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Abstract

This study concerns the computation of frequency responses of linear stochastic mechanical systems

through a modal analysis. A new strategy, based on transposing standards deterministic deflated and

subspace inverse power methods into stochastic framework, is introduced via polynomial chaos represen-

tation. Applicability and effectiveness of the proposed schemes is demonstrated through three simple

application examples and one realistic application example. It is shown that null and repeated-eigenvalue

situations are addressed successfully.}
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1 Introduction

This study concerns the propagation of uncertainties for structural dynamic problems. Over the past decades,

methods for solving stochastic eigenproblems or dynamics problems have been predominantly based on ei-

ther Monte Carlo Simulation (MCS) or perturbation methods such as Neumann or improved perturbations
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methods [1, 2, 3, 4, 5, 6]. Implementation of MCS procedures is in principle straightforward while perturba-

tion methods provide estimates of firsts moments, based on sensitivity analysis using Taylor series expansion

of the quantity of interest. But these methods have several drawbacks. MCS is expensive in computing

resources for large or complex problems or problems relying on several random variables, and perturbation

methods have a limited radius of convergence for the involved series. Hence, efforts are constantly made to

explore the suitability of spectral methods such as the Stochastic Reduced Basis Method (SRBM) [7, 8] and

the Polynomial Chaos (PC) representations [4, 9, 10, 11]. Both of them pertain to a non-statistical approach

to represent randomness. SRBM is based on the subspace spanned by the considered application. In [8],

the practical basis suggested comes from a preconditioned stochastic Krylov subspace, performed from the

nominal problem. Numerical studies for the first two moments on frequency response analysis of stochastic

structural systems is addressed in this work, showing a degradation in results for large variations of the

random variables. On the other hand, PC representation is a spectral representation of random processes

which can be used in stochastic equations to represent unknown stochastic quantities [12, 13, 14, 11]. Since it

uses a Hilbertian framework, the PC expansion is able to represent any second-order random quantity with

any probability law.

In this work, efforts are pursued to explore the suitability of spectral methods. More specifically, stochastic

solutions in the frequency domain are sought for linear problems when random properties are considered in

the mechanical model in the inertial and elastic properties. Evaluating these random results are generally

referred to as Stochastic Finite Element Methods (SFEM). Linear dynamic response is e.g. more efficiently

dealt with in the modal space. To deal with the modal space one has first to solve an eigenvalue problem.

This problem can either be a differential eigenvalue problem or a matrix eigenvalue problem, depending on

whether a continuous model or a discrete model is used to describe the given system. For stochastic problems,

probabilistic characterization of the eigensolutions of random matrix and of differential operators turn out

to be of interest. SFEM with PC representation are well developed for linear algebraic systems, but are

less developed for the random eigenvalue and for the random response of dynamic problems. The random

eigenanalysis problem appears to be non linear and challenging conditions arise when part of the spectrum

is clustered, that is, when there are repeated or closely spaced eigenvalues. In Ref. [4], the PC eigenvalue

problem is approximated through a projection onto the deterministic normal mode basis, both for the normal

mode equilibrium equation and for the normalization equation. In Ref. [9, 10], the eigenvalue problem with

distinct roots is rewritten as a set of non-linear equations with a L2 normalization of the normal modes.

Next, specific strategies are developed in Ref. [15, 16] to deal with repeated roots when such an approach
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is carried out. However, while the linear stochastic dynamic problem is carried out without approximation

in this way -apart from the practical necessity of polynomial truncature-, the involved computational effort

appears to be much more important than the one involved for static random problems. Hence, to be more

efficient numerically, the Ref. [17] proposes to transpose in the random domain the deterministic inverse

power method based on the spectral shift strategy. It appears to be a robust method to determine the

random eigenvector associated to a random eigenvalue. But normalization of normal modes is achieved only

in the mean sense in this work. This does not lead to favorable conditions to address next modal response of

dynamic problems.

In this work, stochastic discrete linear systems, or discretized continuous systems, having -or not- null

or repeated eigenvalues are considered for obtaining modal based frequency responses. PC representation

through a weak characterization of mechanical equations is focused and efforts are made to solve the resulting

stochastic modal equations and frequency responses without transforming this problem as it would be if,

for example, projections onto the deterministic normal modes basis are involved. To achieve a numerical

efficiency, the Newton-Raphson strategy is not selected and the deterministic eigenanalysis method such as

the deflated inverse power method and the subspace inverse power method are transposed to the stochastic

framework. The modal problem is addressed here without approximations on the normalization condition

for the normal modes, by requiring that the stochastic normalization and the stochastic orthogonalization

conditions must be satisfied. Then, modal based frequency responses take advantage of the stochastic modal

mass-orthonormalization which is ensured. Moreover, for numerical efficiency, it is also a main objective of

this work to keep the computational costs similar to the one required for the -well known and used- stochastic

static problem solved by the PC method. Indeed, one numerical drawback of the intrusive PC strategy is the

use of expectations of multiple PC products which requires both lot of operations to be computed and lot of

memory to be stored. This aspect is a part of the curse of dimensionality problem which arises for stochastic

modal based frequency responses analysis and it must keep in mind, as we will see in the following of this paper

that expectations of a five PC products could be required to address these problems (while only expectations

of a three PC products are required to address stochastic static problems). This problem can occur both for

ensuring orthonormalization of the modal base and for obtaining modal based frequency responses. Hence,

we will pay special attention to propose alternative numerical strategies at both these steps in order to use

only expectations of PC products which are already used for stochastic static problems. Adoption of these

propositions ensure the efficiency of the complete stochastic modal based frequency response analysis of this

work by having computational costs similar to the one required for the stochastic static problem solved by
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the PC method.

The paper is organized as follows: the Sect. 2 addresses the modal dynamic problem, considering the

deterministic and the stochastic frameworks. The Sect. 3 recalls basic considerations of the PC representation

and uncertainties propagation in the context of the dynamic responses, either from the direct or from the

modal way. The Sect. 4 addresses the proposed numerical strategies for the inverse power method and its

deflated and subspace variants, by transposing the deterministic strategies to the stochastic ones. Then,

four application examples are chosen to demonstrate the applicability and effectiveness of the proposed

methodologies in Sect. 5. Applications to eigenanalysis random problems as well as frequency modal random

responses are carried out for three simple application examples and one realistic application example. It is

then demonstrated that the proposed strategies are applicable and that the proposed method is able to deal

with situations for which part of the spectrum is clustered. Finally, a summary is given in Sect. 6 to conclude

this work.

2 Problem statement

2.1 Deterministic problem

Let us considers the discrete –or discretized– linear deterministic problem of computing the dynamic response

of a system subjected to a forcing which is defined in the frequency domain (ω = 2πf):

(
k− ω2m + jcω

)
u (ω) = f (ω) (1)

where upright bold letters denote structural deterministic matrices. In this expression k, m, and c are n-

dimensional real symmetric structural matrices, being respectively the stiffness, mass, and damping matrices.

