can
be used to start afresh from a new solution. Stagnation (stg) is the number of
non-improving iterations that triggers a restart.

As with any local search, some components, such as the initialization and
neighborhood are problem-specific, in our case PFSP-specific. The methods to
perturb or diversify the search also have their own numerical parameters. We
present the components, i.e. categorical parameters, and numerical parameters
in the ILS with restarts for the PFSP.

Initialization heuristic. ILS requires a method to build an initial solution.
While the PFSP is represented by a simple permutation, generating a random
order of jobs is not an efficient way to obtain a good initial solution. We use the
NEH heuristic [6], which is probably the best-known greedy heuristic for PFSP.

Neighborhood Operator. Hill Climbing and its variants are neighborhood-
based algorithms and require an operator to generate neighbor solutions from the
current solution. For permutation problems, such as the permutation flowshop
problem, two operators are widely used: shift and swap [9]. The shift operator is
known to be more adapted to the PFSP, but in a context of multi-configuration,
it appears to be interesting to see if it can be useful at some stage of the search.

Neighborhood Order. A neighborhood may be explored in different orders.
One option is to explore neighbors uniformly at random (rnd). Another is to
always parse the neighborhood in some predefined order (ord).

Ezploration Strategy. The hill-climber, or local search, chooses at each step a
neighbor that improves the objective function. The two most commonly used ac-
ceptance strategies for candidate solutions are first (IHCfirst) and best (IHCbest)
improvement. In the first case, exploration stops as soon as an improving neigh-
bor is found, in the second the whole neighborhood is explored and the best
improvement is selected. Worst improvement has also been shown to be benefi-
cial in some cases [11] (IHCworst). Late Acceptance Hill-Climbing (LAHC) [1]
(IHClahc) employs yet another acceptance strategy that considers fitness values
encountered earlier in the run.

Perturbation. An ILS uses the perturbation to escape from a local optimum.
The deconstruction-reconstruction perturbation, denoted IG-D/R, proposed by
Ruiz and Stiitzle for the iterated greedy algorithm proved its efficacy [7], the
most efficient sizes being {2, 3,4}.

Diversification. When an ILS stagnates, it is necessary to perform a jump in
the search space to find a better region to explore. This is achieved via a full or
sometimes a partial restart. We retain two different strategies to make a large
step possible: either the initialization heuristic NEH is performed (equivalent to
a full restart) or a (fairly large) kick is applied on the current solution. This last
strategy consists in applying the swap operator k € {3,4,5,10} times.

5 Experimental Protocol

In this study, we propose three multi-configuration models using sequentially
several values of the parameters/components. In order to assess the perfor-

6 Sae-Dan et al.

mance of the multi-configuration models, we propose to compare them to a
single-configuration model where only one fixed configuration is performed dur-
ing the whole run. Actually, the single-configuration model is a degenerate vari-
ant of the fixed multi-configuration model where only one configuration is ap-
plied sequentially. An exhaustive exploration will be carried out for this single-
configuration model as a baseline of our experiments to discuss the interest of a
multi-configuration model.

Table 1 reports all the search components/parameters and their respective
values presented in the Sections above. It leads to a configuration space of 1200
different configurations. This configuration space is used by the random multi-
configuration model and the single-configuration model. With 1200 configura-
tions, the size of the space is already too large to exhaustively test all of them
within a reasonable time. Therefore, we propose to fix d = 4 and k = 3, being the
best parameter values found in the literature respectively and to fix stg = 100,
being the middle value in that parameter’s domain. It drastically reduces the
configuration space size to 32 and allows us to perform the exhaustive analysis.

The roulette multi-configuration model uses a probability P to select the next
configuration to run. We set selection probability P = {25, 50, 75} and allow only
three values to avoid a combinatorial explosion of the configuration space. We
use the irace package [5] to automatically configure both fixed and roulette multi-
configuration models. We give a budget of 5000 runs and we bound the number
of different configurations used by the multi-configuration models to three. This
leads to more than 107 and 10+® different configurations respectively.

