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Abstract

In this paper, we present “QDD” (Quantum Dissipative Dynamics), a code package for
simulating the dynamics of electrons and ions in finite electron systems (atoms, molecules,
clusters) under the influence of external electromagnetic fields. Electron emission is
properly accounted for. The novel feature of the present code is that it also covers
the description of dissipative dynamics induced by dynamical correlations generated by
electron-electron collisions.
The paper reviews the underlying theoretical as well as numerical methods and demon-
strates the code’s capabilities on a selection of typical examples.
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description of electron emission. The novel feature of the present code is that it allows one

to track the dissipative dynamics induced by dynamical correlations from the earliest times of

excitation on. This is done here at a fully quantum mechanical level within the Relaxation-Time

Approximation (RTA). Electron dynamics is also coupled to ionic motion treated by classical

molecular dynamics.

Solution method: The numerical representation uses a 3D coordinate-space grid for electronic

wave functions and fields. The kinetic energy operator is evaluated in momentum space con-

nected by a Fast Fourier Transform (FFT). Standard schemes for electronic ground state, ionic

ground state, and propagation of TDLDA in real time as well as ionic dynamics are used.

Electron emission is enabled by absorbing boundary conditions using a mask function near the

boundaries. The time evolution of dissipation (by RTA) is evaluated in a large space of occupied

and unoccupied single-electron states.

Additional comments including restrictions and unusual features: Only the actual computing

hardware (RAM, number of nodes on board) limits the system size which can be treated. The

code package allows sequential and parallel (OpenMP) computation. The simulation can be

continued from a previously saved dynamical configuration.

Contents

1 Introduction 3

2 Formal background: electronic DFT coupled to ionic motion 6
2.1 Brief review: mean-field theory and correlations . . . . . . . . . . . . . . . 6
2.2 The total energy of the model . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The energy in Local-Density Approximation (LDA) . . . . . . . . 9
2.2.2 Self-Interaction correction (SIC) . . . . . . . . . . . . . . . . . . . 9
2.2.3 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 The soft jellium model for the ionic background . . . . . . . . . . . 12
2.2.5 External excitation fields and excitation mechanisms . . . . . . . . 13
2.2.6 Further instantaneous excitations . . . . . . . . . . . . . . . . . . . 15

2.3 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Equations of motion for single particle electronic wave functions :

TDLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Relaxation-Time Approximation (RTA) . . . . . . . . . . . . . . . 18
2.3.3 Ionic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Numerical aspects: methods, inputs and outputs 24
3.1 General numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Grid representation and derivatives . . . . . . . . . . . . . . . . . . 24
3.1.2 Handling of the pseudopotentials . . . . . . . . . . . . . . . . . . . 25
3.1.3 Electronic ground state . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Ionic ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5 Electronic propagation . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.6 Absorbing boundary conditions . . . . . . . . . . . . . . . . . . . . 32
3.1.7 DCMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2



3.1.8 Ionic propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Densities and shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Optical response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.5 Momenta probing exotic modes . . . . . . . . . . . . . . . . . . . . 40
3.2.6 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.7 Observables specific to relaxation . . . . . . . . . . . . . . . . . . . 45

3.3 The structure of the TDLDA and RTA packages . . . . . . . . . . . . . . 45

4 Examples of RTA dynamics 45
4.1 Electronic response to an initial boost . . . . . . . . . . . . . . . . . . . . 46
4.2 Electronic response to a laser . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Impact of dissipation on PAD . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusions and perspectives 50

A Iterative correction of total energy 52

B Dimensionless quadrupole moments 53

C Handling of basis sets in RTA 54
C.1 Transformation to natural orbitals . . . . . . . . . . . . . . . 54
C.2 Mixing of two one-body matrices . . . . . . . . . . . . . . . 55

1. Introduction

The theoretical description of dynamics far off equilibrium in quantum many-body
systems has been for decades a widely open problem in numerous fields of science. Non-
equilibrium and dissipative quantum many-particle dynamics has a long history which
can be traced back all the way to Bohr’s early pioneering work on charged-particle
penetration and stopping in matter [1, 2]. The nuclear physics domain has been explored
over the last four decades in connection with the rich empirical material from heavy-ion
collisions. This was done mostly with classical or semi-classical approaches [3, 4, 5, 6,
7, 8, 9]. Non-equilibrium dynamics has also become a key issue in transport processes
in solids [10]. It is an equally important issue for ultracold bosonic and fermionic gases
(“quenches”) [11, 12, 13, 14] as well as for the electronic dynamics in atoms, molecules,
and condensed matter driven by ultrashort and strong laser fields [15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25]. Multi-differential observables such as vectorial single- or multiple-
electron emission patterns or density-density correlation functions and phase shifts of
many-particle wave functions [14] can now be experimentally probed in unprecedented
detail and provide benchmarks for state-of-the-art theories.

The electronic case is especially challenging in finite systems with its numerous ir-
radiation scenarios by lasers or charged particles. Early stages of irradiation dynamics
proceed at short time scale, predominantly at electronic level. For example, proper analy-
sis of ultrafast processes in clusters and molecules is crucial for understanding microscopic
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mechanisms underlying radiation damage as manifested in tumor cell destruction in on-
cology [26] or in shielding electronic devices [27]. Irradiation by charged particles (swift
ion, electron) can deliver a violent electromagnetic kick to the system driving it far off
equilibrium. Laser irradiation with the high versatility to design pulse profiles adds new
possibilities. It is now possible to explore sub-fs (1 fs = 10−15 s) dynamics down to the
attosecond (1 as = 10−18 s) domain, hence opening the door to fully time-resolved anal-
ysis of irradiation effects at the electronic level [28]. Photo-induced ultrafast processes
are also involved in many other mechanisms such as vision, photo-synthesis or solar cells.
Up to now, most investigations focused on ionization of atoms [28] and only recently on
small molecules [29]. Forthcoming experiments will address ultrafast processes in com-
plex systems such as e.g. C60. A challenging aspect lies here in the expected impact of
electronic correlations [30] possibly driving relaxation pathways prior to decoherence and
ionic relaxation. This implies both the development of new dedicated (coincidence [31])
experiments using elaborate observables and new theories properly including correlations.

Understanding violent irradiation processes requires to describe far-off-equilibrium
dynamics, involving ionization, electron transport and strong electron dynamical corre-
lation effects leading to dissipation and thermalization. Note that the term “dynamical
correlations” is widely used and, unfortunately, with different meanings in different con-
texts. Here we associate with it specifically those correlations which are genuinely driven
by the dynamics of the system and cannot be incorporated into standard approximations
of TDDFT propagation (even not effectively). More specifically, we confine them here
to that part of time-dependent correlations which can be described in Markov approx-
imation which pick exactly the dissipative part of correlations [32] and which is often
imagined as result of particle-particle collisions [4]. The role of dynamical correlations
unfolds successively in the course of dynamical evolution. The immediate electron re-
sponse to irradiation kicks the system far off equilibrium but leaves it still fully quantum.
Initially coherent quantum correlations dominate at very short times. But sooner or later,
the phase space for electrons collisions progressively opens up leading to a dominance
of the incoherent dynamical correlations tractable with tools of statistical physics. On
even longer time scales, electrons couple to ionic degrees of freedom (molecular vibrations,
dissociation). The intermediate time window (from coherent excitation to statistical elec-
tron correlations) is the pivotal link from microscopic excitation to long-time evolution,
which also gives access to larger systems then unfolding to macroscopic scale.

Today, the most widely used microscopic theoretical approaches addressing such in-
termediate time scales in realistic systems rely on Time-Dependent Density Functional
Theory (TDDFT) [24]. They are efficient and reliable at early times and/or low exci-
tation. However, they do not include dynamical correlations and associated dissipative
effects which come into play at intermediate times. It is the aim of this paper to describe
the first open source package based on electronic TDDFT augmented by dynamical cor-
relations and dissipative effects for applications in finite electronic systems such as atoms,
molecules and clusters. To indicate the combination of quantum treatment and dissipa-
tive dynamics, the code package is named Quantum Dissipative Dynamics (QDD). As
often done with TDDFT, electrons are coupled to ionic motion described by classical
molecular dynamics [33, 34]. A word of caution is in order. This way of coupling to ionic
dynamics, coined Ehrenfest dynamics, misses proper energy transfer at even longer times
scales. This can only be cured by ionic correlations [35] which, however, is far beyond
the scope of the present project.
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Figure 1: Ground state properties of 4 typical systems attainable with our open package : H2O, C3,
Na+41 and C60. We show ionic structure and electronic cloud, sequence of single particle energies (with
the HOMO emphasized in blue and the LUMO in red dashes) and the optical response in some specific
spatial directions as indicated.
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Typical examples of systems attainable in this package are demonstrated in figure 1.
We show there the structure properties of four typical examples of clusters and molecules
which correspond to various system’s sizes and kinds of binding [36]. We show for all of
them the ionic structure dressed by the associated electron cloud. More details on the
ground state properties are accessible via the sequence of single electron states on the left
side of each panel. Two specific levels are especially important for dynamical applications,
the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular
Orbital (LUMO) one. They are respectively plotted in blue (HOMO) and red (LUMO)
while other occupied levels are black. We also show the optical response of each system in
the bottom part of each panel. This is a crucial system property (optical response) which
characterizes the coupling of the electrons cloud to photon fields. We compute it directly
in real time from the electronic dipole response Fourier transformed to frequency domain
(section 3.2.4). Note that the computed ground state properties of the four presented
cases reproduce rather well the experimentally known data.

