
HAL Id: hal-03449040
https://hal.science/hal-03449040

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of aperiodic non-tidal atmospheric and oceanic
loading deformations on the stochastic properties of

global GNSS vertical land motion time series
Kevin Gobron, Paul Rebischung, Michel van Camp, Alain Demoulin, Olivier

Viron, Olivier de Viron

To cite this version:
Kevin Gobron, Paul Rebischung, Michel van Camp, Alain Demoulin, Olivier Viron, et al.. Influence
of aperiodic non-tidal atmospheric and oceanic loading deformations on the stochastic properties of
global GNSS vertical land motion time series. Journal of Geophysical Research : Solid Earth, 2021,
126 (9), �10.1029/2021JB022370�. �hal-03449040�

https://hal.science/hal-03449040
https://hal.archives-ouvertes.fr


manuscript submitted to JGR: Solid Earth

Influence of aperiodic non-tidal atmospheric and1

oceanic loading deformations on the stochastic2

properties of global GNSS vertical land motion time3

series4

Kevin Gobron1,2,3, Paul Rebischung4,5, Michel Van Camp2, Alain5

Demoulin3,6and Olivier de Viron1
6

1LIENSs, UMR 7266, La Rochelle Université, CNRS, La Rochelle, France7
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Key Points:13

• NTAOL deformations cause a latitudinal bias in parameter estimates of the white14

+ power-law noise model usually describing GNSS time series.15

• Removing NTAOL deformations corrects the latitudinal bias and dramatically re-16

duces station velocity uncertainties at high latitudes.17

• NTAOL deformations also introduce a seasonal spatial correlation in GNSS ver-18

tical land motion time series.19
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Abstract20

Monitoring vertical land motions (VLMs) at the level of 0.1 mm/yr remains one21

of the most challenging scientific applications of global navigation satellite systems (GNSS).22

Such small rates of change can result from climatic and tectonic phenomena, and their23

detection is important to many solid Earth-related studies, including the prediction of24

coastal sea-level change and the understanding of intraplate deformation. Reaching a level25

of precision allowing to detect such small signals requires a thorough understanding of26

the stochastic variability in GNSS VLM time series. This paper investigates how the ape-27

riodic part of non-tidal atmospheric and oceanic loading (NTAOL) deformations influ-28

ences the stochastic properties of VLM time series. Using the time series of over 10,00029

stations, we describe the impact of correcting for NTAOL deformation on 5 complemen-30

tary metrics, namely: the repeatability of position residuals, the power-spectrum of po-31

sition residuals, the estimated time-correlation properties, the corresponding velocity un-32

certainties, and the spatial correlation of the residuals. We show that NTAOL deforma-33

tions cause a latitude-dependent bias in white noise plus power-law model parameter es-34

timates. This bias is significantly mitigated when correcting for NTAOL deformation,35

which reduces velocity uncertainties at high latitudes by 70%. Therefore, removing NTAOL36

deformation before the statistical analysis of VLM time series might help to detect sub-37

tle VLM signals in these areas. Our spatial correlation analysis also reveals a seasonal-38

ity in the spatial correlation of the residuals, which is reduced after removing NTAOL39

deformation, confirming that NTAOL is a clear source of common-mode errors in GNSS40

VLM time series.41

Plain Language Summary42

Monitoring vertical land motions (VLMs) at the level of 0.1 mm/yr remains one43

of the most challenging scientific applications of global navigation satellite systems (GNSS).44

Such small rates of change can result from climatic and tectonic phenomena, and their45

detection is important to the prediction of coastal sea-level change and the understand-46

ing of deformation processes acting within tectonic plates. In this paper, we investigate47

to what extent accounting for the deformation of the Earth’s crust due to changes in the48

distribution of the atmospheric and the oceanic pressure helps to detect small vertical49

ground deformation. By analyzing the data from over 10,000 globally distributed GNSS50

stations, we show that accounting for such atmospheric and oceanic deformation can re-51

duce by 70% the uncertainty on the vertical velocity of GNSS stations at high latitudes,52

which could, for instance, improve sea-level change monitoring in these areas.53

1 Introduction54

Analyzing vertical land motion (VLM) time series estimated from global naviga-55

tion satellite systems (GNSS) provides key information about the deformation of the Earth.56

In particular, estimating GNSS station long-term vertical velocities and their uncertain-57

ties is a crucial step, aiming at giving reliable inputs for the understanding of inter- and58

intraplate tectonic deformation (Elliott et al., 2016; Kreemer et al., 2020), glacial iso-59

static adjustment (Nocquet et al., 2005; Schumacher et al., 2018; Husson et al., 2018),60

and coastal sea-level change (Wöppelmann et al., 2007; Pfeffer & Allemand, 2016; Ballu61

et al., 2019).62

Measuring vertical deformations at velocities of a few 0.1 mm/yr is one of the most63

challenging scientific applications of GNSS, required to monitor, for instance, slow in-64

traplate (Masson et al., 2019; Craig & Calais, 2014) and climate change-related Earth65

deformations (Wöppelmann & Marcos, 2016). This metrological goal could be met by66

improving the quality of GNSS positioning, the stability of reference frames, and the sta-67

tistical modeling of geodetic time series.68
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To estimate long-term velocities, it is customary to decompose the position time69

series as the sum of two parts: a deterministic component and a stochastic variability70

(Bos et al., 2020). In practice, the first is described by a trajectory model, whereas the71

latter is described by a stochastic model. The trajectory model typically consists of known72

parametric functions – trends, offsets, periodic oscillations, and episodic nonlinear mo-73

tions – depending on unknown deterministic parameters (Bevis & Brown, 2014). The74

stochastic model consists of a set of stochastic processes with known covariance func-75

tions depending on unknown stochastic parameters – or variance components – (Bos et76

al., 2020).77

Since the late 1990s, numerous studies demonstrated that the stochastic variabil-78

ity of GNSS position time series, often referred to as noise, can be approximated by a79

linear combination of white noise (WN) and power-law (PL) processes (Zhang et al., 1997;80

Mao et al., 1999; Calais, 1999; Williams et al., 2004; Langbein, 2008; Santamaŕıa-Gómez81

et al., 2011). Power-law processes are stochastic processes characterized by their power82

spectra P (f), which follows a power-law function of the time frequency f , such that83

P (f) ≈ P0

(
f

f0

)κ
, (1)

where both P0 and f0 are normalization constants, and κ is the so-called spectral index84

(Agnew, 1992).85

The spectral index κ is a scalar identifying the nature of the power-law correlation.86

Its reported value usually lies within [−3, 1] in Earth sciences, and within [−2, 0] in GNSS87

time series analysis. Some power-law processes with integer values of κ are known as white88

– that is, uncorrelated – noise (κ = 0), flicker noise (κ = −1), and random walk noise89

(κ = −2). The power-law processes with κ < 0 are time-correlated. For κ ≤ −1, the90

power-law process is also non-stationary, and the variance of the process diverges with91

time.92

Accounting for the power-law behavior of the stochastic variability in GNSS po-93

sition time series is essential for long-term velocity estimation to obtain realistic estima-94

tion of the uncertainties (Williams, 2003a; Santamaŕıa-Gómez et al., 2011). Although95

considered in many geodetic studies (Agnew, 1992; Langbein, 2004; Van Camp et al.,96