The frequency response functions are u (ω) when f (ω) is chosen as the n×n identity matrix i over a specified

frequency band, ωmin ≤ ω ≤ ωmax.

Since the problem is linear with respect to the frequency response, it is interesting to introduce the modal

representation associated to the above spatial representation. Restricting ourselves to proportional-damped

systems, the modal representation is real and is defined as:

 kφ = mφλ

φTmφ = µ
(2)
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with ξ = φTcφ the modal damp matrix and where:

• φ is the normal-mode matrix formed with the eigenvectors as columns;

• λ is the diagonal matrix formed with the corresponding eigenvalues, that are the squares of the natural

circular frequencies; and

• µ is the diagonal modal mass matrix that is imposed to be the identity matrix, i.e. µ = i, in this study.

Notice that a widely used convention consists in ordering the eigenvalues in ascending values, that is λ1 ≤

λ2 ≤ · · · ≤ λn, while the associated eigenvectors are:

φ = {φ1, φ2, · · · , φn} .

Hence, when there is clustered eigenvalues, switching of the ordering of eigenvectors can occur for a small

change in the physical parameters. For example, considering distinct natural frequencies of a simple plate

with varying dimensions, ordering of a torsional and a flexural mode can be switched due to the modification

of these frequencies. However, these two modes can be recognized experimentally, when compared before and

after modifications, because they keep their shapes. Thus, a Modal Assurance Criterion (MAC) will indicate

that they are nearly parallel, showing then that they correspond to the same physical modes1.

Then, the solution u (ω) is such that:

u (ω) = φx (ω) =

n∑
r=1

φi xi (ω) (3)

for x (ω) which satisfies the uncoupled modal equations:

(
λ− ω2i + jξω

)
x (ω) = φTf (ω) .

However, for mechanical applications which involves many degrees of freedom, an approximate solution

is generally sought practically by truncating the modal basis to a specified range where only the lowest

eigenvalues separated from the rest of the spectrum are considered: λ1 ≤ · · · ≤ λnr < λnr+1 ≤ · · ·λn. This

leads us to rewritten Eq. 3 as:

u (ω) '
nr∑
r=1

φi xi (ω) = φx (ω)

1However, care must be taken when natural frequencies are repeated. In this situation any combination of associated normal
modes leads to another also valid normal mode; that is the associated eigenspace has dimension bigger than one. In such case,
shapes of both modes of the previous example looks like a mix of the two original modes. Then, a specific procedure must be
involved to avoid difficulties in following their evolution.
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where φ becomes now a n× nr matrix, while modal matrices are adjusted in their sizes accordingly.

2.2 Stochastic problem

When the system has random parameters, its response becomes a stochastic process, U (ω,$), such that

(
K ($)− ω2M ($) + jC ($)ω

)
U (ω,$) = f (ω) (4)

for all $ ∈ Ω where (Ω, A, Prob) is the probability space associated with the underlying physical experiments

and where upper case upright letters denotes random variables corresponding to deterministic ones which

are denote by the same letter in lower case. The stochastic eigenproblem associated to this model is:

 K Φ = M Φ Λ

ΦTM Φ = µ
(5)

where the argument $ is dropped for brevity. At this point, one has to note that this modal problem is

slightly different from the one of Ref. [17, 10, 15, 16] due to the requested mass-orthonormalization condition.

Then, U (ω) can be express as:

U (ω) = Φ X (ω)

for: (
Λ− ω2i + jΞω

)
X (ω) = ΦTf (ω)

where:

Λ = ΦTK Φ and Ξ = ΦTC Φ.

One can notice that, due to the possible switching, or even mixing, of eigenvectors in the deterministic

problem, the stochastic eigenproblem can be difficult to solve when there is clustered eigenvalues [16].

3 Propagation of uncertainties using polynomial chaos representa-

tion

Several methods can be applied to get a representation of U(ω) for given distributions of the random input

properties [6, 11]. From them, as an attractive alternative to the MCS, the PC representation consists in the
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expansion of the random process over a set of orthogonal polynomials. Wiener first introduced it in 1938 [12]

and used only Hermite polynomial basis to represent Gaussian random processes. More recently, works on

generalized Polynomial Chaos propose a list of polynomial basis corresponding to non-Gaussian distributions

[18]. In effect, one can use any distribution as kernel and orthogonalize a polynomial basis of L2 with respect

to the probability measure generated by the chosen distribution. [19] demonstrated the L2-convergence for

any L2 functionals, that is for any second-order random process (i.e. with finite variance).

3.1 Direct dynamic frequency response

Considering a generic random vector or random matrix, G, the PC representation proposes to express it as

a polynomial (truncation of a series) using a set of ng + 1 orthogonal polynomials, denoted ψg , in variables

ζi, i ∈ {1, , 2, . . . d}, that are collected in a d-dimensional vector ζ :

G($) =

ng∑
g=0

Ψg(ζ($))gg (6)

where ng + 1 = (d+h)!
d!h! , h being the order of the representation. Notice that italic bold letters are used for

vectors of the spectral representation. Generally, for a practical implementation, the order of expansion

results from a truncation which has to be chosen accordingly a suitable criterion. For the structural matrices

K (ζ), M (ζ), or C (ζ) and for responses U(ω, ζ) the adopted PC representation are:

K (ζ) =

nk∑
k=0

Ψk (ζ)kk,

M (ζ) =

nm∑
m=0

Ψm (ζ)mm,

C (ζ) =

nc∑
c=0

Ψc (ζ) cc,

and:

U(ω, ζ) =

nu∑
u=0

Ψuuu (ω) .

Coming back to the generic random vector or matrix G, the ng vectors or matrices of deterministic coefficients

gg, now used to describe G, can be evaluated in two ways: using an intrusive or a non-intrusive method. The

non-intrusive method can be always used to find the coefficients of the stochastic variables when they are

represented by a PC expansion. It uses the orthogonality of the polynomials with respect to the appropriated

inner product to evaluate each vector of deterministic coefficients gg:
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gg =
< G (ζ) ,Ψg (ζ) >

< Ψg (ζ) ,Ψg (ζ) >
(7)

where < G (ζ) ,Ψg (ζ) >=
´
Rd G (ζ)Ψg (ζ) pζ (ζ) dζ represents the inner product introduced by the PDF

pζ (ζ). To evaluate this inner product, it is introduced a partition, ζi, the integrations points, w the vector

which collects the quadrature weights and ngp the number of points, the above integration can be done using

a Gauss quadrature rule ([20]):

< G (ζ) ,Ψg (ζ) >=

nGP∑
i=1

G (ζi)Ψg (ζi) {w}i .

