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Vortical flow calculations using a high-order Vorticity

Confinement method

Ilias Petropoulos∗ and Michel Costes†

ONERA, The French Aerospace Lab, 8 rue des Vertugadins, F-92190 Meudon, France

Paola Cinnella‡

DynFluid Laboratory, Arts et Métiers ParisTech, 151 Blvd de l’Hôpital, F-75013 Paris, France

A high-order Vorticity Confinement (VC) method is applied to the calculation of com-
pressible vortical flows. High-order extensions of the VC methodology have been devel-
oped for the Navier-Stokes equations using a methodology that remains independent of the
baseline numerical scheme, as the original VC formulation of Steinhoff. The VC method
is primarily oriented towards the accurate calculation of cases involving the advection of
vortical structures (e.g. wakes), allowing their propagation over long distances with low
numerical dissipation. The present work however mainly investigates their applicability to
the simulation of turbulent flows, where the improvement in the preservation of vortical
structures shows great interest. High-order VC schemes were found to be consistent with
complex vortical flow dynamics without the need of special treatment to accommodate the
vortex interaction mechanisms characteristic of turbulent flows. Furthermore, they were
found to consistently improve the resolvability of baseline FE-MUSCL schemes for reason-
able values of the confinement parameter ε, close to the value of the high-order artificial
dissipation coefficient. Last, the dependence of the solution on the confinement parameter
µ was found to be moderate for the values and cases investigated in this paper.

I. Introduction

The understanding and accurate prediction of vortical flows is a subject of great interest in a wide range
of modern industrial and research applications. Experimental methods have shown remarkable progress over
the past years,1,2 with the emergence of techniques being capable of detecting complex flow phenomena
even in realistic configurations. They are still however costly and time-demanding, meaning that broad
explorative studies using experimental methods will continue to be unattainable in the near future.

Computational fluid dynamics methods have been a primary focus of modern research, due to their broad
applicability in engineering applications. Despite the significant evolution and overall competency of numer-
ical methods, the calculation of vortical flows remains a challenge. Numerical schemes must be dissipative
to ensure the damping of spurious oscillations, which in turn causes the spreading and diffusion of vorti-
cal structures in simulations. Lagrangian solvers allow the propagation of vortical structures with minimal
dissipation,3–5 but their application remains limited to research for advanced vortical flow simulations. On
the other hand, the more robust formulation of Eulerian methods has lead to their wide adoption by both
research and industry over the past decades.

Hybrid structured-unstructured Eulerian6,7 or Eulerian-Lagrangian solvers8 can allow the calculation of
each flow region by the most efficient approach. In pure structured or unstructured solvers, the problem
of spurious vortex dissipation is usually treated by the use of finer meshes or automatic mesh adaptation
methods,9,10 which often requires a considerable increase of computational cost and algorithmic complexity.
A more fundamental approach consists in the use of high-order methods, which provide a more precise
approximation of the fluid dynamics equations. In the widely adopted Finite Volume formulation, the
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implementation of truly high-order flux derivatives is complicated, especially for curvilinear and unstructured
grids11 whereas the dissipation of vortices still cannot be completely prevented.

Another alternative consists in the development of numerical techniques that are specifically oriented
towards the accurate calculation of vortical flows. These can be solvers of the vorticity-velocity formulation
of the Navier-Stokes equations12,13 or numerical schemes ensuring that no dissipation term is introduced
in the discrete vorticity transport equation.14,15 Another technique is the Vorticity Confinement (VC)
method of Steinhoff16–18 designed to capture small-scale features of high-Reynolds number vortical flows by
introducing a negative dissipation term in the flow equations to balance the excess dissipation in vortical
regions. This method has been widely applied in the aeronautics field, its important advantage being that
it is formulated independently of the baseline numerical scheme.

The original method is however 1st-order accurate, meaning that vortex profiles are rapidly governed by
the VC term in high-order simulations and the order of accuracy deteriorates in vortical regions.19 Due to
the growth of high-order methods, the construction of a Vorticity Confinement method that is appropriate
for high-order computations shows great interest. High-order extensions of the method were developed
for the linear transport equation20 and results showed that the numerical scheme’s asymptotic solution is
the same at all orders of accuracy, but the rate of convergence is slower at higher orders. On this basis,
high-order extensions of the conservative VC2 formulation of Steinhoff have been developed for the Euler
and Navier-Stokes equations based on the Laplacian of the original VC term.19,21 These extensions remain
independent of the baseline numerical scheme and rotationally invariant, as the original method of Steinhoff.
Furthermore, results show that they maintain the vorticity-preserving efficiency of the original method and
are appropriate for high-order simulations as they preserve the global high-order of accuracy in vortical
regions.

The Vorticity Confinement method has been shown to be capable of improving the preservation of vor-
ticity in simulations, even in cases with significant changes in vortex formation and topology.22 However,
aerodynamic applications of the method to the simulation of turbulent flows remain limited,18,23 and mostly
concern the VC1 formulation. The objective of the present work is the evaluation of high-order extensions of
the VC2 method and their applicability to the simulation of compressible turbulent flows. Section II presents
high-order Vorticity Confinement schemes for the scalar transport and Navier-Stokes equations, and reviews
their spectral properties compared to baseline upwind FE-MUSCL schemes. Section III presents numerical
results from the application of high-order VC to the simulation of compressible vortical flows (vortex advec-
tion, Taylor-Green vortex, homogeneous isotropic turbulence decay) and conclusions are discussed in Section
IV.