2005), the presence of power-law processes in GNSS position time series remains largely97

unexplained (Santamaŕıa-Gómez & Ray, 2021). Given that these power-law processes98

are the primary source of uncertainty for velocity estimates, it is crucial to identify their99

origin(s) and to reduce their influence on the position time series.100

The stochastic variability observed in position time series is also spatially corre-101

lated (Wdowinski et al., 1997). In global solutions, significant spatial correlations are de-102

tected between stations up to a few thousand kilometers apart (Williams et al., 2004;103

Amiri-Simkooei, 2009, 2013; Amiri-Simkooei et al., 2017; Benoist et al., 2020). The pres-104

ence of large-scale spatial correlations indicates that the stochastic variability cannot be105

fully attributed to station-specific errors, and that it probably results from a combina-106

tion of large scale positioning errors and non-modelled geophysical or climatic processes107

(Amiri-Simkooei et al., 2017; Kreemer & Blewitt, 2021).108

Possible candidates for explaining large-scale structures in the stochastic variabil-109

ity are the non-tidal loading (NTL) deformations, that is, the elastic response of the solid110

Earth to changes in the distribution of atmospheric, oceanic, and hydrological loads. Fol-111

lowing the International Earth Rotation and Reference System Service (IERS) conven-112

tions (Petit & Luzum, 2010), NTL corrections are usually not applied during the esti-113

mation of position time series, therefore NTL signals remain in VLMs time series prod-114

ucts.115
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Over the last two decades, numerous studies demonstrated that NTL corrections116

derived from numerical climatic load and elastic Earth models help reduce the stochas-117

tic variability in GNSS VLM time series, whether applied at the GNSS observation level118

– that is, prior to the computation of daily positions – (Gegout et al., 2010; Dach et al.,119

2011; Tregoning & van Dam, 2005; Männel et al., 2019) or at the solution level – that120

is, after computing daily positions – (Van Dam et al., 1994, 2001; Williams & Penna, 2011;121

Van Dam et al., 2012; Martens et al., 2020; Klos et al., 2021). Regarding VLMs, the dif-122

ferences between the two correction strategies seem negligible (Tregoning & Watson, 2009).123

As numerical climatic load models perform better at retrieving atmospheric and124

oceanic than hydrological loads (Mémin et al., 2020), in this work, we focus on assess-125

ing the effect of non-tidal atmospheric and oceanic loading (NTAOL) deformations on126

the stochastic properties of GNSS VLM time series. NTAOL deformations introduce both127

periodic and aperiodic deformation in VLM time series. Because annual and semi-annual128

signals are always accounted for in the trajectory model, for time series longer than a129

few years, the periodic (i.e., seasonal) part of NTAOL deformations has a negligible in-130

fluence on velocity uncertainties (Blewitt & Lavallée, 2002). This study, therefore, fo-131

cuses on the impact of aperiodic NTAOL deformations.132

Usually, the influence of NTAOL on the stochastic properties of GNSS time series133

is investigated through the study of change in root mean squared errors (RMSEs) (Tregoning134

& van Dam, 2005; Martens et al., 2020), sometimes at different frequency bands (Mémin135

et al., 2020; Klos et al., 2021). In this work, to further study possible changes in time-136

correlation and try to identify the origin of the stochastic variability in GNSS time se-137

ries, we investigate the influence of correcting for NTAOL deformation (at the solution138

level) on 5 complementary metrics, namely: the repeatability of position residuals, the139

power spectrum of position residuals, their time-correlation properties, the correspond-140

ing velocity uncertainties, and the spatial correlation of position residuals.141

To describe the stochastic variability and the influence of aperiodic NTAOL defor-142

mations, we investigate each of these metrics using the position time series of over 10,000143

globally distributed GNSS stations. Considering as many stations allows describing with144

an unprecedented resolution the impact of NTAOL deformations on the spatial corre-145

lation of GNSS VLM time series. Besides, systematically analyzing the impact of NTAOL146

deformations on the stochastic properties of each station allows us to evidence previously147

unreported stochastic parameter estimation issues, resulting in recommendations for the148

estimation of velocity uncertainties from global GNSS VLM time series.149

2 Data150

2.1 GNSS position time series151

We used the North, East, and Up position time series of a total of 10,151 GNSS152

stations processed and distributed by the Nevada Geodetic Laboratory at the Univer-153

sity of Nevada, Reno (Blewitt et al., 2018). This study focuses on the Up coordinates,154

however, the North and East coordinates have been used in the preprocessing for the de-155

tection of discontinuities. NGL’s position time series have been computed using the Jet156

Propulsion Laboratory’s (JPL) GipsyX 1.0 software (Bertiger et al., 2020) based on single-157

station precise point positioning (PPP) with carrier phase ambiguity resolution (Zumberge158

et al., 1997). The satellite orbit and clock used for the PPP processing are JPL’s Re-159

pro 3.0 products. Though we employ the term GNSS for the sake of generality, NGL’s160

processing only exploited observations from the Global Positioning System (GPS). The161

final position time series are expressed in the IGS14 reference frame. Incremental zenith162

wet delays are estimated on top of a priori hydrostatic and wet zenith tropospheric de-163

lays interpolated from the VMF1 grids (Boehm et al., 2006). Both hydrostatic and wet164

zenith delays are mapped to the observation elevations using the Vienna Mapping Func-165
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tion (VMF1). For the ionospheric delays, the first-order effects are removed thanks to166

the use of the ionosphere-free L1/L2 combination and second-order effects are corrected167

using ionospheric TEC maps together with a model of Earth’s magnetic field. For more168

details about NGL’s processing strategy, we refer to http://geodesy.unr.edu and Kreemer169

et al. (2020) or Martens et al. (2020).170

2.2 Loading deformation time series171

To remove NTAOL deformations from GNSS position time series, we used the non-172

tidal atmospheric loading (NTAL) and non-tidal oceanic loading (NTOL) deformation173

time series computed by the Earth System Modelling group of the German Research Cen-174

ter for Geosciences at Potsdam (ESMGFZ) (Dill & Dobslaw, 2013). The vertical defor-175

mations caused by NTAL are calculated by the ESMGFZ using the 3-hourly atmospheric176

surface pressure from the European Center for Medium-Range Weather Forecast (ECMWF).177

The vertical deformations caused by NTOL are calculated using the 3-hourly ocean bot-178

tom pressure from the Max-Planck-Institute Meteorology Ocean Model (MPIOM). For179

both load types, vertical displacements are computed using patched Green’s functions180

computed from the ak135 elastic Earth model (Kennett et al., 1995). For more details181

about the ESMGFZ processing strategy, we refer to Dill and Dobslaw (2013).182

NGL’s position time series being expressed in the IGS14 reference frame, we use183

the deformation time series expressed in the center of Earth’s figure frame (CF) (Blewitt,184

2003). Because of the higher sampling rate of ESMGFZ’s NTAOL deformation time se-185

ries, we down-sample ESMGFZ’s time series at NGL’s time series epochs.186

3 Time correlation analysis187

3.1 Position selection188

For each station, to remove possibly unreliable position estimates, epochs show-189

ing a formal error above 5 mm on any of the three coordinates were ignored. Moreover,190

to eliminate large outliers, the raw position estimates were compared to a running monthly191

median. Any epoch with a position showing a deviation from the median exceeding 5192

times the median absolute deviation, on any of the three coordinates, was discarded (Klos193

et al., 2015).194

Only position estimates prior to January 2018 were considered in this study. Also,195

as we focus on time correlation, we only used stations presenting time series with over196