In this way, the residual associated to the difference between G($) and its PC representation is orthogonal

to its PC representation. This strategy to determine the representation can be referred to as a strong

characterization [16] and can be used to find coefficients of input stochastic variables such as kk, mm or cc

for the structural matrices as well as to model the output stochastic variables such as uu (ω) for responses

U(ω, ζ).

The intrusive method, or weak characterization, follows a variational approach. As a first step, the PC

representation introduced for the stochastic variables are put into the governing equations. For instance, Eq.

(4) produces: (
nk∑
k=0

Ψkkk − ω2
nm∑
m=0

Ψmmm + jω

nc∑
c=0

Ψccc

)(
nu∑
u=0

Ψuuu (ω)

)
= f (ω) .

(8)

Next, the vectors coefficients are given by solving the system which is obtained by taking expectations of the

equations produced by the projection of Eq. (8) onto the set of polynomials Ψ:

nu∑
u=0

(
nk∑
k=0

〈ΨiΨkΨu〉kk − ω2
nm∑
m=0

〈ΨiΨmΨu〉mm+

jω

nc∑
c=0

〈ΨiΨcΨu〉 cc

)
uu (ω) = 〈Ψi〉 f (ω)

(9)

for i = 0, . . . , nu. This leads to a deterministic matricial system of the form:

(
K − ω2M+ jCω

)
U (ω) = F (ω) (10)
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where:

K =



nk∑
k=0

〈Ψ0ΨkΨ0〉kk
nk∑
k=0

〈Ψ0ΨkΨ1〉kk · · ·
nk∑
k=0

〈Ψ1ΨkΨ0〉kk
nk∑
k=0

〈Ψ1ΨkΨ1〉kk

...
. . .


,

U =


u0

u1
...

 and F =


〈Ψ0〉 f

〈Ψ1〉 f
...

 .
where calligraphic letters denote the structural PC representation matrices used for the analysis. The matrices

M and C have similar form as the matrix K. Equation (10) is a linear system of deterministic equations

which involves expectations of three PC products.

From a numerical point of view, the weak characterization provides a set of n × ng coupled algebraic

equations, while the strong characterization determines gg from integrations, requiring at least a set of

experiments for a quadrature rule. When the order of representation is adequate, the coefficients obtained

from both characterizations should be identical when the same orthogonal basis is considered. However, this

is not true for an inadequate truncation since the weak characterization couples the coefficients, while the

strong characterization determines each coefficient independently.

3.2 Modal frequency response

The direct strategy proposed in the previous section by using the intrusive method is expensive numerically

when considering a large frequency band since it involves solving a large system many times. As the struc-

tural matrices do not depend on the frequency, the modal response presented in subsection 2.2 is relevant.

Considering only a particular, single mode, Φr, modal quantities can be represented in the chosen basis as:

Φr (ζ) =

nλ∑
φ=0

Ψφ (ζ)φrφ,

Λr (ζ) =

nλ∑
λ=0

Ψλ (ζ)λrλ
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and the Eq. (5) , taken in the weak sense, becomes:



nλ∑
φ=0

nk∑
k=0

〈ΨiΨkΨφ〉kk φrφ =

nλ∑
φ=0

nλ∑
λ=0

nm∑
m=0

〈ΨiΨmΨφΨλ〉mm φrφ λrλ

nλ∑
φ=0

nm∑
m=0

nλ∑
λ=0

〈ΨiΨφΨmΨλ〉φT
rφmmφrλ = 〈Ψi〉µ

(11)

for i = 0, . . . , nλ which can be rewritten in a matricial form as:

 KΦr =M′ Φr Λr

ΦT
rM′Φr = Υ

(12)

when collecting:

Φr =


φr0

φr1
...

 , Λr =


λr0

λr1
...

 ,

Υ =


〈Ψ0〉µ

〈Ψ1〉µ
...

 =


〈Ψ0〉 i

0

...


and:

M′Φr =

nλ∑
φ=0

nm∑
m=0

〈
Ψ0ΨkΨφΨ0

〉
mmφrφ

nλ∑
φ=0

nm∑
m=0

〈
Ψ0ΨkΨφΨ1

〉
mmφrφ · · ·

nλ∑
φ=0

nm∑
m=0

〈
Ψ1ΨkΨφΨ0

〉
mmφrφ

nλ∑
φ=0

nm∑
m=0

〈
Ψ1ΨkΨφΨ1

〉
mmφrφ

...
. . .


.

This is a non-linear system of deterministic equations which involves expectations of four PC products. The

reference [10] proposes to solve it using a Newton-Raphson method starting from a statistically sampled

initial value.

Then, synthesis of U (ω) leads to consider:

U (ω) =

nr∑
r=1

nλ∑
φ=0

Ψφφrφ Xr (ω) (13)
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for Xr (ω) =

nx∑
x=0

Ψx xrx (ω) such that:

(
ΦT
r KΦr − ω2ΦT

r MΦr + jΦT
r CrΦrω

)
Xr (ω) = ΦT

r f (ω)

or: (
ΦT
r KΦr − ω2 + jΦT

r CΦrω
)

Xr (ω) = ΦT
r f (ω)

since normal modes are mass normalized. It is, in the weak sense:

nx∑
x=0

 nλ∑
φ=0

nk∑
k=0

nλ∑
λ=0

〈ΨiΨφΨkΨλΨx〉φT
rφ (kk + jωck)φrλ

−ω2 〈ΨiΨx〉
)
xrx (ω) =

〈
Ψ2
i

〉
φT
rif (ω)

(14)

for i = 0, . . . , nx. This is a linear system of deterministic equations which involves expectations of five PC

products. Then it is more efficient computationally to use PC representation of modal quantities. Using

Λr =

nλ∑
λ=0

Ψλλrλ and Ξr =

nξ∑
ξ=0

Ψξξrξ, the above expression is rewritten:

(
Λr − ω2 + jΞrω

)
Xr (ω) = ΦT

r f (ω)

to produce, in the weak sense:

nx∑
x=0

(
nλ∑
λ=0

〈ΨiΨλΨx〉λrλ − ω2 〈ΨiΨx〉

+jω

nξ∑
ξ=0

〈ΨiΨξΨx〉 ξrξ

xrx (ω) =
〈
Ψ2
i

〉
φT
rif (ω)

for i = 0, . . . , nx. It is a linear system of deterministic equations which involves expectations of three PC

products. This leads to a deterministic matricial system of the form:

(
Jr − ω2Ir + jDrω

)
Xr (ω) = Rr (ω) (15)
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where:

Jr =



nλ∑
λ=0

〈Ψ0ΨλΨ0〉λrλ
nλ∑
λ=0

〈Ψ0ΨλΨ1〉λrλ · · ·
nλ∑
λ=0

〈Ψ1ΨλΨ0〉λrλ
nλ∑
λ=0

〈Ψ1ΨλΨ1〉λrλ

...
. . .


,

Xr =


xr0

xr1
...

 and Rr =


〈
Ψ2
0

〉
φT
r0f〈

Ψ2
1

〉
φT
r1f

...