The paper is organized as follows. Section 2 gathers formal theoretical aspects under-
lying the theory. We describe numerical methods and tools in section 3 with details on
computed observables and outputs. Section 4 provides a few typical examples of appli-
cations in various systems (clusters, molecules). Conclusions and perspectives are given
in section 5. To complement this document, we provide a supplementary material that
should be taken as a user manual. At several places, cross-references to the user manual
can be found; they are indicated by a heading letter “M” to avoid any confusion with a
section or an equation of the present paper.

2. Formal background: electronic DFT coupled to ionic motion

2.1. Brief review: mean-field theory and correlations

In the ground state of a system, correlations are defined as deviations from mean
field, such as Hartree-Fock (HF). In electronic systems, numerous well established meth-
ods treat ground-state correlations at various levels such as Density-Functional Theo-
ries (DFT) [37], wave function-based methods as Configuration Interaction or Coupled-
Cluster methods [38, 39], Green’s functions [40], etc. Much less developed are descrip-
tions of correlations in the time domain, which range from particle-particle correlations
in electron emission to energy relaxation towards thermal equilibrium. As with DFT for
the ground state, Time-Dependent DFT (TDDFT), mostly treated at the level of the
Time-Dependent Local-Density Approximation (TDLDA), approximately accounts for
some correlations and so provides a reliable and efficient starting point for the real-time
simulation of electronic dynamics in large systems [41, 42, 43, 24, 44, 45, 46]. TDLDA
practically carries forth the ground-state correlations from LDA assumed to follow in-
stantaneously the changing situations. This is why this approach is also called Adia-
batic LDA [47]. Still, at high excitation energies and long times, new correlations from
electron-electron collisions build up. These “Dynamical Correlations” (DC) correspond
to deviations from time-dependent mean field, here described by TDDFT at the level of
TDLDA.

The theoretical treatment of DC in finite Fermion systems far off equilibrium is still
under development. Fully coherent descriptions of DC are often developed from time-
dependent extensions of correlated ground state approaches. Wave function-based tech-
niques such as Multi-Configurational Time-Dependent Hartree-Fock (MCTDHF) [48, 15]
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or Time-Dependent Complete Active Space Self-Consistent Field (TD-CASSCF) [23],
can mostly access DC for short times (before dissipation sets in) and small systems
[17, 49, 19], giving little hope to extend them directly to large systems and/or long times,
because of their too demanding computational scaling properties. The Time-Dependent
2-particle Reduced Density Matrix (TD2RDM) method delivers a close-to-exact solution
to the problem [50], with better computational performances, although again very limited
(small systems ∼ 10 electrons, short times ∼ 10 fs). On the other side are semiclassical
and even fully classical approaches. These simplify the rather involved DC by dismissing
coherent correlations and quantum features, thus delivering a robust approach appli-
cable to large systems and high excitation energies which often works reasonably well
[51, 52, 53, 54, 55]. Of course, they leave a large gap between the true quantum regime
of low to moderate excitations and the regime of high excitation density by collisions
leading to relaxation and thermalization. They thus miss many irradiation scenarios at
intermediate energies/early stages dominated by quantum effects [56].

To fill this gap, we have recently developed a set of quantum theories, coined QDD
(Quantum Dissipative Dynamics) in which DC are treated incoherently while maintaining
the quantum structure throughout the process [57]. These theories can deal with large
systems (> 100 active electrons) on intermediate to long times (> 100 fs). They are based
on Stochastic TDHF (STDHF) [58] and different levels of approximation to it. STDHF
describes DC in terms of a stochastic treatment of electron-electron collisions leading
to an incoherent ensemble of time-dependent mean-field states. The quantum collision
term is evaluated in Markov approximation, thus neglecting memory effects. The latter
depend on the spectral density and usually decrease with excitation energy [59]. STDHF
has been validated (at high enough excitation energies) on an exactly solvable model
[60]. At moderate excitation, STDHF can be reduced to an average version ignoring the
fluctuations of the mean field [61]. A further simplification consists in approximating the
collision term by a Relaxation-Time Approximation (RTA) [62]. Whatever approach,
dissipative dynamics thus neglects coherent DC. Coherence may play a role at the very
first stages of building up DC, the longer the lower the excitation energy. STDHF,
ASTDHF, and particularly RTA, are thus best suited to sufficiently strong perturbations
(as delivered by a swift charged particle or a fs laser) and analysis of long time spans
with a bias on relaxation toward equilibrium. A detailed description of pre-equilibrium
processes stays outside the scope of these approaches.

In the present paper, we present our QDD code, an open source implementation of
the RTA on top of a 3D coordinate-space code for TDLDA augmented by a various
versions of Self-Interaction Correction (SIC) [63]. TDLDA is formulated at standard
Kohn-Sham level [64] using single particle wave functions as building blocks. Dissipative
features at RTA level are formulated in terms of the one-body density matrix built from
a large set of single particle wave functions with fractional occupation numbers. Ionic
degrees of freedom are treated classically in a standard manner, as usually done in real-
time implementations of TDDFT [41, 42]. We formulate TDLDA starting from the total
energy (section 2.2) from which stationarity of action delivers i) standard Kohn-Sham
TDLDA equations for single electron wave functions and ii) classical Molecular Dynam-
ics (MD) equations for ions (section 2.3). This altogether leads to standard combined
TDLDA-MD. RTA is built on top of the TDLDA evolution by making occupation num-
bers time-dependent according to the RTA kinetic equation (section 2.3.2). RTA is thus
coupled to ionic MD in the same standard manner as TDLDA.
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2.2. The total energy of the model

The basic dynamical variables in mean-field theory and in QDD are the set of single
particle (s.p.) wave functions with their occupation numbers at the side of valence
electrons, and classical coordinates and momenta for the ions:

s.p. wave functions: ϕα , α = 1...Ω ,
s.p. occupation numbers: wα , α = 1...Ω ,
ionic coordinates: RI , I = 1...Nion ,
ionic momenta: PI , I = 1...Nion .

(1)

Note that α also accounts for spin (up, ↑ and down, ↓) degrees of freedom. Ω denotes
the total number of s.p. wave functions. It must be Ω ≥ Nel for a system with Nel

valence electrons. Later on, we will denote by ZI the charge of ion I and by MI its
mass. The term valence electrons needs explanation: Electrons in a cluster or a molecule
have very different energetic properties. For the kind of excitation that can be dealt
with in TDLDA and QDD, we only need to handle the least bound electrons which
are commonly coined “valence” electrons. The “core” electrons remain practically inert
because they are energetically too far away. They form together with the corresponding
atomic nucleus an ionic core. The coupling of the core electrons to the valence electrons
is described in terms of pseudopotentials, see section 2.2.3.

A key quantity in connection with density functionals is the electronic local density
which covers, in fact, two separate densities for spins up and spins down

%↑(r, t) =
∑

α∈↑
wαϕ

∗
α(r, t)ϕα(r, t) , %↓(r, t) =

∑

α∈↓
wαϕ

∗
α(r, t)ϕα(r, t) , (2a)

which sum up to the total density

%(r, t) = %↑(r, t) + %↓(r, t) =
∑

α

wαϕ
∗
α(r, t)ϕα(r, t). (2b)
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2.2.1. The energy in Local-Density Approximation (LDA)

Starting point is an expression for the total energy of the coupled electronic and ionic
system:

Etotal = Ekin + EC + Exc︸ ︷︷ ︸
ELDA

+Eext + Eel,ion + Ekin.ion + Epot,ion , (3a)

Ekin[{ϕα}] =

∫
dr
∑

α

wαϕ
+
α

p̂2

2me
ϕα , (3b)

EC[%] =
e2

2

∫
dr dr′

%(r, t)%(r′, t)
|r− r′| (3c)

Exc[%↑, %↓] =

∫
dr %↑(r, t)εxc (%↑(r, t)) +

∫
dr %↓(r, t)εxc (%↓(r, t)) ,(3d)

Eext[%, t] =

∫
dr %(r, t)Vext(r, t) , (3e)

Eel,ion[{ϕα}, {RI}] =
∑

I

∫
dr
∑

α

wαϕ
+
α V̂PsP(r−RI)ϕα , (3f)

Ekin,ion(PI) =
∑

I

P2
I

2MI
, (3g)

Epot,ion(RI) =
1

2

∑

J 6=I

e2ZIZJ
|RI −RJ |

+ Vext,ion(RI , t) , (3h)

where functionals of density are indicated by square brackets, and functions of coordinates
by round brackets.

EC is the direct part of the electronic Coulomb energy. Exc is the density functional
for electronic exchange and correlations computed from the exchange correlation func-
tional εxc. The sum of EC and Exc constitute the LDA energy ELDA. We use in the
code two options: the Perdew-Wang functional of [65] or the older Gunnarsson-Lundqvist
functional from [66]. These two options correspond to a Local Density Approximation
(LDA). We furthermore use the stationary expression of the functionals in dynamical sim-
ulations (adiabatic approximation). The LDA exchange-correlation term then becomes
a function of the density: Exc[%]→ Exc(%); and the resulting DFT approach becomes an
effective mean field theory.