1090 daily estimates, that is, more than about 3 years of continuous observations. The197

spans of the considered time series range from 3 to over 20 years, with a median of 8 years.198

The distribution of the GNSS sites with their number of data points are presented in Fig-199

ure S1, provided in the Supporting Information.200

3.2 Trajectory model201

Noting y the m × 1 observation vector (i.e., a GNSS VLM time series), the tra-202

jectory model describes the expectation E{.} of y. To simplify the processing of thou-203

sands of stations, this study only uses linear trajectory models accounting for a linear204

trend, periodic signals, remaining outliers, offsets, and trend discontinuities. The tra-205

jectory model can be expressed as206

E{y} = Ax, (2)

where A is the m×n design matrix, that is, the Jacobian of the trajectory model, and207

x is the unknown n× 1 deterministic parameter vector.208
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The periodic signals accounted for in this trajectory model include the most com-209

monly observed ones in GNSS time series (Ray et al., 2008; Amiri-Simkooei, 2013), namely,210

the annual signal with a period of 365.25 days and its first 2 harmonics, the draconitic211

signal with a period of 351.40 days and its first 7 harmonics, and the 3 fortnightly sig-212

nals with periods of 13.62, 14.17, and 14.76 days.213

To model the offsets, all the offset dates indicated in the NGL database have been214

considered by default. This database includes dates of known equipment changes and215

possible earthquake-related discontinuities. This database is not necessarily complete for216

all stations, and additional offsets must be detected to improve the trajectory model. This217

issue is addressed using an automatic detection of discontinuities presented in section218

3.6.219

3.3 Stochastic model220

The stochastic model describes the co-variance var{.} of the m×1 observation vec-221

tor y. Under the assumption that the stochastic variability can be approximated by a222

linear combination of homogeneous white noise – that is, uncorrelated with constant vari-223

ance – and a power-law process (WN+PL), the stochastic model reads224

var{y} = Qy = σ2
hwI + σ2

plQκ. (3)

where σ2
hw is the unknown white noise amplitude, I is the m×m identity matrix, σ2

pl225

is the unknown power-law process amplitude, κ is the unknown spectral index, and Qκ226

is the m ×m covariance matrix associated to a power-law process of spectral index κ227

(Williams, 2003a).228

3.4 Variance component estimation229

Estimating unknown parameters of the stochastic model can be done using Vari-230

ance Component Estimation (VCE) methods. In this study, we use the Least-Squares231

Variance Component Estimation (LS-VCE) method to estimate the amplitude of each232

process, namely σ2
hw and σ2

pl. Introduced by Teunissen (1988) and further developed by233

Teunissen and Amiri-Simkooei (2008) and Amiri-Simkooei (2007), the LS-VCE method234

is an unbiased and minimum-variance alternative to the more commonly used Maximum235

Likelihood Estimation (MLE) method (Zhang et al., 1997; Williams, 2008; Bos et al.,236

2008; Langbein, 2017) and has already been used in its univariate and multivariate forms237

for GNSS noise analyses (Amiri-Simkooei et al., 2007; Amiri-Simkooei, 2009; Amiri-Simkooei238

et al., 2017).239

Because the LS-VCE method is unconstrained, it can occasionally return negative240

estimates, which makes no physical sense for stochastic process amplitudes. When en-241

countering negative variance estimates, we systematically applied the Non-Negative LS-242

VCE method (NNLS-VCE) introduced in Amiri-Simkooei (2016) to obtain non-negative243

process amplitudes. Though mentioned explicitly in this paper, the non-negativity con-244

straint is the norm, since the nonlinear optimization methods used in most software sim-245

ply do not explore negative solutions (Williams, 2008; Bos et al., 2008; Langbein, 2017).246

In their linear forms, both the LS-VCE and the NNLS-VCE methods do not al-247

low estimating the unknown spectral index κ. Hence, to assess both the process ampli-248

tudes σ̂2
hw and σ̂2

pl, and the spectral index κ̂, we systematically tested for each time se-249

ries 30 stochastic models with discrete values of κ ranging from −1.8 to −0.3 with a step250

of +0.05. The most likely κ̂ and the corresponding process amplitudes, were chosen as251

those maximizing the restricted likelihood defined in Koch (1986).252
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When VLM is expressed in millimeters (mm), the power-law amplitude estimate253

σ̂pl is expressed in (mm yrκ/4) if the scaling of Williams (2003a) is used. Therefore, two254

σpl obtained with different spectral indices are not comparable. To overcome this issue,255

we use a modified standard deviation, noted σ̂′pl, expressed in mm and representing the256

square root of the expected empirical variance of a power-law process over 8 years, which257

is the median cumulative span of the considered VLM time series.258

Noting r a random vector such that r ∼ N (0, σ̂2
plQκ), the amplitude σ̂′pl is de-259

fined as260

σ̂′pl =

√√√√E

{
1

m′

m′∑
i=1

(ri − r̄)2
}

(4)

where ri is an element of the vector r, m′ is the number of observations for an 8-year long261

time series, and r̄ is the arithmetic mean of the ri.262

As power-law processes with κ ≤ −1 are non-stationary, their modified standard263

deviations σ̂′pl increase with m′. Therefore, to allow comparisons between σ̂′pl values, m′264

is kept fixed for all time series.265

One can show that σ̂′pl can be expressed as266

σ̂′pl = σ̂pl

√
1

m′
tr{Q′κ} −

1

m′2
uTQ′κu (5)

with u a m′×1 vector defined as uT =
[
1 1 · · · 1

]
and Q′κ the covariance matrix267

of a power-law process with spectral index κ and length m′.268

3.5 Residual estimation269

Part of the investigations presented in this work are based on the analysis of the270

residual VLM time series. Residual time series are computed as the difference between271

the observations and the trajectory model estimated by weighted least-squares (Teunissen,272

2000a). In particular, the residual vector ê is computed from the observation vector y273

by274

ê = P⊥Ay, (6)

in which the m×m matrix P⊥A is the weighted least-squares orthogonal projector de-275

fined by276

P⊥A = I−A(ATWA)−1ATW. (7)

where W denotes the m×m weight matrix. Hereafter, unless specified otherwise, the277

weight matrix W is taken as the inverse of the covariance matrix of the observations:278

W = Q−1y .279

3.6 Trajectory model improvement280

As undetected offsets can bias stochastic parameter estimates (Williams, 2003b),281

it is necessary to identify possible additional offsets to the NGL database and to include282

them in the trajectory models. In practice, the offset detection is often done manually,283

since experimented operators tend to perform better than most algorithms (Gazeaux et284
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al., 2013). However, when considering thousands of time series, an automatic detection285

is necessary.286

Amiri-Simkooei et al. (2019) recently showed that one can improve the automatic287

detection of offsets by accounting for the time-correlated noise, and by analyzing the North288

(n), East (e), and Up (h) coordinates simultaneously. The multivariate LS-VCE used289

in Amiri-Simkooei et al. (2019) assumes constant σ2
hw/σ

2
pl ratios for all coordinates, which290

might be a risky hypothesis. Here, we relax this hypothesis and adapt the method of Amiri-291