II. Description of the schemes

II.A. Linear transport equation

Confinement schemes for the linear transport equation were previously developed and analyzed for high-order
extensions of the Lax-Wendroff and Beam-Warming schemes.20 This section presents a scalar high-order
formulation of confinement for upwind non-compact flux discretizations21 which are decoupled in space and
time. In the scalar case of the linear transport equation

ut + a ux = 0 , a > 0 (1)

the VC method will be simply referred to as “confinement” since the transported variable does not specifically
correspond to vorticity. The semi-discrete approximation of Eq. (1) can be written in the generic conservative
form:

∂u

∂t
+

a

hj

(
Fj+ 1

2
− Fj− 1

2

)
= 0 (2)

where h is the mesh spacing and Fj+ 1
2

is the numerical flux of the space discretization scheme on the interface

xj+ 1
2
. For uniform mesh spacing h (xj = jh, j ∈ Z), the spatial derivative of Eq. (1) can be approximated

at 10th-order of accuracy using a linear non-compact centered discretization:24,25

∂(•)
∂x

=
1

h
δµ

(
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6
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1
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630
δ8
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where δ(•)j+ 1
2
, (•)j+1 − (•)j and µ(•)j+ 1

2
, 1

2 ((•)j+1 + (•)j) are respectively the difference and average

operators over a grid cell. Eq. (3) can be obtained by recursively correcting the leading truncation error
term of a 2nd-order discretization. By recursively suppressing the δ8-, δ6-, δ4- and δ2 terms, the resulting
approximation is 8th, 6th, 4th and 2nd-order accurate respectively. Since the centered approximation of the
spatial derivative is non-dissipative, a linear high-order dissipation term is added to ensure the damping of
spurious oscillations. The numerical flux of the space discretization at pth(odd)-order of accuracy is then
written:

F p
j+ 1

2

= µ

(p−1)/2∑
l=0

bl δ
2l

uj − kp δ
(
δp−1

)
uj (4)

where the first term corresponds to the centered convective flux discretization and the second to artificial
dissipation. Above, bl are the real coefficients in Eq. (3) and kp is a real constant called the artificial
dissipation coefficient. For kp = 1

2 b p−1
2

the dissipation of the scheme is equivalent to that of a non-compact

upwind scheme.25 The numerical flux of Eq. (4) is then equivalent to non-limited MUSCL schemes based
on flux extrapolation (FE-MUSCL).

The idea of confinement is to introduce an additional nonlinear negative dissipation term in the flux
discretization of Eq. (4), to balance the excess dissipation of the baseline numerical scheme. This confinement
term is built on the same operator as the scheme’s high-order artificial dissipation, but using the harmonic
mean: (

h̃(•)
)
j

=


2(•)j(•)j−1

(•)j+(•)j−1
, if (•)j(•)j−1 > 0

0 , if (•)j(•)j−1 ≤ 0
(5)

of the transported variable at each point of the stencil, instead of the transported variable itself. With this
choice of dissipation operator the nonlinear confinement term introduces negative dissipation according to the
dissipative error of the baseline scheme. The numerical flux of the scheme with confinement at pth(odd)-order
of accuracy then writes:

F p
j+ 1

2

= µ

(p−1)/2∑
l=0

bl δ
2l

uj − kp δ
(
δp−1

)
uj + ε δ

(
δp−1

) (
h̃(u)

)
j

(6)

where ε is a real constant called the confinement parameter, usually chosen in the order of the artificial
dissipation coefficient. For the flux discretization of Eq. (6), the scheme will be referred to as the pth-order
FE-MUSCL with confinement.

II.B. Navier-Stokes equations

The present section presents high-order extensions of the VC2 Vorticity-Confinement formulation of Stein-
hoff26,27 for the compressible Euler and Navier-Stokes equations. The VC method consists in introducing
a rotational vorticity-based negative dissipation term in the Navier-Stokes momentum equation as a source
term, which balances the baseline numerical dissipation in vortical flow regions. For the original VC2 for-
mulation of Steinhoff the conservative differential form of the momentum conservation equation is written:

∂ρ~υ

∂t
+ ~∇ ·

(
ρ~υ ⊗ ~υ + pI − τ

)
= ~f (7)

with the Vorticity Confinement term:
~f = −~∇× (µ~ω − ε~w) (8)

The first part is a linear artificial dissipation term with coefficient µ aligned with the vorticity vector
~ω = ~∇× ~υ. The second part is the negative dissipation confinement term with coefficient ε multiplied
with the vector ~w:

~w =
~ω

‖~ω‖
h̃(ωj) =

~ω

‖~ω‖
N

 N∑
j=1

‖ ~ωj‖−1

−1

(9)

which is aligned with vorticity and has a magnitude equal to the harmonic mean of the modulus of vorticity
around the neighboring cells.
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The VC term balances the excess dissipation in vortical regions through the second term of Eq. (8),
which represents a negative nonlinear dissipation in analogy with the scalar formulation in Eq. (6). In
principle, the positive dissipation term is not necessary and its introduction may appear counterintuitive.
For the scalar case presented in Section II.A, its role is taken by the high-order dissipation of the baseline
scheme. For the Navier-Stokes equations however, the first term of Eq. (8) is different from the baseline
dissipation since it is explicitly based on vorticity and independent of the baseline numerical method. The
consistency of the discretization of Eq. (7) is ensured by using undivided differences in the computation of
the curl of the VC term.