Eext stands for the excitation mechanisms by external sources, either from a laser
pulse or from the Coulomb field of a fast bypassing ion, see section 2.2.5.1. This part is,
of course, absent in static calculations of the ground state. Eel,ion carries the interaction

of the electrons with the ions which is usually described by a pseudopotential V̂PsP, see
section 2.2.3, or may be simplified in terms of the jellium model, see section 2.2.4. Ionic
kinetic and potential energy are described by the obvious classical expressions. Vext,ion

in the ionic potential energy describes the action of an external field on the ions.

2.2.2. Self-Interaction correction (SIC)

The LDA approximation introduces a self-interaction (SI) error because the total
energy employs the total density which also includes the electron on which the interaction
acts. This causes a couple of problems and correspondingly there were many attempts to
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mellow the SI errors, as the generalized gradient approximation [67], a kinetic extension
thereof [68], or hybrid xc functionals see, e.g., [69]. All these attempts are of limited use
for dynamics of electron emission where the SI error is particularly harmful. Its effect
for the long-range Coulomb term is to shift the s.p. energy spectrum. This leads to a
wrong ionization potential if estimated from the energy of the HOMO. This is a severe
problem in a real-time simulation in which electron emission is evaluated on the fly. One
must remove the SI error exactly. A safe way to achieve that is to augment the LDA
density functional an SI Correction (SIC) [70]

ELDA −→ ELDA[%↑, %↓]−
∑

α

ELDA[%α] (4)

where %α labels the density associated to s.p. α, that is %α(r, t) = |ϕα(r, t)|2. In this
formulation of SIC, the price to pay is to deal with a non-hermitean and state-dependent
Hamiltonian (see section 2.3). The difficulty is especially severe in the time domain
as the non-hermiticity of the Hamiltonian requires extra measures to guarantee unitary
propagation, for tractable strategies see [71, 72].

Thus, a solution of full dynamical SIC equations remains computationally expensive
and there is still no universally accepted solution to the SIC problem, especially in the
time domain. Fortunately, there are many situations in which simplified implementations
of SIC are possible and justified. The Average Density SIC (ADSIC), which was proposed
already in the 1930s [73] and applied since the 2000s in clusters [63], provides a simple and
robust SIC. The idea underlying ADSIC is to assume that all valence electrons contribute
about equally to the SI error. This amounts to replace Eq. (4) by

ELDA −→ ELDA[%↑, %↓] −
∑

σ∈{↑ ↓}
NσELDA[%σ/Nσ] . (5)

where Nσ is the number of electrons with spin σ. ADSIC delivers again a functional of
the local density only and thus can be treated in the same manner as any LDA scheme. It
turns out that ADSIC works remarkably well in a wide class of compact atomic/molecular
systems [74] and especially well for metal clusters. The major difficulty with ADSIC lies
in the total number Nel of electrons which explicitly enters the functional. It is thus not
applicable to situations with fragmented electron density such as in dissociation and to
bulk systems (the latter because Nel grows infinite). Ionization is manageable as long
as it remains moderate as compared to Nel. And this is typically the physical situations
we are interested in. There is also another case for which ADSIC is probably not suited,
namely if the system combines various types of binding. This is the situation for instance
in Na(H2O)n complexes in which metallic and covalent bonding are at play [75]. Such
cases require a full SIC treatment which is feasible with some formal and algorithmic
effort [71, 72]. However, this is much more elaborate and more involved than ADSIC.
The present release of QDD does not contain full SIC. It is, nevertheless, our plan to
include it in a future release.

There exist more elaborate approaches to full SIC. One option is to treat Coulomb
exchange exactly, but then ignoring correlations. The other options belong to the class
of optimized effective potentials (OEP) which aim at best possible local potentials sim-
ulating exchange-correlation effects [76, 77, 78]. The next simple after ADSIC is the
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SIC-Slater approximation [79, 80] which accounts for the local dominance of particu-
lar s.p. states. The method of Krieger-Li-Ifrate (KLI) puts a feedback loop on top of
SIC-Slater to cure deficiencies of the mere SIC-Slater approach [81]. These three meth-
ods, SIC-Slater, KLI, and exact exchange, are also implemented in QDD, however with
reduced functionality: they do not work for fractional occupation numbers. A safe ap-
plication of SIC-Slater and KLI is confined to static calculation because time-dependent
simulations can easily run into insurmountable difficulties [82, 83]. Nonetheless, we find
it useful to have these options available for occasional checks. For the formal details, see
the brief summary in [63] or the extensive review on OEP [78].

After all, full TDDFT dynamics which is free of the SI error and applicable to all
systems is still a matter of research and development. To say it positively, the present
code, limited to ADSIC in that respect, provides a useful tool for many applications and
with a bit of coding for further developments of a time-dependent SIC.

2.2.3. Pseudopotentials

There is a great variety of pseudopotentials available. The code employs two vari-
ants. Particularly efficient and simple to use are local pseudopotentials integrated from a
pseudo-density which is represented as a sum of Gaussians. The corresponding potential
is then a sum of error functions

VPsP(r) = Ze2
2∑

i=1

ci
erf(|r|/(

√
2σi))

|r| , (6a)

erf(x) =

√
2

π

∫ x

0

dy e−y
2

, (6b)

where the σi are widths and the strength parameters ci have to line up to the total charge
of the ionic core c1 + c2 = Zion. This pseudopotential is well suited for alkaline atoms
for which it was originally developed [84].

More involved, but also more versatile in the applicability, are the Goedecker-like
pseudopotentials from [85] which are composed from a local and a non-local part as

V̂PsP = Vloc(r−R) + V̂nloc , (7a)

Vloc(r−R) = −Zion

x
erf (x) + e−x

2
3∑

n=0

Cn+12nx2n , x =
|r−R|
rloc

, (7b)

V̂nloc(r, r′,R) =
∑

i,j

∑

l

l∑

m=−l
G∗ilm(r−R)hlij Gjlm(r′ −R) , (7c)

where R is the position of the ionic core with respect to which the pseudopotential is
defined. The non-local part (7c) serves to project out the electronic states which are
occupied in the ionic core. It involves a summation over the angular momentum l, its
component m = −l...+l, and i, j. The projector functions G are defined as:

Gilm(r) =

√
2 |r|l+2i−2 exp

(
−|r|

2

2r2
l

)

r
l+(4i−1)/2
l

√
Γ

(
l +

4i− 1

2

)Ylm(Ωr) , (7d)
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where Γ is the gamma function and Ylm is the spherical harmonics, evaluated at the solid
angle Ωr about the position vector r. For the chemical elements we deal with, we use
orders i, j = 1, 2 and l runs from 0 up to 2. The parameters related to a given ionic core
are thus: rloc, C1...4, rl, h

l
ij with i, j ∈ {1, 2}. The projection looks expensive at first

glance. However, one can exploit the fact that the Gaussian projectors cover only a small
region of space, of order of a few multiples of the non-local radii rl. Thus one needs to
evaluate the projectors only on a small sub-grid which reduces the expense dramatically.

2.2.4. The soft jellium model for the ionic background

The electronic wave functions of bulk metals and of metal clusters are spread softly
over the whole system and hardly resolve the spatial structure of the ionic cores. This
allows one to approximate the detailed ionic background by a smooth, positive back-
ground density. Such a jellium approximation is a standard approach in the theory of
bulk metals [86]. It is also very popular in connection with metal clusters because it
allows one to describe the gross features of cluster electronic shell structure and dynam-
ics without bothering about the fine details of ionic structure. The adaptation of the
jellium model to a finite cluster is straightforward. One carves from bulk jellium a finite
element of constant positive charge density corresponding to the average bulk density.
The volume is chosen such that its total charge coincides with the given ionic charge.
For finite clusters, it is advantageous to use jellium with a soft surface profile. This is
more suited for numerical handling and it improves the quality of the model, e.g., by
producing a correct peak energy for the optical response of metal clusters [87]. Versatile
and easy to handle in this respect is a Woods-Saxon profile for the jellium density

%jel(r) = %jel,0

[
1 + exp

( |r| −R(θ, φ)

σjel

)]−1

, (8a)

with R(θ, φ) = Rjel

(
1 +

∑

lm

αlmYlm(θ, φ)

)
, (8b)

∫
dr %jel = Nion . (8c)

The jellium radius Rjel is determined by Eq. (8c), the normalization to the desired
number of ions. The central density is determined by the bulk density %jel,0 = 3/(4πr3

s)
and the Wigner-Seitz radius rs is a genuine material parameter [86]. σjel parametrizes
the surface width and the transition from 90% to 10% bulk density is achieved within
4σjel.

The model also allows one to describe deformed clusters by angular dependence
R(θ, φ) of the extension. This is achieved through the deformation coefficients αlm
weighting the impact of the spherical harmonics. Actually, we use in the code only
the quadrupole deformations α20 and α2±2 as well as the hexadecapole deformation α40.
Axially symmetric shapes are obtained if α2±2 = 0 where then positive α20 produce
prolate shapes and negative α20 oblate ones. The hexadecapole moment plays a role
for fine-tuning the shape [88]. The cluster radius Rjel is fixed by the other parameters
through Eq. (8c) which is to be solved numerically by a root finding procedure, see the
Supplemental material, section M.3.2.2.
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After all, the leading parameters of the soft jellium model (8) are the Wigner-Seitz
radius rs and the surface thickness σjel. They are universal for a given material. Typical
values are rs ∼ 4 a0 with σjel ∼ 0.9 a0 for Na clusters, rs ∼ 2.66 a0 and σjel ∼ 0.76 a0 for
Mg clusters, or rs ∼ 3 a0 and σjel ∼ 0.78 a0 for Ag clusters. The deformation parameters
αlm depend on the actual cluster and strongly vary with system and size.