 ,
while matrices Ir and Dr have a similar form to the matrix Jr.

Thus, to evaluate U (ω) through Eq. (13) once the stochastic eigenproblem is solved, assuming it provides

the PC representation of eigenvectors and eigenvalues, it is efficient to solve Eq. (15) to obtain the modal

displacement matrix coefficients (that is a vector, if f (ω) also is). It corresponds to the equation of a single

degree of freedom system, thanks to the normal modes basis that decouples mechanical degrees of freedoms.

This is the intrusive strategy which is chosen in this work to solve the stochastic dynamic problem by the

modal strategy. But it remains necessary to propose an efficient numerical strategy to solve the system (12)

which defines the normal modes base. This is the subject of the next section.

4 Numerical methods for the determination of normal modes bases

Considering the deterministic generalized normal modes basis problem, it exists numerical methods dedicated

to its efficient determination [21, 22]. Let us first describe the ones we propose to transpose in the random

domain.

4.1 Deterministic methods

From a numerical point of view, Lanczos method and power method are adapted to find eigenvectors of large

numerical problems. The inverse power method -or inverse iterations method- is the most basic method of

computing an eigenvector φ1 associated to the lowest eigenvalue |λ1| > 0 for the generalized problem (2)

when considering a positive-definite symmetric and real stiffness matrix. The basic algorithm of this method

is:

1. Choose an initial vector φ(0)
1 such that φ(0)T

1 mφ
(0)
1 = 1,

2. For k = 1, 2, . . . do:
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(a) Evaluate f
(k)
1 = mφ

(k−1)
1

(b) Solve kφ
(k)
1 = f

(k)
1

(c) Normalize φ
(k)
1 such that φ(k)T

1 mφ
(k)
1 = 1

3. Let φ1 ← φ
(k)
1 and compute λ1 = φT

1 kφ1

4. End

This algorithm repeats the step 2 until φ(k)
1 converges to within some tolerance ε. A variant is obtained by

including the step 3 in the loop of step 2, enabling to test the convergence on λ
(k)
1 , being

∣∣∣λ(k)1 − λ
(k−1)
1

∣∣∣ <
ε
∣∣∣λ(k)1

∣∣∣. Noticed that even if φ(0)
1 is orthogonal to φ1, it is expected that φ1 would be recovered numerically

due to round-off errors.

Then, deflation can be carried out to construct the next lowest eigenvalue λ2 and so on for the next ones.

In such a way, the eigenvalue λr, for r > 1, is obtained by introducing an orthogonalization step before the

normalization, as:

φ(k)
r = φ(k)

r −
r−1∑
q=1

φqφ
T
q mφ(k)

r

This orthogonalization step is also necessary when considering semi-definite stiffness matrix where the first

n0 eigenvectors φRBM correspond to the null space of k, being kφRBM = 0. In such situation, a generalized

inverse is applied within iterations. Then, for nr elastic modes, the adopted deflated inverse power method

algorithm is:

1. Find the null space φRBM of k such that φT
RBMmφRBM = i0 and let φ← φRBM

2. For each sought mode r = n0 + 1, n0 + 2, . . . , nr , do:

(a) Choose an initial vector φ(0)
r such that

φT
RBMmφ(0)

r = 0 and φ(0)T
r mφ(0)

r = 1,

(b) Compute λ(0)r = φ(0)T
r kφ(0)

r

(c) For k = 1, 2, . . . do:

i. Evaluate f
(k)
r = mφ(k−1)

r

ii. Solve kφ(k)
r = f

(k)
r

iii. Orthonormalize φ(k)
r such that

φTmφ(k)
r = 0 and

∥∥∥φ(k)
r

∥∥∥
m

= 1

13



iv. Compute λ(k)r = φ(k)T
r kφ(k)

r

(d) Let φ←
[
φ, φ(k)

r

]
3. End

where i0 is the n0 identity matrix. However, this algorithm does not ensure to find the first eigenvectors when

repeated eigenvalues exist. The inverse simultaneous vector iteration -or subspace inverse power method-

has not this drawback. It consists in handling simultaneously a set of modes φ(k), while preserving their

orthonormality within iterations. Its basic algorithm is:

1. Find the null space φRBM of k such that φT
RBMmφRBM = i0

2. Choose an orthonormalized initial matrix φ(0) such that:

φT
RBMmφ(0) = 0 and φ(0)Tmφ(0) = ir0

3. Compute λ(0) = φ(0)Tkφ(0)

4. For k = 1, 2, . . . do:

(a) Evaluate f(k) = mφ(k−1)

(b) Solve kφ(k) = f(k)

(c) Orthonormalize φ(k) such that:

φT
0 mφ(0) = 0 and φ(k)Tmφ(k) = ir0

(d) Compute λ(k) = φ(k)Tkφ(k)

5. Let φ←
[
φRBM, φ

(k)
]

6. End

where ir0 is the nr − n0 identity matrix and φ(0) is the n × (nr − n0) matrix composed of starting guesses

vectors. If it is not deficient in the directions of sought eigenvectors, convergence of this method is ensured

for real symmetric semi-definite positive matrix k.

4.2 Determination of the stochastic normal modes basis using the deflated in-

verse power method and polynomial chaos representation

The deflated inverse power method is a suitable alternative to the Newton-Raphson method to solve the

system of Eqs. (11) in order to build the stochastic normal mode basis.

14



The proposed algorithm for the deflated inverse power method is the following:

1. Choose ΦRBM from null (k) to represent ΦRBM

2. Normalize ΦRBM such that ΦT
RBMM ΦRBM = i0 and let Φ← ΦRBM

3. For each sought mode r, do:

(a) From the deterministic vector φr, define the initial vector Φ(0)r to represents Φ(0)
r

(b) Find Φ(0)1r having a unit modal mass from Φ
(0)
r such that ΦTMΦ(k)

r = 0 and let Φ(0)r ← Φ
(0)1
r

(c) Evaluate Λ(0)r from a modal projection of K over Φ(0)
r

(d) For k = 1, 2, . . . do:

i. Evaluate F(k)r =MΦ
(k−1)
r

ii. Solve KΦ(k)r = F(k)r

iii. Find Φ(k)⊥r that orthogonalizes Φ(k)
r to Φq for q ∈ {1, . . . , r − 1} and let Φ(k)r ← Φ

(k)⊥
r

iv. Evaluate Φ(k)1r that normalizes modal mass to unity and let Φ(k)r ← Φ
(k)1
r

v. Evaluate Λ(k)r from a modal projection of K over Φ(k)r

(e) Let Φ←
[
Φ, Φ

(k)
r

]
4. End

In this algorithm, a simple and efficient starting guess for Φ(0)r is produced from the normalized normal mode

φr of the deterministic nominal mechanical system, in which case Φ
(0)
r0 = φr while Φ

(0)
rφ = 0 for φ > 0. Hence,

for an efficient numerical scheme, it is recommended to systemically carried out the deterministic subspace

inverse power method of the previous subsection 4.1 in order to produce efficiently all the starting guesses

Φ
(0)
r for r ∈ {nr+1, . . . , n}. This choice ensure to find a meaningful set of first orthogonal eigenvectors, even

when repeated eigenvalues exist for the nominal system. From our numerical experiment, it is found that

this choice for the starting guess enables the algorithm to deal with deterministic nominal systems having

repeated eigenfrequencies.