High-order extensions can be obtained by recursively applying the curl operator on the VC term of Eq.
(8) to increase the order of differencing, in analogy with the δ operator in the linear case.19,21 The alternate
sign of high-order derivatives is then naturally introduced. A 3rd-order VC term can be obtained by applying
twice the curl operator on ~f as:

~∇× ~f = −~∇× ~∇× (µ~ω − ε~w) = −~∇
(
~∇ · (µ~ω − ε~w)

)
+ ~∇2(µ~ω − ε~w)

~f3 = ~∇× ~∇× ~f = ~∇×
(
~∇2(µ~ω − ε~w)

) (10)

The specific vorticity transport equation can be derived by taking the curl of Eq. (7) and dividing by density.
For an isolated two-dimensional vortex in inviscid flow and the 3rd order VC term of Eq. (10) this is written:

∂(~ω/ρ)

∂t
+ ~υ · ~∇(~ω/ρ)− 1

ρ
~∇2
(
~∇2 (µ~ω − ε~w)

)
= 0 (11)

Above, the last term corresponds to the contribution of the 3rd-order VC term of Eq. (10) and is equal to
the Laplacian of the contribution of the original 1st-order term, indicating similar dynamics from the balance
of the positive and negative dissipation parts of the VC term.19

Equivalently, a 5th-order VC term can be obtained by applying twice the curl operator on ~f3 as:

~f5 = ~∇× ~∇× ~f3 = −~∇×
(
~∇4 (µ~ω − ε~w)

)
(12)

The use of undivided differences in the computation of the Laplacian and bi-Laplacian operator in Eqs.
(10), (12) ensures consistency with Eq. (7) and provides the increased order of accuracy. High-order VC
extensions based on the Laplace operator remain both independent of the baseline numerical method and
rotationally invariant, in consistency with the original VC formulation of Steinhoff. The VC2 formulation
of Eq. (8) is conservative, a property which can be made apparent by deriving the integral form of the
momentum equation (7) and assimilating the VC term alongside physical fluxes as:21

∂

∂t

∫
Ω

ρ~υ dΩ +

∮
S

[(
ρ ~υ ⊗ ~υ + p I − τ

)
· ~n− (µ~ω − ε~w)× ~n

]
dS = 0 (13)

showing that the VC2 term is equivalent to a nonlinear anti-diffusive flux correction applied in vortical
regions. The same stands for the high-order VC2 extensions of Eqs. (10),(12). It should be noted that
these schemes are not similar to high-order extensions of linear flux discretizations, which aim at a more
precise approximation of inviscid fluxes, but represent a nonlinear high-order flux correction explicitly based
on vorticity that can be applied independently of the baseline numerical scheme.

The confinement parameters µ, ε are constant in space and time and have the dimensions of density
times velocity. For computations involving dimensional quantities in the present work, their values were
dimensionalized as ε∗ = ρref Vref ε. Throughout the presentation of numerical results in Section III their
values are expressed as ε, µ/ε, as the first defines the magnitude of the VC flux correction and the second
represents the ratio between the positive and negative dissipation within the VC term. The VC method is
applied to correct the excess dissipation of the baseline scheme in vortical regions and therefore the value of
the coefficient µ, which represents an additional dissipation, should be kept as small as possible. It could
however be increased to introduce some stabilizing rotational dissipation in cases where the dissipation of the
baseline scheme is not enough to balance the nonlinear negative dissipation of VC. For numerical schemes
with explicitly known artificial dissipation the value of ε is taken in the order of the artificial dissipation
coefficient, in analogy with the scalar confinement formulation of Section II.A.

The identification of vortical regions to apply VC is performed by defining a minimum cut-off value of
the Q-criterion.28 It is however practically used to avoid the introduction of spurious vorticity concentration
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by the introduction of negative dissipation in irrotational flow regions, rather than to precisely select the
structures to apply the method. The cut-off value was set to 0.10 for all cases presented in this paper. Second,
in analogy with the harmonic mean definition of Eq. (5) and since the VC correction should be applied in
clearly defined vortical structures, VC is not applied if vorticity changes sign between the neighboring cells.