The jellium approximation then consists in discarding the ionic contribution to the
total energy (3), i.e. the terms Ekin,ion and Epot,ion, and to replace the pseudopotential
background in Eel,ion by the Coulomb potential of the jellium density (8). There is no
dynamics associated with the jellium. The model thus applies to situations where ionic
motion can be ignored. Note that QDD offers the possibility to consider an even simpler
modeling option by means of phenomenological electronic shell models of harmonic-
oscillator or Woods-Saxon type [89, 34]. This can be done in very flexible manner by
supplying the shell model choice in form of an explicit 3D field and reading it as back-
ground potential, for details, see the Supplemental material, section M.3.3.

2.2.5. External excitation fields and excitation mechanisms

The total energy (3) contains a contribution Eext from (time-dependent) external
electromagnetic fields. These are supposed to come from external sources and they
serve as dynamical excitation mechanisms. The code contains explicit entries for laser
pulses or the Coulomb field of a by-passing charged ion. The excitation reduces to an
instantaneous dipole boost in the limit of extremely short pulses or a very fast and
sufficiently far by-passing ion. This constitutes an alternative way of excitation which
we will also discuss at the end of this subsection, together with two further instantaneous
excitation schemes for more subtle modes (spin dipole, scissors). This type of excitation,
which changes instantaneously the electronic center-of-mass momentum, is also often
called a kick excitation.

2.2.5.1 Laser fields

Lasers are the most important and very flexible means for a dedicated, well tuned exci-
tation of electronic systems. They produce a strong coherent electromagnetic field which
can be well approximated by a classical time-dependent electromagnetic field. Typical
wavelengths are in the range of several hundreds of nm. This is a huge distance as com-
pared to the spatial extension of atoms, molecules, and (most) clusters. One can thus
treat the laser field in the limit of long wavelengths (k → 0). This amounts to deal
with a spatially homogeneous electrical field E at the cluster site and we can also neglect
the effect of the magnetic field for the laser intensities of relevance here. The coupling
Hamiltonian leaves the freedom of gauge transformation [90]. The external field operator
in velocity gauge reads:

Vext = eE0F (t) · p̂ , F (t) =

∫ t

0

dt′ f(t′) exp (−iωlast
′) , (9)

where f(t′) is the envelope of the laser pulse. The same pulse in length gauge becomes

Vext = eE0f(t)·r̂ exp (−iωlast) (10)

which is simpler to handle because the laser field acts here simply as a time-dependent
local operator. QDD thus uses the external field in length gauge. Transformation to
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velocity gauge, if needed, can be performed a posteriori by standard rules of gauge
transformation [91].

The laser pulse is characterized by frequency ωlas, peak field strength E0 = |E0|,
polarization E0/E0, and time profile f(t). The field strength is usually parametrized in
terms of the laser intensity I as

E0 = cEII
1/2 , cEI = 1.07× 10−8 eV

a0

(
W

cm2

)−1/2

. (11)

Even if numerous works on the characterization of the time profile of the laser pulse do
exist [92, 93, 94, 95], this profile is very often not precisely known experimentally, and
is usually taken as a Gaussian with a certain Full Width at Half Maximum (FWHM).
Gaussians require long simulation times to cover the outer wings of the pulse. To avoid
that, we shape a pulse with finite support by using a sin2 envelop instead:

f(t) =





sin2

(
π

t

2Tpulse

)
for t ∈ {0, 2Tpulse}

0 else
. (12)

It is close to a Gaussian pulse in the vicinity of peak field strength and combines high
spectral selectivity with finite bounds. Note that the form (12) is scaled such that the
pulse parameter Tpulse is identical with the FWHM of a Gaussian pulse.

2.2.5.2 Charged projectiles

Probing electronic systems by beams of charged particles is a standard tool in atomic
and molecular physics [96] and is also used in cluster physics. Fortunately enough there
exists a class of cases which can be addressed in a simplified, more robust way: distant
collisions with highly charged ions, protons and, to some extent, also electrons can be
considered as being structureless. What only counts is their Coulomb field. Charged ions
are heavy and can be treated with classical trajectories Rext(t). For sufficiently heavy
and fast projectiles, one can approximate these trajectories by straight lines and that is
what is done in QDD. In any case, the effect of the ion, of charge Zext, on the system
can be described by a time-dependent external field [97]:

Vext(r, t) =
Zexte

2

|r−Rext(t)|
, (13a)

Rext(t) = Rext(0) + Ṙext(0)t . (13b)

Magnetic effects are neglected. They may play a role only for extremely fast ions in
the relativistic domain. The ionic trajectories are characterized by the ion velocity vion

and the impact parameter bion [98]. The velocity is more or less well defined by the
experimental setup. But the impinging ion beam will cover a broad range of impact
parameters. From the theoretical side, one has then to run several calculations with
systematically varied impact parameters. Reaction cross-sections are then computed by
integration of the reaction probability over impact parameters, for examples see [99, 100].
Note that the mere Coulomb field (13) can only be used for distant collisions where the
Coulomb singularity stay away from the system and that is the regime we intend with
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the charged projectile. Close collisions lead to significant electron transfer which requires
careful modeling of a pseudo-potential for the colliding ion.

More involved projectiles come into play when considering atomic collisions. Such
scenarios could, in principle, also be treated in QDD and it had been investigated in
the past in connection with collisions on surfaces [101]. However, the preparation of the
initial condition is much handwork because it has too many degrees of freedom and has
to be done in several steps. We thus do not discuss this option further in this public
version of the QDD code.

2.2.5.3 Instantaneous boost

If the time of impact from a laser pulse or a charged projectile is shorter than the typical
response time of occupied electron states, the pulse just instantaneously imprints a certain
phase profile onto the s.p. wave functions which then unfolds in the subsequent electron
dynamics. The leading mechanism here is a dipole boost which initializes dynamics as

ϕα(r, t=0) = eip0·rϕα,g.s.(r) (14)

where p0 is the boost momentum related to the boost energy Eboost =
Nel

2me
|p0|2. Such

an excitation mocks up realistic irradiation either through a very short laser pulse or a
collision with a bypassing swift charged projectile. In both cases, the shortness of the
excitation practically means that the initial boost delivers a perturbation covering all
frequencies. As a consequence, the response of the system is dominated by the coupling
to its eigenfrequencies and only depends on the amplitude of the boost. This considerably
reduces the possibly large set of parameters in the case of a laser pulse or a charged
projectile to explore various scenarios. Actually, very small boosts are typically used for
evaluating the optical absorption spectrum, see section 3.2.4. The code also provides
the option of an instantaneous displacement of the electron cloud which is a zero-time
excitation as the boost, but with bias to higher energies.

2.2.6. Further instantaneous excitations

There are two more instantaneous excitations schemes built into the QDD code which
trigger less prominent modes, namely spin-dipole and scissors oscillations. The spin-
dipole mode is initiated by a spin-dipole boost (Eq. (M.8) in the Supplemental material)
similar as the dipole boost in Eq. (14), however spin-up and spin-down boosted in oppo-
site directions. The mode is tracked by spin-dipole moment, see section 3.2.5.

The scissors mode is an orbital J = 1− excitation representing a rotational oscillation
of one principle axis of the electron cloud against the corresponding ionic axis [102, 103].
It is initialized by an instantaneous rotation (M.9) of the ionic background relative to the
electron cloud. This mode is tracked by the angular momentum of the electron cloud,
see section 3.2.5.

2.3. Equations of motion

The degrees of freedom of the theory are the s.p. wave functions ϕα, their occupation
number ωα, and ionic positions and momenta RI ,PI . We derive in this section equations
of motion for each of them. Those for the ϕα’s as well as for the RI ’s and PI ’s are
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obtained from a variational principle on the total energy Etotal. For fixed ωα, the resulting
equations of motion finally deliver coupled TDLDA-MD equations in which electrons are
propagated according to TDLDA equations and ions according to classical Molecular
Dynamics (MD). Such coupled dynamics is often quoted Ehrenfest dynamics [35]. The
dynamical equations for the ωα’s requires a dedicated sequence of approximations well
documented in the literature [104]. We shall not enter those details here and just recall
briefly the path towards the RTA we use to effectively propagate the ωα’s.

2.3.1. Equations of motion for single particle electronic wave functions : TDLDA

2.3.1.1 Electronic Kohn-Sham equations and TDLDA

Static and dynamical equations determining structure and dynamics of the electron cloud
are determined by variation of the total energy with respect to the s.p. wave functions
ϕα. This yields what is called the Kohn-Sham (KS) equations [64]. We use density func-
tionals [65, 66] i.e. functionals in Local Density Approximation (LDA). The dynamical
application is called Time-Dependent LDA (TDLDA) and we use this acronym also in
cases where we add SIC (see section 2.2.2) to the treatment.