Simkooei et al. (2019) to allow process amplitudes to have different amplitude ratios for292

each coordinate. We then check for discontinuities, including offsets, outliers, and veloc-293

ity changes.294

The detection method is derived from the Detection Identification Adaptation (DIA)295

procedure introduced by Baarda (1968); Teunissen (2000b). Applied to the detection of296

offsets, outliers, or velocity changes, the DIA procedure consists in testing a null hypoth-297

esis H0 : E{y} = Ax against an alternative hypothesis Ha : E{y} = Ax+ca(tk)xa, in298

which ca(tk) is the known m×1 Jacobian vector of a discontinuity of type a (either an299

offset, an outlier or a velocity change) at time tk with an unknown amplitude xa. Ac-300

cording to Teunissen (2000b), accepting or rejecting H0 depends on the value of a T -statistic301

defined by302

Ta(tk) =
(cTa (tk)Q−1y ê)2

cTa (tk)Q−1y P⊥Aca(tk)
. (8)

Under H0, the random variable Ta(tk) follows a central chi-squared distribution with303

1 degree of freedom: Ta(tk) ∼ χ2(1, 0). Hence, for a given confidence level α, if Ta(tk) >304

χ2
α(1, 0), the null hypothesis can be rejected and ca can be added to the columns of the305

design matrix A.306

To combine the information of all coordinates, we define the power Pa(tk) of a dis-307

continuity ca(tk) at time tk as the sum of the T -statistics estimated on each coordinate,308

that is309

Pa(tk) =
∑

i∈{n,e,h}

T (i)
a (tk), (9)

where the residual vector ê(i), the covariance matrix Qy(i), and the orthogonal projec-310

tor P⊥A(i) are specific to each coordinate (i).311

Assuming that the coordinates are uncorrelated (Amiri-Simkooei, 2009; Benoist et312

al., 2020), under H0, the power Pa(tk) follows a central chi-squared distribution with 3313

degrees of freedom, that is Pa(tk) ∼ χ2(3, 0).314

The chi-squared distribution of Ta(tk) and Pa(tk) is based on the assumption that315

the covariance matrices Qy(i) are known. However, the two variance components σ2
w and316

σ2
pl are unknown and must be estimated. In such a case, the exact distribution of Ta(tk)317

becomes intractable. Nonetheless, the chi-squared distribution remains a good approx-318

imation, as the redundancy of the trajectory model m−n is large (Amiri-Simkooei et319

al., 2019).320

To find a candidate for the alternative hypothesis ca(tk), offsets co(tk), outliers ct(tk),321

and velocity changes cv(tk) were systematically tested for each epoch tk. The most-likely322

discontinuity date t̂k and type â, were chosen as323

â, t̂k = arg max
a,tk

Pa(tk). (10)
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When the power of the most likely alternative Pâ(t̂k) exceeded a given threshold324

Pâ(t̂k) > 25, the discontinuity câ(t̂k) was added to the trajectory model. The thresh-325

old value 25 is arbitrarily chosen and corresponds to a confidence level α > 0.9999 un-326

der the χ2(3, 0) hypothesis. This detection procedure was repeated until no significant327

discontinuities were found anymore. At each iteration, the variance components of the328

stochastic model were (re)estimated for all coordinates. To reduce the computational bur-329

den, and for this detection step only, we used a fixed spectral index κ = −0.80 and the330

NNLS-VCE method by default.331

In the end, an average of 2.49 offsets, 0.67 outliers, and 0.97 velocity changes were332

added to the trajectory model of each station. To compensate for the linearity of the tra-333

jectory model, stations showing nonlinear behaviors such as post-seismic deformation present334

more offsets and velocity changes than the others. But the median number discontinu-335

ity per station is actually 1.0 for the offsets and 0.0 for both the outliers and the veloc-336

ity changes. The imperfect nature of this detection procedure certainly results in an over-337

parameterization of the trajectory model of some stations. However, considering that338

we focus on large scale patterns obtained from a large number of independently processed339

stations, a possible over-parameterization of a few trajectory models is unlikely to af-340

fect the results discussed in section 5.341

4 Spatial correlation analysis342

Williams et al. (2004) computed the variation of the cross-correlation between pairs343

of residual time series with the station’s separation distance. Amiri-Simkooei (2009); Amiri-344

Simkooei et al. (2017) did a similar analysis but used a particular metric to take time345

correlation into account. However, this metric, based on the multivariate LS-VCE (Amiri-346

Simkooei, 2009), assumes an identical white noise to power-law amplitude ratio and an347

identical spectral index for all the time series. Benoist et al. (2020) assumed a second-348

order stationary spatial distribution of residuals and investigated the spatial correlation349

using variograms (Wackernagel, 2013).350

In these studies, the spatial correlation coefficients were systematically estimated351

using all observations over a span of a few years. In results, the estimated coefficient was352

an average over the considered span. In practice, for short time scales, let us say a few353

weeks, one would expect the spatial correlation structure to show a time-variable behav-354

ior, especially if position residuals are linked to climate-related mass redistribution.355

Hence, to investigate the time dependence of the spatial correlation, we computed356

the Pearson correlation coefficients between pairs of residual time series over running win-357

dows of 30 days. We then averaged these pairwise correlation coefficients for 200 inde-358

pendent classes of separation distances, ranging from [0, 100] to [19900, 20000] km. Cor-359

relation coefficients obtained from 30-day windows are less precise than those based on360

several years. However, given the number of stations analyzed in this study, the final spa-361

tial correlation estimates result from an average of over a few hundred thousands pairs362

in each distance class, making them robust and interpretable nevertheless.363

5 Influence of aperiodic NTAOL deformations364

5.1 Repeatability365

To measure the change in repeatability resulting from the correction of either NTAL366

or NTOL deformations, we analyze RMSE reductions. In this part, residuals are com-367

puted using the unweighted least-squares adjustment, that is, using W = I in Equa-368

tion 7. As the trajectory model accounts for annual and semi-annual signals, the changes369

in RMSE do not reflect changes of the seasonal variations in the series, as those are not370

present in the residuals.371

–9–



manuscript submitted to JGR: Solid Earth

Figure 1. Global distribution of change in RMSE after removing ESMGFZ’s NTAL de-

formation predictions only (top), and additional change in RMSE after also removing NTOL

deformation predictions (bottom).