Presented calculations were performed with the DynHoLab Finite Volume solver of the DynFluid Lab-
oratory.29 Physical fluxes are separated in an inviscid and viscous part, and discretized separately for each
direction. Taking W = (ρ, ρ~υ, ρE)

T
the state vector of conservative variables and fd = fd(W ) the inviscid

flux vector in the dth space direction, inviscid flux derivatives are approximated using non-compact cen-
tered approximations24,25 and the damping of spurious oscillations is achieved by introducing a high-order
dissipation term. The numerical flux of the baseline discretization at pth-order of accuracy is:

Fdj+ 1
2

= µd

(p−1)/2∑
l=0

bl δd
2l

 fd −
1

2
b p−1

2
|Qd|δdpW (14)

where δd and µd are the difference and average operators and |Qd| is the Roe linearization of the Jacobian
matrix in direction d. The inviscid flux discretizations of Eq. (14) are equivalent to high-order upwind
MUSCL schemes based on flux extrapolation and will be referred to as FE-MUSCL schemes, in analogy with
the flux discretizations of Eq. (4) for the scalar transport equation. Viscous fluxes are approximated on cell
face centers using a standard 3-point compact formula that is 2nd-order accurate on regular Cartesian grids.
For the periodic flows presented, layers of ghost cells are introduced to expand the computational domain so
that the same large-stencil schemes can be used for the calculation of fluxes on domain or zone boundaries.

The Vorticity Confinement term is added to the right-hand side of the Navier-Stokes momentum equation
as a source term. For the high-order extensions of Eqs. (10), (12) the Laplace operator is computed on a
5-point scheme, which was found to be very robust and more computationally efficient than a 3-point scheme
similar to the one used for the calculation of viscous fluxes. The numerical calculation of the vector Laplacian
of high-order VC is greatly simplified on a Cartesian coordinate system, as cross derivatives cancel and it
degrades to the scalar Laplacian of each vector component. Finally, the computation of derivatives for the
VC term is performed successively in the extended computational domain so that the VC term is accurately
computed on the domain boundary. To ensure consistency with high-order flux discretizations19,21 the order
of VC is always taken equal to the order of the baseline scheme for all cases presented in Section III.

II.C. Spectral properties

The dispersive and dissipative properties of the intrinsically nonlinear confinement schemes are presented
for the scalar formulation of confinement presented in Subsection II.A. A classical linear spectral analysis
can be performed by considering a linearization of the harmonic mean of Eq. (5) on a uniform grid using
exponent functions. Such an approach however yields simplified results that do not match observations from
the application of the schemes in numerical experiments.19,21,30

A more detailed representation can be obtained by evaluating the numerical schemes’ spectral properties
via application to short-time advection of a series of monochromatic sinusoidal initial conditions for the 1D
linear transport equation (Eq. (1)). For sufficiently small time the computed solution remains monochromatic
and the time integration error diminishes. The modified wavenumber ξ∗ of the space discretization scheme
can be subsequently retrieved from the complex amplitude of the initial and computed solution. This
procedure, originally applied by Pirozzoli for the study of shock-capturing schemes,31 is consistent with
analytical results for linear schemes and provides an improved prediction of non-linear mechanisms.

Results of the analysis are shown in Fig. 1 for FE-MUSCL schemes with and without confinement up
to 7th-order of accuracy. Naturally, higher-order schemes provide an accurate approximation of the exact
solution for a longer range of wavenumbers. Results are presented for ε = 1.14 kp, a value that has commonly
been applied in 1D calculations. Values in the same order of magnitude however produce similar trends,
whereas the sensitivity to the value of ε is smaller at higher orders. Schemes with confinement are shown to
be stable (Im (ξ∗) ≤ 0) and have improved spectral properties compared to baseline FE-MUSCL schemes,
both in terms of dispersion and dissipation. The confinement term in Eq. (6) is originally of dissipative
nature, the improvement of dispersive properties being a result of its nonlinear mechanism. An exception
is observed for a discrete set of wavenumbers k (i.e. reduced wavenumbers ξ = k h), for which the initial
condition is such that

(
h̃(u)

)
j

= 0 for every position on the computational grid. In those cases the effect
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of the confinement term diminishes and the spectral properties match those of the baseline scheme. This
weakness of confinement however refers to single harmonics and was not observed in general problems,
whereas frequencies higher than π/2 are under-resolved on the computational grid and should in any case
be damped to avoid the generation of spurious oscillations. Finally, the nonlinear negative dissipation of
confinement diminishes gradually at higher wavenumbers and does not modify the damping of spurious 2∆
waves. For a comprehensive discussion of the spectral properties of these schemes the reader is referred to
Ref.21
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Figure 1. Spectral properties of FE-MUSCL schemes up to 7th-order of accuracy. Baseline schemes (dashed lines) and
with confinement (solid lines), ε = 1.14 kp. Taken from Ref.21

The resolvability limit of the schemes can be calculated by identifying the maximum reduced wavenumber
ξ up to which the spectral properties of the scheme approximate the exact solution under an error E ≤ 10−3.
This limit is presented in Table 1 in the form of minimum number of points-per-wavelength λn/h. The
leading error term of FE-MUSCL schemes is dissipative therefore their accuracy limit is primarily defined
by dissipation, rather than dispersion. Confinement is shown to introduce a considerable reduction of this
limit at all orders of accuracy, both in terms of dispersion and dissipation. The minimum number of points-
per-wavelength is halved at 3rd-order, while even at 5th and 7th-order it tends towards the 1D resolvability
limit of compact schemes of the same order of accuracy. Last, the improvement introduced by confinement
is smaller at higher orders, in line with the reduced numerical error of the high-order baseline schemes.