The time-dependent KS equations determining the propagation of electronic wave
functions are:

ĥσαϕα = i~∂tϕα for α ∈ {1, ...,Ω} , (15a)

ĥKS,σ =
p̂2

2m
+ VC(r, t) + V̂xc[ρσ] + V̂el,ion + Vext(r, t)︸ ︷︷ ︸

VKS

, (15b)

VC(r, t) = e2

∫
dr′

%(r′, t)
|r− r′| , (15c)

V̂xc,σ = εxc [%σ(r, t)] + %σ(r, t)
δεxc[ρ]

δρ

∣∣∣∣
ρ=%σ(r,t)

, (15d)

where ĥ is the KS mean-field Hamiltonian and σ ∈ {↑, ↓}. The exchange-correlation
potential V̂xc involves the construction δεxc[ρ]/δρ which is the functional derivative of the
exchange-correlation energy per particle εxc with respect to the local density ρ considered
as an independent variable. This functional derivative is then evaluated at ρ = %σ(r, t).
V̂el,ion is the potential describing the interaction of the electrons with the ions, and is

either a pseudopotential V̂PsP, see section 2.2.3, or stems from the jellium model, see
section 2.2.4.

The stationary KS equations analogously read

ĥσα ϕα = εαϕα for α ∈ {1, ...,Ω} , (15e)

where ĥ is composed in the same manner as in the time-dependent case (instantaneous
approximation for Vxc). The KS equations (15e) pose a stationary eigenvalue problem.
They provide the electronic ground state of a system. The time-dependent KS equations
(15a) pose an initial value problem. The natural starting point is the ground state as
obtained from the stationary KS equation. The numerical solution of the KS equations
is explained in section 3. The time evolution delivered by the dynamical KS equations
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(15a) can be expressed formally by the unitary one-body time-evolution operator

Û(t, t′) = T̂ exp

(
− i

~

∫ t′

t

ĥKS(t′′)dt′′
)

(16a)

where T̂ is the time-ordering operator. This yields a closed expression for the time-
evolution of s.p. states

|ϕα(t)〉 = Û(t, t′)|ϕα(t′)〉 . (16b)

This compact form will be used later on in connection with the extension of the propa-
gation by dissipation, see section 2.3.2.

2.3.1.2 LDA and TDLDA with mixed states

So far, we dealt with the equations for pure states. In the case of stationary states at
finite temperature and in the case of dissipative dynamics, we encounter mixed states.
This is described by associating an occupation number wα with each s.p. state ϕα as
provided already in the initial set-up in section 2.2. Even if the wα’s become crucial in
the dissipative dynamics, see section 2.3.2, they are by definition kept frozen during a
TDLDA propagation. They matter again for stationary states at finite temperature, in
which case they are determined by:

wα =
1

1 + exp[(εα − µ)/T ]
(17)

where εα is the s.p. energy of state α obtained from the stationary KS equations (15e),
and µ is the chemical potential tuned such that the total electron number is reproduced
by
∑
α wα = Nel.

In case of a mixed state, it is advantageous to express the entity {ϕα, wα} in compact
manner by the one-body density operator:

ρ̂ =

∞∑

α=1

|ϕα〉wα〈ϕα| '
Ω∑

α=1

|ϕα〉wα〈ϕα| . (18)

The solution of the thermal KS equations, i.e. Eqs. (15e) together with (17), provides the
density operator immediately in this form which is called natural orbital representation
(diagonal in the s.p. states). In general, the one-body density operator can be non-
diagonal with respect to given s.p. states. This will play a role later on.

As said above, the occupation numbers wα are kept frozen during TDLDA. The KS
equations (15a) then can be written compactly as

i~∂tρ̂ =
[
ĥ, ρ̂
]

(19)

where ĥ[%↑, %↓] is the KS Hamiltonian as above. This pure mean-field propagation (19)
leaves the occupation numbers wα’s unchanged and propagates only the s.p. states. The
mean-field propagation of an initial state (18) then reads:

ρ̂(t) =

∞∑

α=1

|ϕα(t)〉wα〈ϕα(t)| '
Ω∑

α=1

|ϕα〉wα〈ϕα| = Û(t, 0)ρ̂(0)Û−1(t, 0) (20)

where Û is the mean-field evolution operator (16a).
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2.3.2. Relaxation-Time Approximation (RTA)

The Relaxation-Time Approximation (RTA) is a robust and well manageable method
to describe microscopically dissipation from two-particle collisions in a many-body sys-
tem. Dissipation emerges generally from a reduction of the full dynamics of a large,
iteracting system to a small subsystem. Here, in particular, we deal with the reduction
of fully correlated many-body dynamics to a one-body dynamics within mean-field the-
ory. A useful framework for that is the BBGKY hierarchy of density matrices which
allows one to derive quantum kinetic equations [11], the quantum generalization of the
much celebrated Boltzmann equation [105]. These kinetic equations are very bulky and
still extremely costly for finite fermion systems. The RTA, developed long ago for bulk
fermionic matter [106, 86], provides a robust and pertinent low-level approach to the
(quantum) kinetic equations. We recently adapted them to finite fermion systems [62]
which opens the door to affordable systematic investigations of dissipation processes in
molecules [107].

In the following, we will present a brief summary of RTA and its pratical implementa-
tion and refer to [62] for a detailed derivation. To simplify the rather involved notations,
we drop the spin index throughout this RTA part.

2.3.2.1 Formal background

The quantum Boltzmann equation is the quantum mechanical counterpart of the semi-
classical Vlasov-Uehling-Uhlenbeck equation [4, 3]. It complements the self-consistent
TDLDA propagation of the one-body density operator ρ̂ by dynamical correlations
through a collision term. It reads in general [108, 109] i~∂tρ̂ −

[
ĥ, ρ̂
]

= Î[ρ̂] where the

left-hand side contains the mean-field propagation. Î in the right-hand side stands for
the quantum-mechanical collision term which, however, is extremely hard to handle for
finite fermion systems. A great simplification can be achieved by the Relaxation-Time
Approximation (RTA) which was used successfully in a wide variety of homogeneous
systems [110, 86]. The RTA equations for the present case of finite fermion systems
read [111]:

∂tρ̂ = − i

~
[
ĥ, ρ̂
]
− 1

τrelax
(ρ̂− ρ̂eq[%, j, Esp]) , (21a)

%(r, t) =
∑

α

|ϕα(r, t)|2 wα , (21b)

j(r, t) =
~
me

∑

α

wα ϕ
∗
α(r, t)

→
∇ −

←
∇

2i
ϕα(r) , (21c)

~
τrelax

= 0.40
σee
r2
s

E∗intr

Nel
, r(el)

s =

(
3%̄

4π

)−1/3

, σee = σee(%̄) , (21d)

where ρ̂eq is the density operator of the thermal equilibrium for local density %(r, t)
current distribution j(r, t), and total energy E. The computation of E is often simplified
by replacing it through a computation of the total s.p. energy Esp. This is justified for
changes of energy at frozen local density %(r, t). To see that, we decompose the energy
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as [112]:

E = Esp + Erearr[%] , Esp =
∑

α

wαεα =
∑

α

wα〈ϕα|ĥ|ϕα〉 . (22)

The rearrangement energy Erearr is a functional of local density and remains unchanged.
Thus δE = δEsp, in other words, changes in total energy E at frozen % are identical to
changes in s.p. energy Esp. Thus we will use Esp in many of the subsequent equations
whenever evaluating changes of E, but not always write it explicitely.

A crucial parameter is the relaxation time τrelax which is taken over from semi-classical
Fermi liquid theory, for details see [111]. Key entries are: the intrinsic (thermal) energy of
the system E∗intr (defined later on in Eq. (24), the actual number of valence electrons Nel,

the in-medium electron-electron cross-section σee, the effective Wigner-Seitz radius r
(el)
s

of the electron cloud, and the average electron density %̄. Note that r
(el)
s and σee depend

on the average density %̄ because a spatially varying τrelax would be very cumbersome
to implement in a quantum mechanical expression. The average density is deduced from

the r.m.s. radius rrms of the actual electron cloud as %̄ = 3Nel/
[
4π(
√

5/3 rrms)
3
]
.

The RTA equation (21a) is rather involved because its entries depend in various ways
on the actual state ρ̂(t). The most expensive piece is the instantaneous equilibrium
density operator:

ρ̂eq [%, j, E] = |ϕ(eq)
α 〉w(eq)

α 〈ϕ(eq)
α | (23a)

which minimizes LDA energy with constraint on the actual %(r, t), j(r, t) and energy
E(t). It is determined by the Density-Constrained mean-Field (DCMF) equation

ĥDCMF[%, j]ϕ(eq)
α = ε(eq)

α ϕ(eq)
α (23b)

ĥDCMF[%, j] = ĥ[%, j, E]−
∫

drλ(r)%̂(r)−
∫

drλj(r) · ĵ(r)

−µ
∫

dr(%̂(r)− %(r, t))2 − µj
∫

dr (̂j(r)− j(r, t))2 (23c)

where ĥ[%, j] is the KS mean-field Hamiltonian at the given instant. The %̂(r) is the

operator of local density at the space point r and ĵ(r) the operator of local current. The
wanted energy E (or Esp(t) equivalently) and electron number Nel are tuned by adjusting
chemical potential µ(eq) and temperature T (eq) in the Fermi-Dirac distribution:

w(eq)
α =

(
1 + exp

[
〈ϕ(eq)
α |ĥ|ϕ(eq)

α 〉 − µ(eq)

T (eq)

])−1

(23d)

µ(eq) ↔
∑

α

w(eq)
α = Nel , T (eq) ↔

∑

α

w(eq)
α 〈ϕ(eq)

α |ĥ|ϕ(eq)
α 〉 = Esp(t) (23e)

Although cumbersome to evaluate, it is important to use exactly this local, instantaneous
equilibrium in the relaxation term. This guarantees that the dissipative step conserves
local density, current, and energy as it is mandatory for a correct collision term [113].
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starting point:

ρ̂(t0) =
∑
α |ϕα(t0)〉wα(t0)〈ϕα(t0)|

1

?

mean-field propagation: |ϕ(mf)
α (t1)〉 = Û(t1, t0)|ϕα(t0)〉 , w(mf)

α = wα(t0) = const.