The global distribution of the change in RMSE obtained after removing NTAL de-372

formations, and the additional change resulting from also removing NTOL deformations,373

are presented in Figure 1. NTAL corrections result in an RMSE reduction for 97.5% of374

the stations. The global-average change in RMSE is −11.4%, but the differences are more375

pronounced at latitude over ±45.0◦ than near the equator, where the atmospheric pres-376

sure is less variable (Van Dam & Wahr, 1987). NTOL corrections result in an additional377

RMSE reduction for 72.8% of the stations. Though lower by a factor 5, the impact of378

NTOL, like that of NTAL, is higher near the poles, but logically confined to coastal ar-379

eas. With an overall reduction of about 30% at high latitudes and about 0% at the equa-380

tor, the high latitude reduction observed here is about 10% better than that reported381

in Fig. 7 in Mémin et al. (2020), probably because their dataset mostly contains coastal382

GNSS stations.383

Our results show that the correction of either NTAL or NTOL deformations results384

in a quasi-systematic scatter reduction of the aperiodic VLM residual time series. Hence,385

though this dataset aggregates observation from GNSS stations with variable geodetic386

quality, the recently reprocessed NGL’s position time series are, nonetheless, of partic-387

ular interest for NTL deformation studies.388

Because removing NTAL and NTOL deformations results in RMSE reduction for389

the wide majority of stations, in the following, we focus on their combined effect, that390

is, the impact of the non-tidal atmospheric and oceanic loading (NTAOL=NTAL+NTOL)391

on the spectral, temporal, and spatial properties of the stochastic variability in VLM time392

series.393
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Figure 2. Average Lomb-Scargle periodogram of the ESMGFZ’s vertical NTAOL deformation

time series (blue solid line). The NTAOL deformation time series have the same sampling and

gaps as the GNSS time series. The average power is computed using only time series with a span

longer than the considered period. The average power spectrum is approximated by a Fraction-

ally Integrated Generalized Gauss-Markov model (FIGGM, black solid line). The dash dotted

black line represents the spectral index κ1 = −6.91 at high frequencies. The dashed black line

represents the spectral index κ2 = −0.28 at low frequencies.

5.2 Average power spectrum394

The improved repeatability observed in the previous section does not indicate whether395

NTAOL deformations are time-correlated. One way to investigate this effect is to an-396

alyze the average power spectrum of the NTAOL deformation time series. In Figure 2,397

we present the average Lomb-Scargle periodogram of the ESMGFZ’s vertical NTAOL398

deformation time series at the GNSS sites.399

The energy of the spectrum is mainly concentrated at low frequencies and rapidly400

decreases at high frequencies. This indicates that NTAOL deformations are time-correlated.401

However, the shape of the power-spectrum does not resemble that expected from the com-402

bination of white noise and power-law processes, as it collapses instead of flattening at403

high frequencies. More precisely, the average power-spectrum shows two distinct slopes404

above, and below, 20.0 cycles per year [cpy]. Time series presenting such a behavior can405

be well described by a fractionally integrated generalized Gauss-Markov (FIGGM) pro-406

cess (Bos et al., 2020).407

The power spectrum P (f) of a discrete FIGGM process reads408

P (f) = 2
σ2

fs
[1 + φ2 − 2φ cos(2πf/fs)]

κ1/2 × [2 sin(πf/fs)]
κ2 , (11)

in which σ2 denotes the amplitude of the process, fs denotes the sampling frequency in409

cpy, κ1 denotes the spectral index at high frequencies, κ2 denotes that at low frequen-410

cies, and φ denotes the Gauss-Markov parameter controlling the transition between both.411

The estimated low-frequency spectral index of NTAOL deformation is κ̂2 = −0.28412

whereas, at high frequencies, κ̂1 = −6.91. The power-spectrum at high frequencies does413

not closely follow the steep κ̂1 slope because of the early transition to κ̂2, due to a small414

Gauss-Markov parameter (φ̂ = 0.18) corresponding to a crossover frequency of 78.8 cpy.415
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Figure 3. Average Lomb-Scargle periodogram of residual GNSS position time series before

(top) and after removing the NTAOL deformations (bottom). The average power is computed

using only time series with a span longer than the considered period.

To investigate how the FIGGM nature of NTAOL deformations affects the spec-416

tral properties of the stochastic variability in GNSS time series, we computed the av-417

erage Lomb-Scargle periodogram of VLM residuals before and after removing NTAOL418

deformations. Unlike in the previous section, hereafter, the VLM residuals are estimated419

using the inverse of the estimated covariance matrix as the weight matrix, that is, us-420

ing W = Q−1y in Equation 7. Both periodograms are presented in Figure 3.421

In each plot, we observe power drops at the seasonal, draconitic, and fortnightly422

frequencies accounted for in the trajectory model because the power at these frequen-423

cies is absorbed by the deterministic parameters (see Section 3.2). Besides these frequency-424

specific drops, both power spectra tend to follow that expected from a WN+PL model,425

that is, a slope close to −1.00 (flicker noise) at low frequencies and a flattening at high426

frequencies. Thus, the WN+PL stochastic model used for variance component estima-427

tion (section 5.3) seems well-suited to both cases. To illustrate this, in Figure 3, WN+PL428

power spectra have been adjusted to each average Lomb-Scargle periodogram. The crossover429

frequency – that is, the frequency where the power resulting from white noise equals that430

of the power-law process – is also presented in both cases.431

Before NTAOL correction, although the WN+PL model approximates the over-432

all shape of the periodogram, it fails to describe the increase in power due to NTAOL433

deformations between 10 cpy and 70 cpy. On the other hand, after NTAOL correction,434

there is a much better agreement between the average periodogram and the WN+PL435
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model. We also observe a more pronounced flattening at high frequencies, which moves436

the estimated crossover frequency between WN and PL from 37.11 cpy to 21.35 cpy. A437

wide spectral peak at 66.4 cpy, already reported in Amiri-Simkooei (2013) and Ray et438

al. (2013), possibly related to the PPP processing (Selle et al., 2014; Amiri-Simkooei et439

al., 2017), is also more visible after NTAOL corrections.440

The difference in power spectra in Figure 3 differs from that in Fig. 8 in Männel441

et al. (2019), which shows meager differences at high-frequencies and more pronounced442

ones at low-frequencies. There are two possible reasons for the differences at high-frequencies.443

The first one is that we use about 65 times more stations, most of them located in Eu-444

rope and North America. Thus, by averaging, Figure 3 might better reveal NTAOL sig-445

nals in these areas. Another possibility is the use of the Global Mapping Function (GMF)446

(Böhm et al., 2006) by Männel et al. (2019), which might result in tropospheric mod-447

eling errors that partially compensate for the atmospheric loading signal (Steigenberger448

et al., 2009) and reduce the influence of NTAOL corrections on their VLMs time series449

(Martens et al., 2020). The high-frequency flattening of the power-spectrum after NTAOL450

correction presented in this work (Figure 3) seems in better agreement with that pre-451

sented in Fig. 8 of Tregoning and Watson (2009).452

Regarding the low-frequencies, the more significant differences in Männel et al. (2019)453

are likely due to the correction of hydrology loading, not applied in this work. Also, as454

the spectral properties of the estimated residuals depend on the estimated stochastic model455