The termination criterion of the algorithm is defined as a maximum number
of evaluations. Instance sizes 50 x 20, 100 x 10, 100 x 20, 200 x 10 and 200 x 20
are allotted a maximum budget of 40 x 10%, 60 x 10%, 100 x 105, 200 x 10°
and 400 x 10% evaluations respectively. These numbers has been experimentally
determined in order to encounter several stagnation periods and therefore trigger
several restarts. As metaheuristics are stochastic algorithms, we perform 30 runs
for each instance for each algorithm model.

In order to compare the models on different instances, we propose to compute
the relative percentage deviation (RPD) from the best-known value. Then, the
Friedman test is used to test the statistical equality of each model considering
all instances or each size separately.

Table 1: Configuration Space.

Component /Parameter Possible Values Component /Parameter Possible Values
Neighborhood Operator shift, swap Diversification Algorithm init, kick
Neighborhood Order rnd, ord Diversification Strength k 3%, 4,5, 10
Exploration Strategy THCfirst, IHCbest, IHCworst, IHClahc Stagnation stg 0, 50, 100*, 150, 200
Perturbation Algorithm IG-D/R Perturbation Strength d 2, 3, 4*

Numerical values with a star (*) have been selected for the exhaustive analysis.

Automatic Algorithm Multi-Configuration 7

Table 2: Best configurations of the single-configuration model.

Instance Size ILS Diversification Stagnation
5

1%00222% shift, rnd, IHCfirst, IG-D/R(4) kick(3) 100
20020 shift, rnd, THClahc, IG-D/R(4) kick(3) 100
100x10 shift, rnd, IHCfirst, IG-D/R(4) kick(3) 100
200%10 shift, rnd, IHClahc, IG-D/R(4) kick(3) 100
shift, rnd, IHClahc, IG-D/R(4) init 100
. shift, rnd, THCfirst, IG-D/R(4) kick(3) 100
All Instances ie " 1nd. THClahe, IG-D/R(1) kick(3) 100

6 Experimental Results

In this section, we first present the results of the exhaustive analysis for the
single-configuration model. Then, we present the multi-configuration ILS re-
turned by irace for the fixed and the roulette models. We finish with a compar-
ison between the proposed models and the baselines.

Exhaustive Analysis of the Single-Configuration Model. Table 2 reports, for each
size of instance, the best configurations of the single-ILS where the strength of
the perturbation and the strength of the diversification have been set to 4 and 3
respectively and the stagnation criterion to 100 in order to enable an exhaustive
exploration. The best configurations shown are the ones that are statistically
better among the 32 available ones.

Not surprisingly, the shift operator is preferred to the swap operator to gen-
erate the neighbors of the current solutions and the random exploration of the
neighborhood is chosen in each single-ILS. In these experiments, the hill climb-
ing algorithms based on the first-improvement strategy or the late acceptance
strategy applied with a kick diversification lead to the best performance for all
instances. For instances with 10 machines, the init diversification with the late
acceptance strategy are also equivalent to the latter. These results are those ex-
pected based on the literature. This shows that our protocol is well adjusted to
assess the performance of our models to solve the Taillard PFSP instances.

Automatic Multi-configuration Models. Let us now focus on the fixed and roulette
multi-configuration models. First we present the best configurations returned by
irace among configuration spaces larger than 1077, Then, the performance of
the best configurations are compared on Taillard instances. We recall that up to
three ILS can be configured to be used sequentially in the multi-configuration
model. A configuration is then composed of a maximum of three differently tuned
ILS. Table 3 first reports the three best configurations returned by irace for the
fixed multi-configuration model, and then the four best configurations returned
by irace for the roulette multi-configuration model.

Let us first consider the fixed scenario. The first multi-ILS (fiz1) is composed
of two tuned ILS only, while the last two multi-ILS (fiza, fixs) are composed of

8 Sae-Dan et al.

Table 3: Best configurations of the automatic multi-configuration found by irace.