ρ̂mf = ρ̂mf(t1) =
∑
α |ϕ

(mf)
α (t1)〉 w(mf)

α 〈ϕ(mf)
α (t1)|

2

?

express ϕ and w through natural orbitals

ρ̂mf(t1) =
∑
α

|ϕ(nat)
α 〉w(nat)

α 〈ϕ(nat)
α |XXXXXXXz

3

%(r, t1) , j(r, t1), E(t1)

@
@
@@R

?

4
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ρ̂mix = ρ̂mf −
∆t

τrelax
[ρ̂mf − ρ̂eq]
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∑
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Figure 2: Sketch of the scheme for performing one large time step t0 −→ t1 = t0+∆t in solving the
RTA equations. The numbers in open circles indicate the steps as outlined in the text.
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Figure 3: Sketch of the scheme for solving the DCMF equations (23). This scheme expands step 4
from the RTA scheme presented in figure 2. The symbol O stands for orthonormalization of the new set
of s.p. wave functions and D for the damping operator in the accelerated gradient step, see Eqs. (29),

however, with different damping parameters E0,damp → E
(RTA)
0,damp and δ → δ(RTA).
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2.3.2.2 Summary of the RTA procedure

We briefly summarize the solution scheme for one step from t ≡ t0 to t0 +∆t ≡ t1, for
more details, see [111]. The TDLDA propagation runs at a much faster pace than the
relaxation. We resolve it by standard techniques [33, 34] on a time step δt which is
much smaller (by a factor 50–200) than the RTA step ∆t. We summarize this TDLDA
propagation in the evolution operator Û from Eq. (16a) and only discuss the RTA step
t0 → t1:

1. We first propagate ρ̂ by pure TDLDA. The s.p. states in diagonal representation

(18) evolve as |ϕα(t0)〉 → |ϕ(mf)
α (t1)〉 = Û(t1, t0)|ϕα(t0)〉, while the occupation

numbers wα(t1) = wα(t0) are kept frozen (pure mean-field propagation).

2. Absorbing bounds (see section 3.1.6) may have removed parts from the s.p. wave
functions and so destroy orthonormalization. We transform the propagated density
operator to a representation in terms of natural orbitals which has the diagonal
representation (18) with an orthonormal set of s.p. wave functions together with

corresponding occupation numbers {ϕ(nat)
α , w

(nat)
α }, for details on the procedure see

appendix C.1. This step can be overridden if reflecting (or periodic) boundaries
are used, in which case TDLDA preserves orthonormalization.

3. We compute density %(r, t1), current j(r, t1), and total energy E, associated to the
TDLDA-propagated density matrix ρ̂mf .

4. We determine the thermal mean-field equilibrium state ρ̂eq constrained to the given
%, j, and E from step 3. This is achieved by the DCMF equations (23) with an
iterative algorithm sketched in figure 3. The equilibrium state ρ̂eq is represented by

new s.p. states {|ϕ(eq)
α 〉} and new occupation numbers w

(eq)
α in diagonal form (18).

Having these, we determine finally the excitation energy as the energy relative to
the zero-temperature state

E∗intr = Esp −
∑

α

w(T=0)
α 〈ϕ(eq)

α |ĥ|ϕ(eq)
α 〉 (24)

where w
(T=0)
α are the occupation numbers from a Fermi distribution (23d) at tem-

perature zero, i.e. a step function. The chemical potential µ(T=0) is tuned to

match
∑
α w

(T=0)
α = Nel using the given s.p. energies 〈ϕ(eq)

α |ĥ|ϕ(eq)
α 〉. This E∗intr

thus measures the amount of thermal excitation energy in the system, for details
see [114].

5. We compose the new density operator as mixture of TDLDA propagated state ρ̂mf

and equilibration driving term ρ̂mf − ρ̂eq with weight ∆t/τrelax as

ρ̂mix = ρ̂mf −
∆t

τrelax
[ρ̂mf − ρ̂eq]

where the relaxation time τrelax requires the actual intrinsic excitation energy E∗intr,
see Eq. (24) also obtained from DCMF. While evaluating the mixing, the new state
is expressed in natural orbital representation (18). This yields the final s.p. states
{|ϕα(t1)〉} for this step and preliminary new occupations w̃α. Technical details of
this mixing step are found in appendix C.2.
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6. The mixing in step 5 may have slightly changed the energy such that we remain
with a small energy mismatch as compared to the aimed E. We now apply a small
iterative thermalization step to readjust the energy, as outlined in Appendix A.
This then yields the final occupation numbers wα(t1) which comply with energy
conservation.

The above steps are sketched in figure 2 whereby the step numbers here correspond to
those encircled in the figure. The most involved part is step 4 for the determination of
the solution of the DCMF equations. It is expanded in detail in figure 3. There are three
termination criteria in DCMF iteration: convergence of the variance of s.p. energies ε0,
energy convergence ε2, and convergence of average deviation of local density ερ. These
are given as input parameters, for details see the Supplemental material. Note, that
the actual thresholds for the values of these criteria may change with the system. As a
rough guide, energy criteria scale with Fermi energy and density with average density of
a system. An explicit example of convergence is discussed in section 3.1.7.

As said above, the time step δt for propagation of TDLDA is very small because it is
limited from above by the maximal energy on the grid representation. The stepping ∆t
for the relaxation term needs only to resolve the changes in the actual mean field which
allows much larger values. Typically, we perform 50–200 TDLDA steps before calling one
RTA step. For detailed values, see the examples discussed in the Supplemental material,
see section M.6.5.1 therein.

A word is in order about the system for which the present form of RTA can be used.
The relaxation time τrelax is one global number chosen according to the average electron
density %̄, see Eq. (21d). This requires systems which can be characterized by such
an average density, i.e., systems having only small density variations in the bulk as it
holds typically for metallic bonds. The RTA rate is insensitive to many details of the
microscopic collision term as energy- and angle-dependent scattering cross-sections [115]
or a broad spectrum of relaxation rates. However, these details are usually resolved only
(if at all) for fast and energetic processes which are anyway deep in the regime of semi-
classical VUU. The grossly averaged treatment of RTA is acceptable for not too fast and
not too energetic processes, preferably in compact systems.

2.3.3. Ionic dynamics

We finally add the ionic dynamics to complete the picture. Ions are described by
classical Molecular Dynamics (MD), i.e. classical equations of motion, under the influence
of their mutual Coulomb force, the forces experienced from the electrons, and possibly
external forces. We start from the total energy (3) which serves as classical Hamiltonian
in terms of RI and PI . Standard variation yields the classical equations of motion for
the ions of positions RI and momenta PI

∂tPI = −∇RI

[
Epot,ion(RI) +

Nel∑

α=1

〈ϕα|VPsP(r−RI)|ϕα〉
]

, (25a)

∂tRI =
PI
MI

. (25b)

They are to be propagated simultaneously with TDLDA for the electrons, here repre-
sented by wave functions ϕα. The simultaneous propagation scheme is called TDLDA-
MD. It applies to all dynamical situations including those that are far from the adiabatic
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limit and embraces truly diabatic scenarios. The practical realization adds the (simple)
classical propagation to the evolution of the electronic states. For solution schemes, see
section 3.

3. Numerical aspects: methods, inputs and outputs

3.1. General numerical schemes

3.1.1. Grid representation and derivatives

3.1.1.1 Grid definition

All wave functions and fields are defined on a three-dimensional (3D) equidistant Carte-
sian grid of Nx × Ny × Nz grid points. The spacing between the points is given as δx,
δy, and δz in units of a0. For reasons of equilibrated accuracy, it is highly recommended
to give the same value to all of them. Typical values depend on the atoms/ions involved.
The pseudopotentials (see section 2.2.3) set the pace. The δx, δy, and δz must not
be larger than

√
2 ln 2 times the smaller radius in the pseudopotential min(rloc, rl) in

Eqs. (7b) or (7d). In case of the jellium model (see section 2.2.4), the spacing should be
of order of the surface width σjel.

The grid is automatically arranged in such a way that in each direction the same
number of grid points are located on both sides of the origin. The coordinate values for
e. g. the x direction are thus:

(
1− Nx

2

)
δx,

(
2− Nx

2

)
δx, . . . ,

(Nx
2
− 1)δx,

Nx
2
δx . (26)

3.1.1.2 Derivatives

The computation of currents and the action of the kinetic energy operator need first and
second derivatives. We have two options for that in the code. Standard is the definition
of derivatives via Fourier transform. This delivers high precision at affordable expense.
For simplicity, we explain here the Fourier strategy for one dimension.