(through the weight matrix in Equation 7), the change of slope at low-frequencies in Fig-456

ure 3 is undoubtedly due to the significant changes in spectral indices at mid-latitudes,457

which we present in the following section.458

5.3 Spatial variability of variance components459

In this section, we present the influence of removing NTAOL deformation on the460

spatial variability of the estimated white noise amplitudes σ̂hw, modified power-law am-461

plitudes σ̂′pl, spectral indices κ̂, and RMSEs.462

The global distribution of the estimated variance components using raw VLM time463

series are presented in Figure 4. That obtained using VLM time series with NTAOL de-464

formations removed are presented in Figure 5. All stochastic parameters show a strong465

global scale variability, mostly characterized by a latitude dependence, which Figure 6466

evidences and compares before and after removal of NTAOL deformation, showing also467

the RMSE changes in parallel. To improve the legibility of Figure 6, we represent run-468

ning medians and interquartile ranges over +10.0◦ latitude windows. In the following,469

the quantitative description of the latitude dependence refers to these running medians470

and not the individual station estimates.471

Before removing NTAOL deformations, the estimated white noise amplitudes reach472

a maximum of about 4.0 mm near the equator and are almost always equal to 0.0 mm473

for latitudes over ±40.0◦, forming an equatorial bulge. After the removal of NTAOL de-474

formations, the spatial variability of the stochastic parameters is strongly modified (Fig-475

ure 5). Instead of being null everywhere but at low latitudes, the white noise amplitude476

is now non-zero everywhere. This does not indicate that NTAOL corrections introduce477

additional white noise in the series, but rather that white noise amplitude estimates based478

on the uncorrected series were biased low, due to NTAOL deformations partially hid-479

ing white noise (see Figure 3). The equatorial bulge in white noise amplitudes remains480

visible, with a minimum of 2.0 mm near the poles and a maximum of about 4.0 mm at481

the equator.482

This bulge was originally pointed out by Williams et al. (2004) but was also more483

recently observed in IGS station position time series by Klos et al. (2019). Williams et484

al. (2004) suggested that the origin of this bulge could reside in mis-modeling of the at-485
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Figure 4. Global distribution of stochastic parameters estimated from raw VLM time se-

ries. White noise amplitudes (top). Modified power-law amplitudes (middle). Spectral indices

(bottom).
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Figure 5. Global distribution of stochastic parameters estimated from VLM time series with

NTAOL deformations removed. White noise amplitudes (top). Modified power-law amplitudes

(middle). Spectral indices (bottom).
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Figure 6. Latitude dependence of white noise amplitudes σ̂hw (top), spectral indices κ̂ (up-

per middle), power-law amplitudes σ̂′pl (lower middle), and RMSEs (bottom), in the presence of

NTAOL deformations (left) and with NTAOL deformations removed (right). The dots in cyan

represent the station-specific estimates. The continuous blue lines represent running medians over

10◦ latitude windows. The shaded areas represent the corresponding interquartile ranges. The

dashed black lines are the running medians before NTAOL correction, reported in the right plots

for comparison with results after NTAOL correction.
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mospheric delays affecting GNSS observations. Although the NGL-IGS14 solution used486

in this study benefits from recent improvements in the modeling of both tropospheric487

and second-order ionospheric effects, the bulge remains visible in both datasets. Hence,488

further investigations are needed to identify its causes and to reduce its amplitude.489

Unlike white noise amplitudes, the modified power-law amplitudes before remov-490

ing NTAOL deformations reach a minimum amplitude of 3.5 mm near the equator and491

are maximum at high latitudes, especially near the latitude +65.0◦, where they peak at492

10.0 mm. The estimated spectral indices show a bi-modal distribution with a maximum493

of about −0.65 near ±40.0◦ and a minimum of about −1.10 near latitudes −90.0◦, 0.0◦,494

and +65.0◦. In other words, the estimated stochastic variability shows longer memory495

effects near the equator and near the poles than at mid-latitudes. After the removal of496

NTAOL deformations, the modified power-law amplitudes are dramatically reduced at497

middle and high latitudes, making their latitude dependence almost disappear. The power-498

law amplitudes now uniformly lie in a narrow range centered around 3.5 mm. For spec-499

tral indices, as for the other parameters, the latitude dependence is also affected. After500

removing NTAOL deformations, the latitudinal medians of the estimated spectral indices501

no longer show a bi-modal distribution, but a flatter latitude dependence centered on502

−1.00, that is, flicker noise. In addition, their interquartile range shows an increase at503

mid-latitudes, indicating that the spatial distribution is more complex than just a lat-504

itude dependence (see Figure 5).505

The striking latitude dependence of power-law amplitudes and spectral indices σ̂′pl506

visible in Figure 4 was not observed by Williams et al. (2004). This difference is likely507

due to the processing improvements having occurred over the past 17 years. Such global508

scale patterns have however been pointed out in Klos et al. (2019, 2020). In Europe, Klos509

and Bogusz (2017); Gruszczynski et al. (2019) and Klos et al. (2021), suggested that NTL510

deformations could be the cause of the spatial variability of stochastic parameters ob-511

served in the Up component. The observed impact of NTAOL corrections at the global512

scale from Figures 5 and 6 is consistent with this hypothesis.513

Before removing NTAOL deformations, the RMSEs are centered around 5.1 mm514

and reach maxima of about 6.0 mm near the poles and about 5.6 mm near the equator.515

After the removal of NTAOL deformations, they now show a slightly subdued latitudi-516

nal profile mainly resulting from their significant decrease, from 6.0 mm to 4.0 mm, at517

high latitudes, while their values at low latitudes stay unchanged.518

Note that, at high latitudes, before removing NTAOL deformations, the amplitude519

of power-law processes alone exceeds the RMSE of the residuals (Figure 6). As the RMSE520

accounts for the total effect of white noise plus power-law processes, this indicates that521

there is a bias in the estimation of the power-law parameters. To illustrate how the es-522

timated stochastic parameters change with NTAOL correction, Figure 7 presents the Lomb-523

Scargle periodogram of the VLM residuals along with the WN+PL power spectrum ex-524

pected from the estimated stochastic parameters for station ONSA (Onsala, Sweden),525

both before and after NTAOL correction.526

Before NTAOL correction, the estimated power spectrum differs from the Lomb-527

Scargle periodogram of the residuals because of the non-modelled variability at sub-annual528

periods resulting from the presence of NTAOL deformations (Figure 2). This illustrates529

that, at high latitudes, where the scatter of the NTAOL deformation is the largest (Tregoning530

& van Dam, 2005), the usual WN+PL stochastic model is not appropriate and the as-531

sociated parameter estimates are not reliable. However, after NTAOL correction, the non-532

modelled sub-annual variability is removed, the stochastic variability resembles more that533

of the WN+PL model, which results in more interpretable parameter estimates.534

In principle, considering a WN+PL+FIGGM stochastic model instead of a WN+PL535

one could also be a solution to this problem. However, adding a FIGGM process to the536

–17–



manuscript submitted to JGR: Solid Earth

Figure 7. Power spectra of the VLM time series of station ONSA (Onsala, Sweden), before

(top) and after (bottom) removing NTAOL deformations. The colored lines are the Lomb-Scargle

periodograms of the VLM residuals. The black dashed lines are the WN+PL power spectra

expected from the estimated stochastic parameters.