However, it has to be noted that even when the deterministic eigenvector is effectively mass normalized, its

stochastic counterpart may not be mass normalized. Then, the normalization sub-step (b) of this algorithm

holds in any cases. Modal projections, orthogonalization, and normalization steps are detailed in the following

subsections. Notice that choosing the suggested starting guess for Φ(0)r enables the algorithm to deal with

null eigenvalues, in which case the sub-step (d) is bypassed.
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4.3 Normalization step

The normalization step consists in searching Φ(k)1
r which is defined by:

Φ(k)1T
r M Φ(k)1

r = 1.

It is achieved for:

Φ(k)1
r =

1∥∥∥Φ(k)
r

∥∥∥
M

Φ(k)
r

where:
∥∥∥Φ(k)

r

∥∥∥
M

=
(
Φ(k)T
r M Φ(k)

r

)1/2
while

Φ(k)1
r (ζ) =

nλ∑
φ=0

Ψφ (ζ)φ
(k)1
rφ with φ(k)1rφ =

< Φ(k)1
r ,Ψφ (ζ) >

< Ψ2
φ (ζ) >

.

In practice, it can be performed from a quadrature rule:

φ
(k)1
rφ =

1

< Ψ2
φ (ζ) >

ngp∑
i=1

Φ(k)1
r (ζi)Ψφ (ζi) wi

where:

Φ(k)1
r (ζi) =

(
Φ(k)T
r (ζi) M (ζi) Φ(k)

r (ζi)
)−1/2

Φ(k)
r (ζi) .

This is an enhanced formulation from a numerical point of view since:

• it does not involved the non-linear solution of the equations as the ones obtained by the weak charac-

terization, cf. Eq. (11);

• it does not requires expectations of a four PC products as it is by the weak characterization.

4.4 Orthogonalization step

The orthogonalization step consists in searching the PC representation of Φ(k)⊥
r orthogonal to Φq, when

knowing the PC representation of Φq and the one of Φ(k)
r for q < r. For mass-normalized normal modes Φq,

the orthogonalization condition is defined by:

ΦT
q M Φ(k)⊥

r = 0

and it is achieved for:

Φ(k)⊥
r = Φ(k)

r −ΦqΦ
T
q M Φ(k)

r (16)
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which is for the PC representation of the stochastic variables:

nλ∑
φ=0

Ψφ (ζ)φ
(k)⊥
rφ =

nλ∑
φ=0

Ψφ (ζ)φ
(k)
rφ

−
nλ∑
φ=0

nλ∑
ϕ=0

nm∑
m=0

nλ∑
λ=0

Ψφ (ζ)Ψϕ (ζ)Ψm (ζ)Ψλ (ζ)φqφφ
T
qϕmmφ

(k)
rλ .

Then, by taking:

φ
(k)⊥
ri = φ

(k)
ri

− 1

〈Ψ2
i 〉

nλ∑
ϕ=0

nλ∑
φ=0

nm∑
m=0

nλ∑
λ=0

〈ΨiΨφΨϕΨmΨλ〉φqφφ
T
qϕmmφ

(k)
rλ

for i = 0, . . . , nλ, it is ensured that:

nλ∑
φ=0

〈ΨiΨφ〉φ(k)⊥rφ =

nλ∑
φ=0

〈ΨiΨφ〉φ(k)rφ

−
nλ∑
φ=0

nλ∑
ϕ=0

nm∑
m=0

nλ∑
λ=0

〈ΨiΨφΨϕΨmΨλ〉φqφφ
T
qϕmmφ

(k)
rλ .

However, the above expression for φ(k)⊥rφ involves expectations of five PC products. Thus, an enhanced –

more

efficient– strategy is desirable from a numerical point of view to find φ(k)⊥rφ . From:

nλ∑
φ=0

Ψφ (ζi)φ
(k)⊥
rφ = Φ(k)⊥

r (ζi) ∀i

we know that:

φ
(k)⊥
rφ =

< Φ(k)⊥
r ,Ψφ (ζ) >

< Ψ2
φ (ζ) >

or:

φ
(k)⊥
rφ =

1

< Ψ2
φ (ζ) >

ngp∑
i=1

(Ψφ (ζi) wi)
(
Ψφ (ζi)φ

(k)⊥
rφ

)
(17)

when sampling points ζi are the ones of the Gauss quadrature. To express
(
Ψφ (ζi)φ

(k)⊥
rφ

)
, it is known from

the Eq. (16) that:

Φ(k)⊥
r (ζ) =

nλ∑
φ=0

Ψφ (ζ)φ
(k)
rφ

−
nλ∑
φ=0

nλ∑
ϕ=0

nm∑
m=0

nλ∑
λ=0

Ψφ (ζ)Ψϕ (ζ)Ψm (ζ)Ψλ (ζ)φqφφ
T
qϕmmφ

(k)
rλ

(18)
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and we state that the above equality holds if:

(
Ψφ
(
ζj
)
φ
(k)⊥
rφ

)
= Ψφ

(
ζj
)
φ
(k)
rφ

−
nλ∑
ϕ=0

nm∑
m=0

nλ∑
λ=0

Ψφ
(
ζj
)
Ψϕ
(
ζj
)
Ψm

(
ζj
)
Ψλ
(
ζj
)
φqφφ

T
qϕmmφ

(k)
rλ

for all ζj . Hence, evaluating the above relation at sampling points ζi enables the evaluation of φ(k)⊥rφ from the

Eq. (17).

For large structural systems, this strategy is suitable to construct orthogonalized statics or inertial modes

that are necessary to enrich a truncated normal mode basis, as well as for modal synthesis methods [21].

4.5 Modal projections

Modal projections of structural matrices are performed easily in a strong characterization. Considering a

mass-normalized normal mode Φq and the stiffness matrix K, the modal projection Λq is defined as:

Λq (ζ) = ΦT
q (ζ) K (ζ) Φq (ζ)

while its PC representation is: Λq (ζ) =

nλ∑
λ=0

Ψλ (ζ)λqλ for: λqλ =
< Λq (ζ) ,Ψφ (ζ) >

< Ψ2
φ (ζ) >

.

They are given numerically from a quadrature rule:

λqλ =
1

< Ψ2
λ (ζ) >

ngp∑
i=1

Λq (ζi)Ψφ (ζi) wi

where:

Λq (ζi) =

nλ∑
φ=0

nk∑
k=0

nλ∑
λ=0

Ψφ (ζi)Ψm (ζi)Ψλ (ζi)φ
T
qφkkφqλ.