Given are Nx discrete grid points xν , ν ∈ {1, . . . , Nx}, in coordinate space. They are
mapped to the same number of grid points kn in Fourier space (physically equivalent to
momentum space) as:

xν =

(
−Nx

2
+ ν

)
δx , ν = 1, . . . , Nx , (27a)

kn = (n− 1)δk, n = 1, . . . , Nx/2 , (27b)

kn = (n−Nx − 1) δk, n = Nx/2 + 1, . . . , Nx ,

δk =
2π

Nx δx
. (27c)

Note the particular indexing for the k-values. In principle, the values kn = (n− 1)δk for
all n are equivalent for the Fourier transform, but for the second half of this range the
negative k-values should be chosen because of their smaller magnitude. For the Fourier
expansion, k = −δk and k = (Nx− 1)δk are equivalent because of periodicity in k-space.

24



A function f(xν) in coordinate space is mapped to a function f̃(kn) in Fourier space
by:

f̃(kn) =

Nx∑

ν=1

exp (−iknxν)f(xν) , (27d)

f(xν) =
1

Nx

Nx∑

n=1

exp (iknxν)f̃(kn) (27e)

This complex Fourier representation implies that the function f is periodic: f(x+Nx δx) = f(x).
The appropriate integration scheme is the trapezoidal rule which complies with the above
summations, adding up all terms with equal weight. The derivatives of the exponential
basis functions are:

dm

dxm
exp (iknx) = (ikn)m exp (iknx) . (28)

Computation of the m-th derivative thus becomes a trivial multiplication by (ikn)m in
Fourier space. Time critical derivatives are best evaluated in Fourier space using the Fast
Fourier Transform (FFT). To that end, a forward transform (27d) is performed, then the
values f̃(kn) are multiplied by (ikn)m as given in Eq. (28), and finally we transform
backward by applying (27e) to (ikn)mf̃(kn) to come back to coordinate space.

A word is in order about the first derivative. The upper point in the k-grid, δk Nx/2,
is ambiguous. Exploiting periodicity, it could be equally well −δk Nx/2. Both choices
introduce an unwanted bias. We circumvent the problem by setting kNx/2 = −kNx/2 = 0.

3.1.2. Handling of the pseudopotentials

As exposed in section 3.1.1.1, the maximal value of the grid spacing is related to the
smallest length scale entering the pseudopotential. Local pseudopotentials for metals, see
Eq. (6), are quite forgiving in the sense that their length scales σi’s are relatively large.
For instance, in the case of Na clusters, one can safely use δx = 0.8 a0. For Goedecker-like
pseudopotentials, the values of rloc and rl’s are often smaller, particularly for elements
with covalent binding which can require a large amount of grid points, thus rendering
the calculations more expensive. The original values of rloc and rl’s for some chemical
elements in the first, second and third rows [85, 116] are implemented by default in the
source code of QDD and can be used as such, with the drawbacks mentioned just above.
To circumvent them, we have for some elements refitted pseudopotential parameters with
a unique and possibly large length scale for rloc and rl. These are given with the input
files of the examples of QDD application in the supplemental material.

3.1.3. Electronic ground state

The quality of ground state convergence is essential for the time propagation as a
poor static convergence will generate spurious dynamical behaviors. A typical example
is provided by the box size which needs to be chosen as large as possible in a balanced
way between accuracy and computational cost. Maximum mesh size is basically given
by the extension of the frozen core electrons as practically delivered by radial extension
of a pseudopotential or surface thickness in the case of a jellium background. Box size
itself is basically a free parameter once the box extension covers the ionic configuration
and some electron skin around. However static convergence can be reached even with
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too small computational boxes and the defect may even not be clearly visible on static
properties. Indeed the static convergence procedure involves reorthonormalization of s.p.
wave functions at each static iteration which may blur the biasing effect of too small a
box size. The ultimate test allowing to ensure that the static convergence is properly
reached in a sufficiently large box is a dynamical one in which the computed ground state
is propagated in time with absorbing boundary conditions and without any excitation
(see section 3.1.6). Too small a box becomes then immediately visible as the statically
constrained electrons become free to fly away and can be absorbed at the boundaries of
the computational box.

The computation of the ground state amounts to diagonalize the KS Hamiltonian ĥ
(15a) under the constraint of orthonormality of s.p. wave functions ϕα, i.e. 〈ϕα|ϕβ〉 =
δαβ . The static KS equations (15e), optionally combined with thermal occupation (17)
of s.p. states, are solved iteratively. The wave functions are iterated with a gradient step
(also known as steepest descent) which is accelerated by pre-conditioning with kinetic-
energy damping [117, 118]. The static iteration from step n to step n+ 1 can be written
in the following compact form:

ϕ(n+1)
α = O

{
ϕ(n)
α − D̂

(
ĥ

(n)
KS − 〈ϕ(n)

α |ĥ(n)
KS |ϕ(n)

α 〉
)
ϕ(n)
α

}
(29a)

D̂ =
δ

T̂ + E0,damp

(29b)

where T̂ = p̂2/(2m) is the operator of kinetic energy, O means orthonormalization of the

whole set of new s.p. wave functions and ε
(n)
α = 〈ϕ(n)

α |ĥ(n)
KS |ϕ

(n)
α 〉 is the expectation value

of the KS Hamiltonian on ϕ
(n)
α at static iteration n. Because of self-consistency, the KS

Hamiltonian is itself expressed as ĥ
(n)
KS = ĥKS[ϕ

(n)
α ]. This sort of kinetic-energy damping

is particularly suited for the fast Fourier techniques that we use in QDD. The damped
gradient step has two numerical parameters: the step size δ and the damping regulator
E0,damp. The latter should be chosen typically of the order of the depth of the local
potential VKS (E0,damp ' |ε1| where ε1 is the lowest s.p. energy). Typical values are
E0,damp = 10, . . . , 50 eV, depending on the material under consideration. After proper
choice of E0,damp, the step size is of order of δ = 0.1, . . . , 0.5. Larger values yield faster
iteration but can run more easily into pathological conditions.

In some cases, an initial finite electronic temperature, associated with Fermi distri-
bution (17), can help the convergence of the statics, see e.g. section M.8.5. In that case,
we have to realize that the wave function step has produced a new set of s.p. energies

ε
(n+1)
α = 〈ϕ(n+1)

α |ĥ(n+1)|ϕ(n+1)
α 〉, which requires that we determine preliminarily new oc-

cupation numbers w̃α with Eq. (17). Using the w̃α immediately can occasionally lead to
unstable iteration. It is safer to mix old and new occupation numbers gently as

w(n+1)
α = ηoccw̃α + (1− ηocc)w(n)

α . (30)

Typical values of mixing lie around ηocc = 1/2. Critical cases may be stabilized with
smaller values and forgiving cases can cope with larger values.

Having the new s.p. wave functions and occupation weights, the new local electron
densities (2a) are computed and then the new KS Hamiltonian (15). This provides the
starting point for the next iteration. The process is continued until sufficient convergence
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is achieved. We consider as the convergence criterion the averaged energy variance of the
s.p. states at step n:

∆ε
(n)

=

√∑
α wα(∆ε2

α)(n)

Nel
, (31a)

(∆ε2
α)(n) = 〈ψ(n)

α |(ĥ(n)
KS)2|ψ(n)

α 〉 − (ε(n)
α )2 , (31b)

ε(n)
α = 〈ψ(n)

α |ĥ(n)
KS |ψ(n)

α 〉 . (31c)

Vanishing total variance ∆ε
(n)

signals that we have reached a stable energy minimum,
i.e. a solution of the KS equations. However, this may be only a local minimum (isomeric
state). It requires experience to judge whether one has found the absolute energy mini-
mum. In case of doubt, one should redo a couple of static iterations from very different
initial configurations. It turns out that ∆ε provides a stringent test of convergence, much
superior to the mere decrease of total energy as often used. Alternative convergence cri-
teria, also used in other codes, can be derived from checking the convergence of the local
density distribution ρ(r). We explore here two options

δ(n)ρ =

∫
dr
∣∣ρ(n+1)(r)− ρ(n)(r)

∣∣
∫

dr
, (32a)

δ
(n)
2 ρ =

√∫
dr
(
ρ(n+1)(r)− ρ(n)(r)

)2
∫

dr
. (32b)

This yields the density change per grid point. As reference density, one should take

the average density ρ̄ = 3Nel

/ [
4π(
√

5/3 rrms)
3
]

with rrms being the r.m.s. radius of the

actual electron density. The dimensionless ratios δ(n)ρ/ρ̄ or δ
(n)
2 ρ/ρ̄ allow the comparison

of the convergence between different systems. Figure 4 compares the three criteria using
H2O as a test case. All three lines have exactly the same slope, although differing a
bit in their offset. This means that all three criteria are equally well suited to measure
the degree of convergence. The present code uses only the variance of s.p. energies as
termination criterion (but prints the other criteria on demand).