Conf. ILSy ILS, ILSs Divers. stg P1 P>

Fized multi-configuration model

fiz, shift,rnd,IHCfirst,IG-D/R(4) shift,rnd,IHClahc,IG-D/R(3) - kick(3) 200
fiz, shift,rnd, IHCfirst,IG-D/R(3) shift,rnd,IHClahc,IG-D/R(4) swap,ord,IHCbest,IG-D/R(3) kick(3) 200
fizy shift,rnd,IHClahc,IG-D/R(3) shift,rnd,IHCfirst,IG-D/R(4) swap,rnd,IHClahc,IG-D/R(4) kick(5) 100
Roulette multi-configuration model

rlty shift,rnd,IHClahc,IG-D/R(3) shift,rnd, JHCbest,IG-D/R(4) shift,rnd, IHCfirst,IG-D/R(4) kick(5) 150 75 25
rits shift,rnd,IHClahe,IG-D/R(4) shift,rnd, IHCfirst,]G-D/R(4) swap,rnd,]HClahe,IG-D/R(3) kick(3) 200 75 75
rlts shift,rnd, IHClahc,IG-D/R(4) shift,rnd, IHCfirst,IG-D/R(2) shift,rnd, IHCworst,IG-D/R(2) kick(3) 150 75 75
rity shift,rnd, IHCfirst,IG-D/R(3) shift,rnd, IJHCbest,IG-D/R(4) shift,rnd,IHCworst,IG-D/R(3) kick(5) 150 75 25

three tuned ILS. All three contain the best single-configuration presented in the
previous section except for the strength of the perturbation algorithms and the
stagnation criterion. We recall that all the numerical values were not available for
the exhaustive exploration and maybe increasing the possible values would have
produced some different results. However, the fixed model configuration with
only one ILS was in the configuration space of irace and no such configuration
has been returned. This shows that having at least two ILS seems to lead to
better performance. Surprisingly, in both fiz, and fizs, the ILS3 uses the swap
operator. The neighbors generated with the swap operators are different from
ones generated with the shift. This choice enables new connections between
solutions as it changes the search landscape.

The best-improvement strategy is selected in fizs for ILS3 with the ordered
neighborhood exploration. This is logical: this strategy evaluates all the current
solution’s neighbors to select the best among them. Moreover, only the kick is
used to diversify the search for each (partial) restart. It thus seems to be better
to jump to closer regions of the search space rather than starting anew.

Let us now consider the roulette scenario. Contrary to the fixed model,
the four multi-ILS (rlty, rits, rits and rit,) are always composed of the maxi-
mum number of ILS allowed. Even if they are all composed in part of the best
single-ILS seen in the previous section, the best-improvement and the worst-
improvement strategies are more represented but at the same position. Indeed,
the best-improvement strategy is set in ILSy while the worst-improvement is
preferred for ILS3. Moreover, the shift operator is always selected except in ILS3
of rits. For the roulette model, the stagnation criterion is at least set to 150. This
implies that the configurations leave time to the perturbation IG-D/R to find
a better adjacent region before restarting. In this multi-configuration model,
the probability of choosing among the three ILS is also tuned automatically.
The four best configurations give 75% of chance to select ILS;. It seems that
ILS, and ILS3 aim at introducing diversity in the search as well in changing the
exploration strategy as modifying the definition of the neighborhood.

In order to compare our automatic multi-configuration models, we run the
seven configurations of multi-ILS presented above on the Taillard instances. We
average the 30 RPDs per instance and compute the Friedman test using the 10 in-

Automatic Algorithm Multi-Configuration 9

Table 4: Statistical comparison of fixed and roulette multi-configuration models.

Instance Size Fixed Roulette

fizi fize fizs rlti rlte vl rlts

All instances

Sant + o+ + o+ o+ o+

Each size of instance
5020 + + + + + + -
100x10 + + - + + + +
100%20 + + - + + + -
200x10 + o+ o+ o+ - o+ o+
20020 + + - + + + +

stances per size to rank the seven configurations. Table 4 presents the result of the
statistical comparison between the seven configurations. Configurations marked
with ‘+’ statistically outperform the ones with ‘-’ for the considered instances.
In the first line, we give the comparison considering all the instances and be-
low the comparison per size of problem. Clearly, the roulette multi-configuration
model is more robust than the fixed model. Indeed, if we focus on all instances
— recall that the tuning has been performed considering all sizes — the four best
configurations known for the roulette model are best ranked while fixs is less
efficient. If we look at the results for each size, fixi, fizs, rit; and rit3 are
always best ranked. In theses multi-ILS configurations, not only the best single-
ILS configurations are represented. This shows the importance of putting in the
configuration space used by the configurator all the possible components known
for a problem with no a priori knowledge.