–18–



manuscript submitted to JGR: Solid Earth

stochastic model would lead to a more complex and nonlinear variance component es-537

timation problem. Correct for the NTAOL deformations before stochastic parameter es-538

timation is a more efficient and pragmatic solution.539

Figures 4, 5 and 6 show that all stochastic parameters show a spatial variability,540

both before and after NTAOL correction. Hence, considering spatially variable stochas-541

tic process amplitudes and spectral indices is preferable when analyzing VLM time se-542

ries. In particular, the assumption of a constant spectral index and of a constant power-543

law to white noise amplitude ratio for all stations, as done in Amiri-Simkooei (2013); Amiri-544

Simkooei et al. (2017), seems sub-optimal in global solutions.545

Although we demonstrated that a large part of the spatial variability of stochas-546

tic parameters can be attributed to the influence of NTAOL deformations, Figure 5 clearly547

shows that non-latitudinal patterns remain. This residual variability could be further548

reduced by improving the accuracy of NTAOL prediction or by accounting also for hy-549

drological loading deformations. Once the strong impact of NTAOL deformation is re-550

moved, detecting the influence of the monumentation quality on the stochastic param-551

eters of individual stations in global solutions might become easier (Langbein & Svarc,552

2019).553

5.4 Velocity uncertainties554

Velocity uncertainties depend on the estimated stochastic properties, but also on555

each station’s functional model and span. To isolate the influence of the stochastic prop-556

erties, for a given stochastic model, we define the minimum 8-year velocity uncertainty,557

noted σ∗v , as the expected standard deviation of the velocity estimated assuming a con-558

tinuous 8-year long time series with a trajectory model consisting of a linear trend and559

the periodic signals presented in section 3.2. σ∗v is a lower bound estimate because miss-560

ing values and additional deterministic parameters would increase the velocity uncertainty.561

Figure 8 shows the global distribution of σ∗v obtained from the stochastic param-562

eters estimated before and after NTAOL correction. Figure 9 depicts their latitudinal563

distributions along with the running medians and the interquartile ranges over +10.0◦564

latitude windows. In the Supporting Information, Figure S2 presents an alternative to565

Figure 8, in which the velocity uncertainties account for the full span of each VLM time566

series.567

Before removing NTAOL deformations σ∗v is maximum at high latitudes, namely,568

in Alaska, Canada, around the Baltic Sea, Russia, Antarctica, but also within the Ama-569

zon basin. More precisely, the median σ∗v reaches a maximum of 1.42 mm/yr around the570

latitude +65.0◦, and a minimum of about 0.24 mm/yr near ±30◦ latitudes.571

After NTAOL correction, the latitude dependence of σ∗v is dramatically reduced.572

The median σ∗v are now centered around 0.37 mm/yr at all latitudes, with a maximum573

of 0.55 mm/yr near the equator and a minimum around 0.26 mm/yr near ±45◦ latitudes.574

The most dramatic reduction of σ∗v is observed around the latitude +65.0◦, where σ∗v drops575

from 1.42 mm/yr to 0.43 mm/yr, that is, a 69.7% decrease. However, the reduction in576

uncertainty is not systematic and concerns only 49.6% of the stations. The other 50.4%577

show a moderate increase in σ∗v (Figure 9) because of the variance component estima-578

tion bias caused by uncorrected NTAOL deformations, which results in overestimated579

spectral indices at mid-latitudes (e.g., Figure 6).580

The other stations, mostly localized at mid-latitudes, show a moderate increase in581

uncertainty. An apparent increase in outliers is also observed at mid-latitudes, mainly582

caused by groups of stations near the northern coasts of the Gulf of Mexico, the south583

of Brazil, and Central Africa showing both strong RMSEs and low spectral indices. But584

overall, after NTAOL correction, most stations show more homogeneous σ∗v estimates585
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Figure 8. Global variability of the minimum velocity uncertainty for 8-year long time series

before removing NTAOL deformations (top) and after removing NTAOL deformations (bottom).

Figure 9. Latitude dependence of the minimum velocity uncertainty for 8-year long time

series before (left) and after (right) removing NTAOL deformations. The dots in cyan represent

the station-specific estimates. The continuous blue lines represent running medians over 10◦ lat-

itude windows. The shaded areas represent the corresponding interquartile ranges. The dashed

black lines are the running medians before NTAOL correction, reported on the right plot for

comparison with results after NTAOL correction.
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Dataset ˆ̄ρc ˆ̄ρ0 ˆ̄ρmax ˆ̄r [km]

Raw 0.01 0.40 0.41 2470

NTAOL removed 0.02 0.27 0.29 2485

Table 1. Parameter estimates obtained by fitting the Gaussian correlation model in Equation

12 to the average spatial correlation estimates.

and the observed change in σ∗v mostly highlights the incapacity of the WN+PL model586

to retrieve realistic stochastic parameter estimates, hence realistic velocity uncertainties,587

in the presence of NTAOL deformations.588

We note that the dramatic change in velocity uncertainty resulting from NTAOL589

corrections at high latitudes does not match the minor shift in uncertainty predicted in590

Santamaŕıa-Gómez and Mémin (2015) from NTAL deformation alone. This difference591

is because the inadequacy of the WN+PL model at high latitudes, and the resulting vari-592

ance component estimation bias, cannot be observed from the analysis of NTAL defor-593

mation time series alone.594

Given the dramatic reduction in velocity uncertainty observed at high latitudes,595

correcting for NTAOL deformation before the estimation of stochastic parameters in GNSS596

VLM time series will allow a better detection of subtle VLM signals related to glacial597

isostatic adjustment, present-day ice-melting, and improve sea-level change estimates in598

these areas.599

5.5 Spatial correlation600

For both the raw and the NTAOL-corrected VLM time series, we computed aver-601

aged spatial correlation coefficients ρ̂(tk, dl) for 200 classes of separation distances dl rang-602

ing from [0, 100] km to [19900, 20000] km and for 240 epochs tk between 2008 and 2018.603

Correlation coefficients between all possible pairs of stations are computed over time win-604

dows of 30 days and averaged within each distance class. The resulting time-variable spa-605

tial correlation estimates ρ̂(tk, dl) are presented, for both cases, in Figure 10. To get a606

clearer picture of the spatial pattern, the spatial correlation averaged over the 2008-2018607

period and denoted ρ̄(dl) is also presented in Figure 10.608

Prior to removing NTAOL deformations, the average spatial correlation ρ̄(dl) is close609

to +0.45 for short separation distances (that is, dl < 100 km) and decreases close to610

zero for larger separation distances (that is, dl ≥ 5000 km). To model this behavior,611

we approximated the average correlogram ρ̄(dl) by a Gaussian correlation function de-612

fined by613

ρ̄(dl) =

{
1, dl = 0

ρ̄c + ρ̄0 · exp (− (dl/r̄)
2
), dl > 0

, (12)

where ρ̄c denotes the distance-independent correlation, ρ̄0 the distance-variable corre-614

lation, and r̄ the distance range parameter. According to this Gaussian correlation func-615

tion, the maximum correlation for dl > 0 is ρ̄max = ρ̄c + ρ̄0.616

The adjusted parameters of the Gaussian correlation function, with and without617

NTAOL deformations, are presented in Table 1. The graphs corresponding to the ad-618

justed correlation functions are depicted in Figure 10. Although, for the raw VLM resid-619

–21–



manuscript submitted to JGR: Solid Earth

Figure 10. Time-variable spatial correlation estimates ρ̂(tk, dl) before (top) and after (bot-

tom) removing NTAOL deformations. The blue curves in the left plots represent the average

correlograms over the 2008-2018 period. The dashed black lines represent the adjusted Gaussian

correlation models (Equation 12).

ual time series, small departures from the observations, inferior to 0.05, are observed for620

dl ≥ 5000 km, the Gaussian correlation function is overall a good approximation of the621

correlation curve for both datasets. After the removal of NTAOL deformations, Table622

1 shows that the maximum of correlation for dl > 0.0 km changed from +0.41 to +0.29,623

that is, a reduction of 29.27%. The average range parameter r̄ is hardly affected by the624