An identical strategy enables the computation of modal damping.

4.6 Determination of the stochastic normal modes basis using the subspace

inverse power method and polynomial chaos representation

Let us now take a look at the stochastic version of the subspace inverse power method presented in the

previous subsection 4.1, to see if it is a suitable alternative to the deflated inverse power method in order to

build the stochastic normal modes basis.

The proposed algorithm is the following. For an initial set of nr modes Φ(0) having the PC representation
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Φ(0), do:

1. Choose ΦRBM from null (k) to represent ΦRBM

2. Normalize ΦRBM such that ΦT
RBMM ΦRBM = i0

3. From φq, define Φ
(0)
q to represents Φ(0)

q for normal modes corresponding to non null eigenvalues

4. Orthonormalize initial matrix Φ(0)

5. Evaluate Λ(0)q from a modal projection of K over Φ(0)q

6. For k = 1, 2, . . . do:

(a) Let F(k)q =MΦ
(k−1)
q

(b) Solve KΦ(k)q = F(k)q

(c) Orthonormalize Φ(k)

(d) Evaluate Λ(k)q from a modal projection of K over Φ(k)q

7. Let Φq ← [Φ0, Φq]

8. End

In this algorithm, the sub-step (c) implies the orthogonalization of all normal modes, including the rigid

body modes, when they exist. As for the stochastic deflated inverse power method, the starting guess Φ(0) is

produced from the normal mode matrix φ of the deterministic nominal mechanical system obtained by the

deterministic subspace inverse power method, and orthonormalization is achieved as in the above subsections

4.4 and 4.3:

1. Evaluate Φ(k)11 that normalizes modal mass to unity and let Φ(k)1 ← Φ
(k)1
1

2. For r ← 2 to nr,

(a) Find Φ(k)⊥r that orthogonalizes Φ(k)
r to Φ(k)

p for p ∈ {1, . . . , r − 1} and let Φ(k)r ← Φ
(k)⊥
r

(b) Find Φ(k)1r that normalizes the modal mass to unity and let Φ(k)r ← Φ
(k)1
r

3. End
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and the convergence condition for Λq reads:

max
r∈{1, ..., nr}

(
‖Λ(k)r −Λ

(k−1)
r ‖∥∥∥Λ(k)r

∥∥∥
)
< ε.

Comparisons of this algorithm with the one proposed for the stochastic version of the deflated inverse

power method show that differences occur only in the organization of the numerical operations and resulting

computation time but not for obtained results.

5 Numerical applications

5.1 First application

The first application concerns a system having two degree of freedom and involving three random variables.

Introducing ζl for l = {1, 2, 3}, three uncorrelated standard normal variables, the random structural matrices

are:

K = µa

(
1 +

ζ21 − 1√
2

σa
µa

) 1 −1

−1 1


and:

M =

 1 0

0 1

+
1√
2

σa
µa

 ζ22 − 1 0

0 ζ23 − 1

 .
The parameters are: µa = 20 and σa

µa
= 5 %. Notice that positive definiteness is ensured for the stiffness and

masses as long as σa
µa
<
√

2.

Hermite polynomials up to the second degree (10 terms) are used for the PC representation of the

stochastic eigensolutions. Eigensolutions of the nominal system are:

φ =
1√
2

 1 1

1 −1

 and λ =

 0 0

0 40


showing that the first normal mode is a rigid body mode. Then, considering the stochastic eigenproblem,

the first eigenvalue is deterministic, indeed it is null. The amplitude of the normalized rigid-body mode is

however stochastic since it has a unit norm with respect to an inner product defined by the stochastic mass

metric. The PC representation of this first normal mode is obtained by normalizing the starting guest which

is built from the nominal system. The second normal mode is sought from the deflated inverse power method

presented above, using the enhanced strategy for the orthogonal step. Since the iteration matrix K is not

invertible, a Moore-Penrose pseudo inverse is involved for the generation of a new iterate. When starting
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Figure 1: Superimposition of the PDF of the second eigenvalue for the first application; thick grey lines are
for MCS, dashed black lines are for PC representation

from the nominal second mode the convergence towards the stochastic second normal mode is reached in two

iterations. Figure 1 shows the PDFs of the second eigenvalue and Figure 2 shows the PDFs of the eigenvectors

components obtained. These results are compared to a MCS which has been carried out using 5×105 sample

size. A satisfactory agreement is achieved.

5.2 Second application

The second application is inspired by the simplified three DOFs model of the bladed disk of the reference

[16]. Introducing ζl for l = {1, 2, 3, 4}, four uncorrelated standard normal variables, the random structural

matrices are:

K = µb


1 0 0

0 1 0

0 0 1

+ σb√
2


ζ21 − 1 0 0

0 ζ22 − 1 0

0 0 ζ23 − 1



+µc
(
1 +

ζ24−1√
2

σc
µc

)


2 −1 0

−1 2 −1

0 −1 2


and:

M =


1 0 0

0 1 0

0 0 1

+
1√
2

σb
µb


ζ21 − 1 0 0

0 ζ22 − 1 0

0 0 ζ23 − 1

 .
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Figure 2: Superimposition of PDFs of the two components (column-wise) of the two normal modes (row-wise)
for the first application; thick grey lines are for MCS, dashed black lines are for PC representation
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The parameters used are the ones proposed in the reference [16]: µb = 100, µc = 20, while σb
µb

= σc
µc

= 5 %

and Hermite polynomials are chosen for the PC representation of the stochastic eigensolutions and for the

PC representation of the stochastic dynamic responses. The deflated inverse power method presented above

is chosen to find the three stochastic normal modes while the normal modes of the nominal system are used

as starting guesses. These normal modes are:

φ =
1

2


1

√
2 1

√
2 0 −

√
2

1 −
√

2 1

 .

Reference results are produced by MCS carried out using 5×105 sample size and a Modal Assurance Criterion

to identify and to order the stochastic normal modes. Empirical means and standard deviations of stochastic

eigenvalues are given in Table 1 and their PDFs are plotted in Figure 3. Empirical CDFs of {Φr}i, the

components i of the normal modes Φr, are shown in Figure 4. These MCS results are reference results to be

compare with the one produced by the PC representation. For the current application, the 3rd component of

the 3rd normal mode is the most critical regarding the convergence issue. For this normal mode component,

if the 2nd degree (15 terms) or the 3rd degree (35 terms) is chosen for the polynomial order involved in

PC representation, we get an identical relative error of 50% in the skewness and a relative error of 75% in

the kurtosis of this normal mode component. But for a fourth degree (70 terms), we get a very satisfactory

agreement between MCS and PC representation, as shown in Figure 4. In this case, the deflated inverse

power algorithm presented above requires 10, 14, and 2 iterations to converge to a relative precision ε = 10−6

for each stochastic eigenfrequency of the normal modes.