Table 1. Resolvability limit in terms of number of points-per-wavelength λn/h for FE-MUSCL schemes with and without
confinement (ε = 1.14 kp)

Limit due to dispersion Limit due to dissipation

baseline confinement baseline confinement

Scheme order λn/h λn/h λn/h λn/h

3rd 13.33 6.45 20.00 9.52

5th 8.33 6.25 10.00 7.41

7th 6.45 5.56 7.14 6.06

III. Numerical results

III.A. Vortex advection

The use of directional schemes in the discretization of fluid dynamics equations leads to grid directions
being privileged in terms of numerical error, greatly influencing the accuracy of computations involving
the advection of vortices. Computational meshes for simple applications can be appropriately constructed
to follow the propagation direction of primary structures, but the same cannot be done for the majority of
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turbulent flows, which are naturally irregular. It is therefore necessary that numerical schemes are pertinently
evaluated for such scenarios.

The present case consists in the long-distance advection of a 2-dimensional vortex by a uniform flow
inclined by 45◦ with respect to the background Cartesian grid and periodicity conditions at domain bound-
aries. The computational domain is a square x, y ∈ [−15,+15]

2
and the nondimensional velocity components

are u = ν = 1. The vortex is initialized at x0 = y0 = −10 using the isentropic perturbations given by Yee
et al.32 The flow is inviscid so that the exact solution is the passive advection of the vortex along the
diagonal without dissipation. The background Cartesian mesh is composed of 1002 cells corresponding to
approximately 4 cells across the vortex core radius. Space discretization is performed using the 3rd- and
5th-order FE-MUSCL schemes presented in Section II.B. For cases with VC, the VC term is of the same
order as the baseline scheme and the confinement parameters are µ/ε = 0.2, ε = 0.16 for FE-MUSCL3 and
µ/ε = 0.4, ε = 0.02 for FE-MUSCL5. Time discretization is performed using a classical 4-step Runge-Kutta
scheme and a time step ∆t = 0.025.

Fig. 2 shows a comparison of tangential velocity profiles computed with FE-MUSCL schemes with and
without VC. Curves represent cell-center values extracted horizontally from the position of minimum density.
The effect of dissipative error is important for the 5th-order baseline scheme and even more so for the 3rd-
order one, leading to a complete diffusion of the vortex in a much shorter distance. VC achieves a significant
reduction of this spurious dissipation, giving a solution that is considerably closer to the exact profile than
those of baseline schemes, even though some spreading can be observed at the vortex boundary. This effect
is reduced for the 5th-order solution compared to the 3rd-order one, but in any case the improvement with
VC is significant for both cases, especially considering the coarse mesh resolution.
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Figure 2. Comparison of tangential velocity profiles, centered at x = 0, for FE-MUSCL schemes with and without VC.
Profiles after 30 passages across the domain for the 3rd-order schemes (left) and after 300 passages across the domain

for the 5th-order schemes (right).

III.B. Viscous Taylor-Green Vortex

The viscous Taylor-Green Vortex (TGV)33 is an excellent benchmark case for the evaluation of high-order
methods, as it is characterized by kinetic energy transfer from larger to smaller scales, characteristic of a
wide range of Large Eddy Simulation applications. Specifically the TGV case at Re = 1600 has been used
as a benchmark test case for recent high-order CFD workshops and high-precision numerical methods.34,35

Since it has been demonstrated that schemes with VC allow the advection of vortical structures over very
long distances with low dissipation, the TGV case is chosen to evaluate these schemes in the calculation of
multi-scale flow dynamics.

The TGV flow is an unsteady problem solved on a periodic computational domain [2π]3 with an analytical
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two-dimensional initial condition for velocity that corresponds to large-scale vortices:

u (x, y, z, 0) = sinx cos y cos z

v (x, y, z, 0) = − cosx sin y cos z

w (x, y, z, 0) = 0

(15)

and an initial condition for pressure:

p (x, y, z, 0) = p0 +
ρ

16
(cos(2x) + cos(2y)) (cos(2z) + 2) (16)

where p0 = 100 and the Mach number is M0 = 0.10. The initial density field is considered constant
ρ (x, y, z, 0) = ρ0 = 1. The fluid is considered a perfect gas with zero bulk viscosity, γ = 1.4, and the Prandtl
number is Pr = 0.71. All quantities have been adimensionalized with the reference velocity, density and
length of the periodic box.

The compressible Navier-Stokes equations are solved on three different Cartesian meshes composed of
64, 128 and 256 cells in each mesh direction. Convective fluxes are discretized using a 5th-order accurate
FE-MUSCL scheme, presented in Section II.B. Time integration is performed using an explicit 6-stage
Runge-Kutta algorithm, formally accurate to 2nd-order, with optimized coefficients for minimal dispersive
and dissipative error in the wavenumber space.36 The time step is set equal to ∆t = 0.005, ∆t = 0.0025
and ∆t = 0.00125 for the 643, 1283 and 2563 grids respectively so that the CFL number is approximately
constant for the three cases. Previous studies with high-order VC alongside FE-MUSCL schemes have shown
that good results can be obtained for ε in the order of the baseline high-order artificial dissipation coefficient.
The sensitivity to the choice of µ however, has not been assessed for complex flows. This study investigates
three choices of the parameter µ/ε = {0.0, 0.2, 0.4} for ε = 1.2k5 = 0.02. Results are compared against the
reference computation of the International Workshop of High-Order CFD Methods, which is a converged
DNS computation using a pseudo-spectral method on a 5123 mesh.