Comparison between Single- and Multi-configuration Models. We compare our
two automatic multi-configuration models, namely fixed and roulette, with the
random multi-configuration model and the single-configuration model on the
Taillard instances. In all the scenarios (i.e. across all instances or when consider-
ing instances of the same size), the fixed and the roulette multi-ILS always out-
perform the random multi-ILS and the best configurations previously obtained
in the exhaustive single-ILS analysis. If we focus on the multi-configuration mod-
els, these results show that using at least two different configurations during a
same run should be done carefully. Indeed, the bad performance of the random
model is explained by the online modification of too many parameters at the
same time while the configurations obtained with automatic multi-configuration
models (fixed and roulette) are well adapted to the instances tackled. Finally,
the results between the automatic configured multi-ILS and single-ILS make the
case for the use of many well tuned configurations.

7 Conclusion and Perspectives

In this paper, we propose two automatic multi-configuration models applied to
a restart Iterated Local Search. Multiple ILS are automatically tuned during a

10 Sae-Dan et al.

training phase and then are performed in different way according to the multi-
configuration model. The fixed model iterates the tuned ILS in a predefined
order while the roulette model selects, after each restart, one of the tuned ILS
following a predefined probability. These models were tested on the permutation
flowshop scheduling problem. Our experiments on the Taillard instances showed
that automatic multi-configuration models give better performance than the
classical restart ILS or a random multi-configuration model selecting randomly
the configuration after each restart. Moreover, the roulette models appears more
robust than the fixed model and should be preferred. Finally, we noticed that
configurations a priori known as not effective are used in the multi-ILS and help
to lead to better performance. This shows that the automatic design knows how
to take advantage of all available components.

In future works, a deeper analysis of the behavior of the automatic multi-
configurations model will be conducted. Moreover, the higher the number of
ILS in the multi-configuration model, the larger the configuration space. The
training phase will have to be reconsidered to increase the size of configuration
space while remaining manageable.

References

1. Bazargani, M., Lobo, F.G.: Parameter-less late acceptance hill-climbing. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference. p. 219-226.
GECCO ’17, Association for Computing Machinery, New York, NY, USA (2017)

2. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation 3(2), 124-141 (1999)

3. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stuetzle, T.: ParamILS: An Automatic
Algorithm Configuration Framework. Journal of Artificial Intelligence Research
36, 267-306 (2009)

4. Lourenco, H.R., Martin, O.C., Stiitzle, T.: Iterated Local Search, pp. 320-353.
Springer US, Boston, MA (2003)

5. Lépez-Ibédnez, M., Dubois-Lacoste, J., Pérez Céceres, L., Birattari, M., Stiitzle, T.:
The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43-58 (2016)

6. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 11(1), 91-95 (1983)

7. Ruiz, R., Stiitzle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. EJOR 177(3), 2033-2049 (2007)

8. Sae-Dan, W., Kessaci, M.E., Veerapen, N., Jourdan, L.: Time-dependent automatic
parameter configuration of a local search algorithm. In: Proceedings of the 2020
Genetic and Evolutionary Computation Conference Companion. p. 1898-1905.
GECCO 20, Association for Computing Machinery, New York, NY, USA (2020)

9. Schiavinotto, T., Stiitzle, T.: A review of metrics on permutations for search land-
scape analysis. Computers Operations Research 34(10), 3143-3153 (2007)

10. Taillard, E.: Benchmarks for basic scheduling problems. EJOR 64(2), 278-285
(1993)

11. Tari, S., Basseur, M., Goéffon, A.: Worst Improvement Based Iterated Local Search.
In: Liefooghe, A., Lépez-Ibanez, M. (eds.) Evolutionary Computation in Combi-
natorial Optimization. pp. 50-66. LNCS, Springer International Publishing (2018)

	Automatic Algorithm Multi-Configuration Applied to an Optimization Algorithm