To compute frequency responses functions, the structural forces and damping matrices are f (ω) =
1 0 0

0 1 0

0 0 1

 and C =


1 0 0

0 1 0

0 0 1

. Figure 5 and 6 show i) the mean; ii) the 5 percentile; and iii) the

95 percentile of the amplitude of the nine frequency responses functions, as well as their second statistical

moment. Notice that computing the mean amplitude requires all the terms of the PC representation, and

not only the first one. Hence, agreement with MCS can only be achieved for an adequate truncation of the

PC representation. For the stochastic eigenproblem, a satisfactory agreement is achieved. However, small

discrepancies can be observed at ω2 ' 110 and ω2 ∈ [165, 175]. This indicates that the order of truncation

is not totally adequate in these ranges for the frequency responses, while it is adequate for the stochastic
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Table 1: Statistics of normal modes frequencies for the second application
Normal mode number r 1 2 3

Mean of frequency 111.7 140.0 168.5
Standard deviation of frequency 0.681 2.40 3.87

Figure 3: Superimposition of PDFs of the three eigenvalues for the second application; thick grey lines are
for MCS, dashed black lines are for PC representation

normal modes.

5.3 Third application

The third application is the simplified three DOFs model of the bladed disk of the reference [16]. This

application is interesting as two of the three deterministic normal modes have the same natural frequency.

Introducing ζl for l = {1, 2, 3, 4}, four uncorrelated standard normal variables, the random structural matri-

ces are:

K = µb


1 0 0

0 1 0

0 0 1

+ σb√
2


ζ21 − 1 0 0

0 ζ22 − 1 0

0 0 ζ23 − 1



+µc
(
1 +

ζ24−1√
2

σc
µc

)


2 −1 −1

−1 2 −1

−1 −1 2


and M is the identity. The parameters are: µb = 100, µc = 20, while σb

µb
= σc

µc
= 5 % and Hermite polynomials

up to the fourth degree are used for the PC representation of the stochastic eigensolutions and for the PC
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Figure 4: Superimposition of CDFs of the three components (column-wise) of the three normal modes (row-
wise) for the second application; thick grey lines are for MCS, dashed black lines are for PC representation
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Figure 5: Superimposition of frequency responses amplitudes of the three DoF system for the second appli-
cation using the PC representation up to the 4th degree; Mean, 5% and 95 % lines of confidence interval are
represented; From up to down is for the first to the last degree of freedom; From left-hand to right-hand is
for an excitation applied from the first to the last degree of freedom; Thick grey lines are for MCS, dashed
black lines are for PC representation
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Figure 6: Superimposition of second moment of frequency responses amplitudes of the three DoF system for
the second application using the PC representation up to the 4th degree; From up to down is for the first to
the last degree of freedom; From left-hand to right-hand is for an excitation applied from the first to the last
degree of freedom; Thick grey lines are for MCS, dashed black lines are for PC representation
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Table 2: Statistics of normal modes frequencies for the third application
Normal mode number r 1 2 3

Mean of frequency 99.75 159.4 160.8
Standard deviation of frequency 2.51 4.55 5.54

representation of the stochastic dynamic responses. Eigensolutions of the nominal system are:

φ =
1

6


2
√

3
√

6 3
√

2

2
√

3
√

6 −3
√

2

2
√

3 −2
√

6 0

 λ =


100 0 0

0 160 0

0 0 160

 .

showing that the second and the third natural frequencies are equals. When starting from these eigenvectors

of the nominal system, the stochastic deflated inverse power method presented above find the three stochastic

modes using 10, 82 and 11 iterations for a relative precision ε = 10−6 for each eigenfrequency. Results of

means and standard deviations of stochastic eigenvalues obtained are given in Table 2.

To compute frequency responses functions, the structural forces, and the damping matrices are f (ω) =
1 0 0

0 1 0

0 0 1

 and C =


1 0 0

0 1 0

0 0 1

. Figures 7 and 8 show i) the mean; ii) the 5 percentile; and iii) the

95 percentile of the amplitudes of the nine frequency response functions, as well as their second statistical

moments. The obtained results are compared to a MCS which has been carried out using 5×105 sample size.

A satisfactory agreement is achieved, especially around the resonant frequencies, showing that eigenvalues

multiplicity is handled effectively.

5.4 Fourth application

The fourth application is a realistic mechanical situation by considering a problem where more degrees of

freedom than the number of sough normal modes while repeated eigenvalues exist for the nominal system.

Its purpose is to show the applicability of the strategies presented above to obtain modal based frequency

responses in the low frequency range.

This application addresses frequency response functions of a simplified tower guyed structure. More

precisely the responses in the plane Oxy at the guys connection point P are of interest, see Fig. 9. Overall

dimensions are such that eigenvalues are repeated and close to each other. For a guyed mast, wind and ice

are the major loads which alter the nominal tension in guys. Thus, in this application, tensions in guys are
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Figure 7: Superimposition of frequency responses amplitudes of the three DoF system for the third application
using the PC representation up to the 4th degree; Mean, 5% and 95 % lines of confidence interval are
represented; From up to down is for the first to the last degree of freedom; From left-hand to right-hand is
for an excitation applied from the first to the last degree of freedom; Thick grey lines are for MCS, dashed
black lines are for PC representation
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Figure 8: Superimposition of second moment of frequency responses amplitudes of the three DoF system for
the third application using the PC representation up to the 4th degree; From up to down is for the first to
the last degree of freedom; From left-hand to right-hand is for an excitation applied from the first to the last
degree of freedom; Thick grey lines are for MCS, dashed black lines are for PC representation
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supposed stochastic and we are interested with uncertainties quantification in frequency response functions

of the P point.

The proposed simplified guyed mast structure consists of a vertical mast-column and 3 guys (Fig. 9).

The mast is pinned at its base and guyed in three directions at 120° angles in the plan. Guys are connected

to the mast at the P point located at a height of h = 135 m. Distance between guy anchors and base tower

is d = 145 m. Guys nominal tensions are t = 40, 000 N at guy anchors. Their Young’s modulus is e = 165

GPa, mass density is ρ = 8, 100 kg/m3and area a = 3× 10−4 m2.

Guy is a tensioned cable and cable structures are nonlinear elastic systems with large displacements. If

we consider the cable in the Oxz plane, the static equilibrium of the cable subject to tension and self weight

leads to the profile of the cable which may be described by [23]:

z =
tx
q

cosh

(
q

tx
x+ a1

)
− tx
q

cosh (a1) + h

where tx is the horizontal component of the cable tension, q = −9.81ρa is the distributed self weight of the

cable and:

a1 = arcsinh

 qh

2tx sinh
(
qd
2tx

)
− qd

2tx
.