Fig. 3 shows the effect of VC on the rate of dissipation of kinetic energy. The integrated kinetic energy
over the computational domain Ω at a specific time instant is:

K =
1

ρ0 Ω

∫
Ω

1

2
ρ‖~u‖2 dΩ (17)

and the dissipation rate is computed directly from the kinetic energy as −dK/dt. Vorticity Confinement is
consistent with the complex dynamics of the TGV flow. The baseline scheme’s dissipation rate is reduced
during the initial stage, where the flow gradually generates smaller scales through the vortex stretching and
tilting mechanisms characteristic of turbulence. This continues up to the dissipation peak where non-isotropic
turbulence is fully developed and begins to decay due to the dissipation from the smallest scales. The peak
value of the dissipation rate is largely dependent on the preservation of intermediate scales during the vortex
stretching phase, and is therefore increased with the application of VC. Naturally, the peak value is reduced
for increased values of µ/ε and the effect of VC diminishes with mesh refinement, in consistency with the
reduced numerical error of the high-order flux discretization. The influence of the solution to the choice
of µ/ε is small during the vortex stretching phase, especially for the finer 1283 and 2563 grids. Differences
appear mostly at later times, as small variations in the preservation of vortices in the early decay phase (i.e.
t ≈ 9− 11) lead to variations of their subsequent interaction.

A similar evaluation can be performed for the time evolution of integrated enstrophy over the computa-
tional domain:

E =
1

ρ0 Ω

∫
Ω

1

2
ρ‖~ω‖2 dΩ (18)

which for incompressible flow is related to the dissipation rate of kinetic energy as

−dK
dt

= 2
µ

ρ0
E (19)

where µ is the dynamic viscosity of the fluid. Vorticity gradients in Eq. (18) are calculated using the 7-point
Dispersion-Relation-Preserving scheme of Tam & Webb.37 Discrepancies from the relation in Eq. (19),
between the time evolution of enstrophy and kinetic energy dissipation rate, are associated to errors due to
compressibility and the dissipation of the numerical scheme. Specifically for the case of enstrophy, the large
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Figure 3. Effect of VC on the evolution of the kinetic energy dissipation rate for the Taylor-Green vortex case and
sensitivity to the value of µ/ε. FE-MUSCL5 and 5th-order Vorticity Confinement.
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Figure 4. Effect of VC on the evolution of enstrophy for the Taylor-Green vortex case and sensitivity to the value of
µ/ε. FE-MUSCL5 and 5th-order Vorticity Confinement.
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deviations from the reference solution are also a result of integrated error in the approximation of velocity
gradients in Eq. (18), as opposed to Eq. (17) which includes the error in the approximation of conservative
variables themselves. Results for the time evolution of enstrophy are shown in Fig. 4. As the high-order
VC flux correction is explicitly based on vorticity, it naturally improves the approximation of enstrophy.
It is important to note that the effect of VC does not diminish with mesh refinement, as was observed for
the dissipation rate. This suggests that even though the magnitude of VC decreases with mesh refinement
(according to the reduced numerical error of the baseline 5th-order scheme), the efficiency of VC in the
calculation of velocity gradients is increased, possibly due to the improved alignment of the term with local
vorticity. The sensitivity to the choice of µ/ε remains very small during the vortex stretching phase, but
affects the value of the enstrophy peak. Last, the value of µ/ε seems to have an influence on the evolution of
enstrophy in the late stages of turbulent decay. This influence is not observed on the 643 grid due to the very
coarse mesh size, but appears to be diminishing on the more refined 2563 case compared to the intermediate
1283.

III.C. Decay of Compressible Homogeneous Isotropic Turbulence

The next simulation concerns the decay of compressible Homogeneous Isotropic Turbulence (HIT). The initial
turbulent flow field is divergence-free with no fluctuations of thermodynamic quantities. Fluctuations of
velocity components are initialized following a prescribed Passot-Pouquet turbulent kinetic energy spectrum:

E(κ) = Aκ4 exp
(
−2κ2/κ0

2
)

(20)

where A is a real coefficient that defines the initial volume averaged kinetic energy K0 and κ0 is the wavenum-
ber corresponding to the energy spectrum peak. For this initial condition, the volume averaged kinetic energy
K0, volume averaged enstrophy Ω0, integral length scale LI and large-eddy-turnover time τ can be analyti-
cally derived from Eq. (20):38

K0 =
3A

64

√
2π κ0

5 Ω0 =
15A

256

√
2π κ0

7 LI =

√
2π

κ0
τ =

√
32

A
(2π)

1/4
κ0

−7/2 (21)