NTAOL corrections.625

Our results agree with Williams et al. (2004); Amiri-Simkooei et al. (2017) and Benoist626

et al. (2020), evidencing a spatial correlation of the VLM residual time series. However,627

our spatial correlations are slightly smaller, most certainly because we analyze over ten628

thousand recently reprocessed position time series instead of a few hundred (at most).629

In addition to the approximately Gaussian average spatial correlation, the time-630

variable correlograms in Figure 10 reveal an annual oscillation for short separation dis-631

tances, that is dl < 4000 km, most visible when NTAOL deformations are not removed.632

The spatial correlation time series ρ̂(tk, dl) for separation distances of 50 km, 950 km,633

1950 km, and 3950 km are presented in Figure 11 to highlight this seasonality. The am-634

plitude of the annual oscillation is maximal for short distances (dl < 100 km) and syn-635

chronous for all distance classes. Also, both the mean correlation and the annual am-636

plitude get closer to 0.0 for increasing separation distances. To describe the oscillation637

of ρ̂(tk, dl), we added an annual modulation to the distance-variable part of the mean638

Gaussian correlation function of Equation 12, that is639

ρ(tk, dl) =

{
1, dl = 0

ρc + [ρ0 + ρA cos(ωAtk − φA)] · exp (− (dl/r̄)
2
), dl > 0

(13)
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Figure 11. Time-variable spatial correlation estimates ρ̂(tk, dl) for 4 classes of distances dl

before (left) and after (right) removing NTAOL deformations. The colored lines represent the es-

timates for each class of distance dl. The dashed black lines represent the corresponding adjusted

time-variable Gaussian correlation function (Equation 13).

Dataset ρ̂c ρ̂0 ρ̂A φ̂A [day] ρ̂min ρ̂max ˆ̄r [km]

Raw 0.01 0.40 0.11 13.8 0.30 0.52 2469

NTAOL removed 0.02 0.27 0.05 22.0 0.24 0.34 2485

Table 2. Parameter estimates obtained by fitting the seasonal Gaussian spatial correlation

model in Equation 13 to the time-variable spatial correlation estimates.

where ωA is the annual angular frequency, ρA is the annual amplitude, and φA is the cor-640

responding phase. From these estimates, one can define a minimum and a maximum cor-641

relation for dl ≈ 0 as ρmin = ρc + ρ0 − ρA and ρmax = ρc + ρ0 + ρA.642

The adjusted parameters of the time-variable correlation model ρ̂c, ρ̂0, ρ̂A, φ̂A, ρmin643

and ρmax, estimated with and without NTAOL correction, are presented in Table 2. The644

corresponding graphs are visible in Figure 11.645

Prior to NTAOL correction, the spatial correlation at short distances shows an an-646

nual amplitude of ρ̂A = 0.11 and oscillates between +0.30 and +0.52. According to the647

estimated phase φ̂A, the minimum of correlation occurs in July and the maximum in Jan-648

uary. Since most of the stations analyzed are located in the United States and Europe,649

the estimated amplitude and phase of this periodicity are certainly more representative650

of the stochastic variability in these areas but less surely in other parts of the world. Af-651

ter removing NTAOL deformations, we observe a change in annual amplitude, from 0.11652

to +0.05, that is, a 54.55% reduction. The spatial correlation at short distances then os-653

cillates between +0.24 and +0.34. The estimated phase φ̂A remains similar, and the max-654

imum still occurs in January.655
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According to the observed reductions, NTAOL deformation is a significant cause656

of seasonal spatial correlation in GNSS VLM time series. These results support that of657

Gruszczynski et al. (2019), Männel et al. (2019), and Kreemer and Blewitt (2021), who658

pointed out that common mode errors in Europe could be due to NTL deformations.659

Note that after the NTAOL correction, the spatial correlation at separation dis-660

tances shorter than 100 km still oscillates between +0.24 in July and +0.34 in January661

(e.g., Figure 11 and Table 2). This is expected, as hydrological loading, not corrected662

in this work, also result in spatially correlated deformation (Van Dam et al., 2001; Tre-663

goning et al., 2009; Chanard et al., 2018). Besides, it is also possible that improving the664

quality of NTAOL deformation predictions for instance by computing the dynamic ocean665

response to changes in atmospheric pressure, as done by Mémin et al. (2020), could fur-666

ther reduce the stochastic variability in VLM time series.667

Nonetheless, considering that orbit and atmospheric positioning errors are other668

known sources of spatially correlated stochastic variability (Amiri-Simkooei et al., 2017),669

it is likely that physical models cannot fully reproduce the spatial correlation in GNSS670

position time series. Hence, further investigating how the remaining spatial correlation671

and its seasonality affect the covariance between GNSS station velocities, similarly as672

Amiri-Simkooei (2009); Razeghi et al. (2016) or Benoist et al. (2020), will undoubtedly673

benefit the study of small deformation signals in global solutions.674

6 Conclusion675

Characterizing and modeling the stochastic variability in GNSS position time se-676

ries is essential to reduce the uncertainty on the estimated station velocities. In this study,677

we investigated how aperiodic non-tidal atmospheric and oceanic loading (NTAOL) de-678

formations influence the stochastic properties of vertical land motion (VLM) time se-679

ries. To do so, we used 10,151 time series processed by the Nevada Geodetic Laboratory680

and NTAOL deformation time series provided the Earth System Modelling team at GFZ681

Potsdam.682

We first showed that NTAOL deformations exhibit time correlation describable by683

a fractionally integrated Gauss-Markov process. Because this behavior cannot be described684

by the commonly used stochastic model consisting of linear combination of white noise685

and power-law process, the presence of NTAOL deformations in uncorrected VLM time686

series results in biases in white noise amplitude, power-law amplitude, and spectral in-687

dex estimates. In particular, NTAOL deformations cause the power-law parameters to688

display a strong latitude dependence, resulting in a dramatic increase in velocity uncer-689

tainty, exceeding 1.4 mm/yr for 8-year long time series, at high latitudes.690

Once NTAOL deformations are removed from the VLM time series, we observe a691

drastic reduction of the latitude dependence of all stochastic parameters. This change692

is followed by a significant reduction of velocity uncertainty reaching about 70% in North-693

ern America, Greenland, Fennoscandia, and Antarctica. Therefore, to avoid coping with694

unrealistically high velocity uncertainties, we advise correcting for NTAOL deformation695

prior to the estimation of stochastic parameters in GNSS VLM time series. Doing so will696

certainly allow a better detection of subtle VLM signals related to glacial isostatic ad-697

justment, as well as present-day ice-melting, and improve sea-level change estimates at698

high latitudes.699

In addition to time-correlation, we investigated how NTAOL deformations influ-700

ence the spatial correlation of aperiodic VLM residuals. First, we demonstrated that,701

before removing NTAOL deformations, VLM residuals are spatially correlated and that702

this spatial correlation shows a Gaussian decay with the separation distance, along with703

a strong seasonality. After removal of NTAOL deformations, the average correlation is704
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reduced by 29.3% and its seasonality by 54.4%, showing that NTAOL deformations are705

an important source of spatial correlation.706

Although NTAOL deformation plays a major role in the stochastic variability in707

the VLM time series, it does not fully correct for its power-law behavior or its spatial708

correlation. Therefore, further investigations are still needed to identify the physical and709

artificial components of the remaining stochastic variability in VLM time series.710
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