In addition, the tension at any point on the cable is given by:

ts = tx cosh

(
q

tx
x+ a1

)

hence t = tx cosh
(
q
tx
d+ a1

)
.

Once the static equilibrium of guys is achieved, the geometry of the system is well defined and additional

displacements and strains due to dynamic loads are supposed to be small. Thus, a dynamic linear behavior

is assumed. Guys are then modeled by a serie of 20 truss finite elements producing a mass matrix and a

stiffness matrix composed by the sum of an elastic stiffness matrix and a geometric stiffness matrix [21]. For

the response in the Oxy plane, the mast contribution to the stiffness is neglected. However, partial mass

of the mast act on node P. It is modeled as a single lumped mass, being 5, 750 kg. The resulting global

assembly leads to a system having the form of Eq. (1) where the damping matrix is c = 0.05m and the

number of active degrees of freedoms for the finite element model is n = 173. The deterministic modal

analysis with nominal tensions exhibit repeated or close eigenvalues: λ1 = λ2 = 3.04 rd2/s2, λ3 = 3.29 rd2/s2,

λ4 = λ5 = 3.46 rd2/s2, see Fig. 10, associated to damped factors 1
2
√
λ1
ξ1 = 1

2
√
λ2
ξ2 = 1.43 %, 1

2
√
λ3
ξ3 = 1.38
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%, 1
2
√
λ4
ξ4 = 1

2
√
λ5
ξ5 = 1.34 %. It is chosen to approximate the frequency responses functions by truncating

arbitrary the modal basis to the five first normal modes.

For a tower guyed, wind and ice are the major loads. The wind can increase the tension in one guy while

it can decrease the tension in another guy. In contrast, the ice will result in an increase for tensions in all

guys. Then, the 3 tensions in guys are supposed to be random and correlation between them is a parameter

of the study. For the 3 random variables, we choose arbitrary to consider a uniform law having a 4.5 %

coefficient of variation (being the standard deviation over the mean) while the mean is fixed at the nominal

value t. Then, three situations are considered for correlation coefficients of the random variables:

1. ρij = 0 for i 6= j, i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.

2. ρij = −0.4 for i 6= j, i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.

3. ρij = 1 for i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.

Accordingly with the uniform variables, Legrendre polynomials are chosen for the PC representation. We

chose to truncate the polynomial basis at an order 8, leading to 165 polynomials terms and coefficients and

28, 545 unknowns for the system of Eq. (10).

Figures 12, 13 and 14 show the mean; and ii) the 5 and the 95 percentile of the amplitudes of the

two horizontal frequency response functions, as well as their second statistical moments, for the correlation

coefficients of cases 1 to 3 (respectively). The obtained results are compared to MCSs which have been carried

out using 106 sample size. A satisfactory agreement is achieved, even around the resonant frequencies for all

these 3 cases. Thus, meaningful results can be effectively achieved by the proposed strategies even for such

complex situations which involve close and repeated eigenvalues.

6 Summary

This work concerns modal frequency responses of stochastic discretized linear dynamic problems. It is limited

to symmetrical structural matrices and proportional damping. The PC representation is the chosen spectral

approach for random quantities. Within this framework, from the normal basis construction up to the modal

synthesis, we propose efficient formulations and strategies in order to maintain the computational effort

similar to the one involved for stochastic linear static problems.

To treat the stochastic eigenproblem, instead of a newton-raphson strategy, adaptation of the determin-

istic deflated inverse power and subspace inverse power method is achieved in the stochastic framework. The
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Figure 9: Squetch of the guyed tower

deterministic subspace inverse power method which deal effectively with close and repeated eigenvalues is

chosen to initiate starting guess of both these iterative algorithms. Examination of involved steps of both

these stochastic versions shows that they both have the advantage of having a main step which involves the

resolution of a linear system similar to the one produces by the static case. Thus, as for linear stochastic

static problems, required expectations are limited to three PC products for this computation step. More-

over, we have pay special attention to propose efficient numerical formulations or strategies for ensuring

orthonormalization of the modal basis and for obtaining modal based frequency responses. They also use

only expectations of PC products which are already used for stochastic static problems. All these propositions

ensure the numerical efficiency of the stochastic modal based frequency response analysis.

Next, three simple applications and one realistic situation are studied. MCS is avoided to initiate iterations

of the stochastic deflated inverse power algorithm. As a starting guesses, eigensolutions of the deterministic

nominal problems are chosen. Through these applications, applicability of the proposed strategies to obtain

modal based frequency responses is shown even for the realistic situation where there is more degrees of

freedom than the number of sough normal modes while repeated eigenvalues exist for the nominal system. It

is also shown that the proposed method can handle null eigenvalues. Comparisons of obtained results with

the ones computed with MCS are satisfactory. In addition, it is found that frequency responses are more
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Deterministic normal mode #1 at 3.04 rd2/s2

Deterministic normal mode #2 at 3.04 rd2/s2

Deterministic normal mode #3 at 3.29 rd2/s2

Figure 10: Guyed tower deterministic normal modes of the fourth application; Grey lines are for the unde-
formed position, black lines are for the deformed position

34



Deterministic normal mode #4 at 3.46 rd2/s2

Deterministic normal mode #5 at 3.46 rd2/s2

Figure 11: (continued) Guyed tower deterministic normal modes of the fourth application; Grey lines are
for the undeformed position, black lines are for the deformed position
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Figure 12: Case 1 results for the guyed tower of the fourth application using the PC representation up to
the 8th degree (dash-dot black lines) vs. MCS (continuous thick grey lines); Up: mean of the amplitudes of
the 2 frequency responses functions, as well as the 5% and 95 % lines of confidence interval; Down: second
moment of the amplitude of the 2 frequency responses functions; Left subfigures concern the response in the
x−direction due to an excitation in the x−direction; Right subfigures concern the response in the y−direction
due to an excitation in the y−direction
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Figure 13: Case 2 results for the guyed tower of the fourth application using the PC representation up to
the 8th degree (dash-dot black lines) vs. MCS (continuous thick grey lines); Up: mean of the amplitudes of
the 2 frequency responses functions, as well as the 5% and 95 % lines of confidence interval; Down: second
moment of the amplitude of the 2 frequency responses functions; Left subfigures concern the response in the
x−direction due to an excitation in the x−direction; Right subfigures concern the response in the y−direction
due to an excitation in the y−direction
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Figure 14: Case 3 results for the guyed tower of the fourth application using the PC representation up to
the 8th degree (dash-dot black lines) vs. MCS (continuous thick grey lines); Up: mean of the amplitudes of
the 2 frequency responses functions, as well as the 5% and 95 % lines of confidence interval; Down: second
moment of the amplitude of the 2 frequency responses functions; Left subfigures concern the response in the
x−direction due to an excitation in the x−direction; Right subfigures concern the response in the y−direction
due to an excitation in the y−direction
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difficult to represent with PC than the stochastic normal modes.
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