The fluid is considered as a perfect gas and the dependence of viscosity on temperature is assumed to follow
a power-law µ = T 0.76. Finally, the compressibility ratio in the initial condition was set to zero, as in Ref.39

Simulations were performed for Reynolds number Reλ = 175 based on the Taylor microscale, and the
energy spectrum peak was chosen at κ0 = 4. Two conditions for the initial turbulent Mach number were
investigated, Mt0 = 0.2 and Mt0 = 0.5, up to which the influence of thermodynamic fluctuations has been
found to be small38 and compressibility effects are moderate, allowing calculation using the FE-MUSCL
schemes presented in Section II.B. Higher initial turbulent Mach number cases require the use of shock-
capturing schemes such as pure Jameson-like or mixed Jameson-Ducros high-order artificial dissipation, as
in Ref.40 High-order VC can also be applied in this case as it is formulated independently of the baseline
scheme. It is expected to introduce negligible modifications of the scheme’s shock-capturing properties, as
dissipation near shocks (including the high-order negative dissipation of VC) is dominated by the low-order
dissipation term. For low turbulent Mach number cases however, the FE-MUSCL schemes of Section II.B,
which use a matrix-form of dissipation, yield more precise results.

The case is solved on a periodic computational domain [2π]3, discretized by a Cartesian grid composed
of 1283 cells. This corresponds to Implicit Large-Eddy Simulations (ILES), since the grid does not suffice
for the adequate resolution of the Kolmogorov microscales, and the role of small-scale turbulent dissipation
is taken up by the scheme’s high-order numerical dissipation, rather than by an explicit subgrid scale model.
Computations are performed up to time t = 10τ and time integration is performed by an explicit 6-stage
Runge-Kutta algorithm with optimized coefficients,36 as in Section III.B. Cases with VC use the 5th-order
accurate FE-MUSCL scheme of Section II.B and different values of confinement parameters, summed up
in Table 2. For these cases, the effect of VC is evaluated in comparison with the baseline scheme without
confinement and a reference solution computed with a 9th-order accurate upwind FE-MUSCL scheme on the
same grid.

The HIT evolution consists of a vortex stretching phase, where viscous effects are negligible and enstrophy
increases up to a peak value, and a subsequent decay phase characterized by viscous dissipation at the
Kolmogorov microscales. The resolvability of the enstrophy peak is often used as measure of the resolution
of numerical schemes. Fig. 5 shows the evolution of enstrophy obtained with FE-MUSCL schemes with
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Table 2. Numerical parameters for the different cases with VC

Baseline scheme VC order ε µ/ε

Case 1 FE-MUSCL5 5th 1.2 k5 0.00

Case 2 FE-MUSCL5 5th 1.2 k5 0.20

Case 3 FE-MUSCL5 5th 2.4 k5 0.00

and without VC for the two different initial turbulent Mach number cases. Schemes with VC manage to
predict an increased enstrophy peak compared to the baseline 5th-order FE-MUSCL scheme for all cases.
Furthermore, the instant where the enstrophy peak occurs is slightly delayed for schemes with less numerical
dissipation. Naturally, the effect of VC is mainly driven by the value of ε as this parameter defines the
magnitude of the VC term. Good results are obtained for ε close to the value of the 5th-order artificial
dissipation coefficient, in consistency with previous studies. An augmented value of this parameter gives a
further increased dissipation peak, which at Mt0 = 0.5 is comparable to the reference 9th-order solution, but
results in slightly higher enstrophy values compared to the reference during the late time instants (Case 3).
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Figure 5. Comparison of the time evolution of enstrophy obtained with FE-MUSCL schemes with and without VC for
the two different initial turbulent Mach number cases.

The influence of VC on the evolution of thermodynamic quantities is monitored through the time evolution
of the root-mean-square (r.m.s.) of pressure fluctuations, presented in Figs. 6-7. These results show little
sensitivity to the space discretization scheme, with differences appearing mainly close to the time of the
enstrophy peak (before t = 2τ). The effect of VC on the evolution of prms is found to be small for all cases.
Close-up views show that results with VC are very close to the reference 9th-order computation, at least for
Cases 1-2. The influence of the choice of µ/ε between the two latter Cases is found to be small, the results
being superimposed within plotting accuracy. Similar trends are observed for the time evolution of the r.m.s.
values of density and temperature fluctuations.

An interesting comparison can be made by considering the time evolution of high-order statistical mo-
ments of the turbulent flow. Comparisons are presented for the skewness and flatness factor:

S (•) , 〈(•)3〉
〈(•)2〉3/2

F (•) , 〈(•)4〉
〈(•)2〉2

(22)

of the fluctuating velocity gradient distribution, where 〈•〉 denotes a volume average over the computational
domain at a fixed time instant. These quantities represent measures of the difference of the velocity fluctu-
ation field from a Gaussian distribution and are generally more sensitive to the space discretization scheme.
Typical values of the skewness factor are S = −0.4 ± 0.1 for incompressible HIT.41 The time evolution of
the skewness factor is presented in Fig. 8 for the two turbulent Mach number cases. Cases with VC do not
provide results closer to the reference than the baseline 5th-order scheme. Specifically, the skewness factor for
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Figure 6. Comparison of the time evolution of r.m.s. pressure obtained with FE-MUSCL schemes with and without
VC for initial turbulent Mach number Mt0 = 0.2. Evolution during the complete computed time (left) and detail at
t = 0.8τ − 2τ (right).
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Case 3 seems to diverge over long times, especially for the Mt0 = 0.5 case. Cases 1-2 however give consistent
results, very close to those of the baseline schemes.
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Figure 8. Comparison of the time evolution of the skewness factor of the fluctuating velocity gradient distribution
obtained with FE-MUSCL schemes with and without VC for the two different initial turbulent Mach number cases.

The time evolution of the flatness factor is presented in Fig. 9. Schemes with VC give consistent results
with smaller differences from the baseline than for the time evolution of the skewness factor (Fig. 8). An
exception is again observed for Case 3, which displays a larger difference from the baseline than Cases 1-2,
and follows a different trend at late times for the Mt0 = 0.5 case.
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Figure 9. Comparison of the time evolution of the flatness factor of the fluctuating velocity gradient distribution
obtained with FE-MUSCL schemes with and without VC for the two different initial turbulent Mach number cases.

The resolvability of numerical schemes is further depicted on the turbulent kinetic energy spectrum,
presented in Fig. 10 for different time instants during the HIT decay. An inertial range following the −5/3
law has not been fully developed for the low Reynolds number Reλ of this study, but differences in the
energy spectrum are observed due to the schemes’ numerical dissipation, even at times as early as t = 2τ.
The application of VC extends the cut-off wavenumber of the baseline 5th-order FE-MUSCL scheme for all
cases, the differences being naturally more important at later times, due to the accumulation of numerical
dissipation for the baseline scheme. As discussed previously, high-values of the confinement parameter ε lead
to the negative dissipation of VC being very large compared to the dissipation of the baseline scheme, thus
causing reduced dissipation and accumulation of energy at high wavenumbers during the late stages of the
decay (Case 3). This is possibly related to the increased enstrophy at late times, observed previously in Fig.
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Figure 10. Comparison of the turbulent kinetic energy spectrum at different time instants during the HIT decay
obtained with FE-MUSCL schemes with and without VC for initial turbulent Mach number Mt0 = 0.2 (left) and
Mt0 = 0.5 (right).
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5 for the same Case. Such values are possibly more suitable for an explicit Large-Eddy Simulation approach,
so that the dissipation of the baseline scheme is efficiently balanced by VC and small-scale dissipation is
introduced in the form of an explicit subgrid scale (SGS) model. Reasonable and consistent results are
however obtained for ε closer to the value of the high-order artificial dissipation coefficient (Cases 1-2).

Fig. 11 shows iso-surfaces of constant vorticity magnitude at t = 10τ, colored by the local Mach number.
Results are in agreement with previous observations. Specifically, high values of the parameter ε (Case 3)
lead to overly reduced dissipation at smaller scales and accumulation of small structures in the domain at
late times. However for values of ε close to the high-order artificial dissipation coefficient, the solution is
consistent with the reference and the preservation of turbulent structures is noticeably improved compared
to the baseline 5th-order FE-MUSCL scheme (Case 1).

(a) FE-MUSCL9 (b) FE-MUSCL5

(c) VC Case 1 (d) VC Case 3

Figure 11. Iso-surfaces of constant vorticity magnitude at t = 10τ colored by the local Mach number. Computed with
FE-MUSCL schemes with and without VC on a 1283 grid for initial turbulent Mach number Mt0 = 0.2.

IV. Conclusions

This paper presents results from the application of high-order Vorticity Confinement schemes to com-
pressible vortical flows. The cases are primarily aimed at evaluating the consistency of these schemes with
complex vortical dynamics and their applicability to turbulent flow simulations. In vortex advection studies,
high-order VC schemes were shown to effectively balance the baseline numerical dissipation and to be capa-
ble of propagating structures over long distances on coarse grids with low diffusion. For the more complex
Taylor-Green vortex and homogeneous isotropic turbulence decay cases, high-order VC schemes were shown
to accommodate the complex turbulent interactions without requiring special treatment. Constant values
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of the confinement parameters µ and ε in space and time were found to be adequate and the sensitivity to
their choice was investigated. Specifically, values of ε close to the high-order artificial dissipation coefficient
were shown to work well, in consistency with previous applications of these schemes, whereas high values
appear to overly reduce small-scale dissipation and lead to the accumulation of energy at the smallest scales.
The sensitivity to the choice of µ was found to be moderate for reasonable values of the ratio µ/ε and even
negligible during the treatment of large-scale structures. Furthermore, it was found that the artificial dissi-
pation of the VC term (i.e. the coefficient µ) can be set to zero without affecting the stability of the scheme
in turbulent flow calculations, at least alongside the upwind dissipative FE-MUSCL baseline schemes used
in the present work. Last, for the cases investigated in this paper, the effect of VC was found to be more
important in the evolution of enstrophy or the turbulent kinetic energy spectrum, and less on the evolution
of thermodynamic quantities.
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