The initial guess for the s.p. wave functions can be done in two ways. One option is to
start with the wave functions of the deformed harmonic oscillator, for details see e.g. [112].
These are characterized by n = (nx, ny, nz), the number of nodes in each direction. We

sort the states with increasing oscillator energy ε
(0)
α = ~ωxnαx + ~ωynαy + ~ωznαz and stop

if the desired number of states is reached. The deformation of the initializing oscillator
influences the initial state in two ways: first, through the deformation of the basis wave

functions as such, and second, through the energy ordering of the ε
(0)
α and corresponding

sequence of levels built. Variation of initial conditions means basically a variation of
the oscillator radius and deformation. In particular, the initial deformation decides in
which local minimum the KS iteration will terminate. This initialization by harmonic
oscillators is well suited for metallic bonding where the wave functions spread over the
whole system. Covalent bonding produces localized states and here it is more appropriate
to start also from localized states. In that case, we place Gaussians at each ionic site
and, if more is needed, higher harmonic oscillator wave functions. Bookkeeping is more
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Figure 4: Logarithmic plot of three different convergence criteria for static convergence: the variance
of s.p. energy (31) and the two density criteria (32), versus iteration number n. Test case is the H2O
molecule.

involved then and will be explained in connection with the input to the code in the
supplemental material.

A word of caution is in order about open-shell systems, i.e. systems where the HOMO-
LUMO gap is extremely small or zero. There can occur situations which have no DFT
solution. The C atom is an emblematic example in that sense. It has four valence
electrons. Two of them occupy the 1s state in the pseudo atom (frozen core electrons).
There remain two spin up electrons (total spin has to be one) to be placed into the 1p
shell with three available spin-up states. However, any choice of placing the two electrons
leads to an unstable KS iteration. Thus one should check not only the numerics but also
the physics if a system refuses to converge. A finite initial electronic temperature can help
sometimes but not systematically. An instructive example is given in the Supplemental
material, see section M.8.5.

3.1.4. Ionic ground state

Three strategies are implemented for the optimization of the ionic configuration:
steepest descent, dynamical cooling, and simulated annealing. The simplest method
is steepest descent. For a given electronic configuration, one computes the Hellmann-
Feynman forces on the ions and follows their direction for a short step. One re-iterates
to the new electronic ground state and repeats the steps until convergence. This is the
fastest method but it is prone to get stuck in local minima. One should use it only if one
knows a reliable starting configuration.

Dynamical cooling allows one to better explore the energy landscape and thus to
avoid distraction by unimportant side minima. From a given starting configuration, one
runs full TDLDA-MD and keeps a protocol of ionic kinetic energy. Starting from a non-
minimal energy configuration, the kinetic energy will first increase, which is accompanied
by a corresponding decrease of potential energy. As soon as the kinetic energy turns to
decrease, we stop propagation and reset all ionic velocities to zero. This defines the new
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starting point for the next round. The procedure is stopped if gain in kinetic energy falls
below a given level of precision. This method is more forgiving than steepest descent.
Still, it is also often kept in isomeric minima. One has to rerun it from different initial
configurations to explore the landscape of minima.

The most elaborate, expensive, and reliable method is simulated annealing, for a
detailed description see [119]. Simulated annealing explores in Monte-Carlo fashion the
energy landscape with a supposed thermal distribution of configurations thereby reducing
the temperature successively which leads at the end to a ground state minimum for
temperature zero. The method has several parameters which need to be tuned carefully
to a given situation. It requires some experience to use it efficiently [119], for details see
section M.6.1 in the Supplemental material.

3.1.5. Electronic propagation

Electronic dynamics at the level of TDLDA is governed by the time-dependent KS
equation (15a). QDD offers two different ways of determining the solution. Both methods
starts directly from the formulation of the propagator Û (16a). The first method, called
exponential evolution, simply employs a Taylor expansion of the propagator:

|ϕα(t+δt)〉 = T̂ exp

(
− i

~

∫ t+δt

t

dt′ĥKS(t′)

)
|ϕα(t)〉

≈
m∑

n=0

1

n!

(
− iδt

~

)n (
ĥKS

)n
|ϕα(t)〉 , (33)

where ĥKS in the expansion is taken at fixed time. At time t, only ĥKS(t) is known.
However, using that in the approximate propagator (33) generates undue bias on t with
disastrous consequences for energy conservation. The solution is to use a predictor-
corrector scheme. For the predictor, we perform a half-time step, i.e. using Eq. (33)

with ĥKS(t) and δt/2. This produces an intermediate set of wave functions ϕα(t+ δt/2)

with subsequent densities and KS Hamiltonian ĥKS(t + δt/2). For the corrector step,

we perform a full time step (33) within using the intermediate KS Hamiltonian ĥKS(t+
δt/2) in the expansion. Appropriate values for the order of expansion are m = 4 for
the predictor and 8 for the corrector. Below that, conservation laws are at stake, and
above that, we will not gain much because the time step is also limited by the speed
of change of ĥ(t). Altogether, this exponential evolution provides a reliable propagation
with satisfying norm and energy conservation.

An alternative propagation scheme is time-splitting method [120], often also coined
split-step or split-operator technique and for the Schrödinger equation more precisely TV -
splitting technique because it relies on splitting propagation into kinetic energy T̂ and
potential V̂ parts. We use in the following the term “time-splitting method”. In addition,
we extend it here for use in connection with non-local pseudopotentials presented in
section 2.2.3. The KS Hamiltonian is split into three pieces:

ĥ = T̂kin + V̂nloc + VKS,loc(r, t) (34a)

where V̂nloc is the piece stemming from the non-local part of the pseudopotentials while
VKS,loc(r, t) collects all parts which form together a local potential. The latter is strongly
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time-dependent due to the self-consistent electronic contributions. The non-local part
depends only on ionic motion which is snail-slow at electronic scale such that we can
ignore time dependence during an electronic step. For going from t0 to t1 = t0 + δt, we
define a propagator for each one of the three parts and factorize the full propagator as:

|ϕα(t1)〉 = Û(t1, t0)|ϕα(t0)〉

≈ exp

[
− i

~
δt

2
VKS,loc(r, t1)

]
Ûnloc exp

[
− i

~
δt T̂kin

]
Ûnloc×

× exp

[
− i

~
δt

2
VKS,loc(r, t0)

]
|ϕα(t0)〉 , (34b)

Ûnloc =

m∑

n=0

1

n!

(
− iδt

2~

)n (
V̂nloc

)n
. (34c)

The sequence (34b) is built in symmetric manner to minimize the separation error. The
quality of the time-splitting method depends on the size of the commutators between the
three pieces of ĥ. The smaller the commutators, the better it is. The advantage of the
method is that the two crucial propagators, kinetic and potential energy, are performed
exactly. The local potential energy operator can be easily exponentiated in coordinate
space, while the kinetic energy operator is exponentiated in Fourier space for which
we employ forward and backward FFT as for the evaluation of derivatives (see section
3.1.1). The propagator of the non-local potential could also be resolved exactly, however
with considerable bookkeeping expense. It is thus handled by the Taylor expansion (34c).
The time-splitting has a particular advantage concerning evaluations of the KS potential.
Note that the separation (34b) employs the potential at t0 in the first potential step and
at t1 in the second. This avoids any bias by giving the same weight to both times. The

key saving now comes with the fact that the local propagator exp

[
− i

~
δt

2
VKS,loc(r, t1)

]

only changes the complex phase of the wave function and does not change the local
density. Thus we can evaluate the final new density for t1 already at the stage before
applying this local propagator and no predictor-corrector strategy is needed any longer.

We exemplify and compare the two propagation schemes for the case of the Na+
9

cluster with explicit ionic structure described by local pseudopotentials (see section 2.2.3).
We aim at testing the stability of the steppings and do that by propagating the electronic
ground state of Na+

9 with frozen ions.
Let us start with the exponential evolution (33). Besides time step δt, it has the

order of Taylor expansion m which appears twice: once in the predictor and once in
the final step. A fast scheme is obtained with m = 2 for the predictor and m = 4 for
the corrector. Even if it can work for a while, it develops instabilities rather early (in
the present test case, after a few 100 fs). A sensitive check is the conservation of the
norm of the s.p. wave functions because the exponential step at finite m is not exactly
unitary, whereas an exact propagation is. Insufficiencies then show up first in a slight
drift of the norm that we observe for the cheap choice m = 4 rather early, long before
true instabilities pop up. A much better norm conservation is obtained with m = 4 for
the predictor and m = 8 for the step. This is this choice that is shown in figure 5 for
two different time steps. The case δt = 3.53 as (1 as = 10−18 s) is rock stable for very
long, the norm is conserved up to 12 digits, and energy as well as dipole stay solidly at
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Figure 5: Comparison of electronic propagation schemes taking as test case the ground state of Na+9
with explicit ionic background. Lower panels: time evolution of dipole moments. Upper panels: time
evolution of the total energy. Right panels: View over a long time interval up to 2.4 ps. Left panels:
zoom on a shorter time interval usually sufficient for simulating electronic effects. The acronym “TV ”
stands for the time-splitting method (34b) and “exp” for exponential evolution (33) of order m = 8.
The numbers in the legend indicate the time step in units of attoseconds.

the ground state value. The slightly larger δt = 3.54 as, on the other hand, explodes
after 500 fs. Such a sudden transition is typical for the exponential propagation and has
to do with the convergence radius of the expansion. The limit of stability is related to
the maximal energy in the numerical representation. It may change in truly dynamical
situations such that one must choose a smaller step size. With δt = 2.4 as, we are on
the safe side for all dynamical scenarios in Na+

9 . Larger values are possible if carefully
checked.

The situation is much different for the time-splitting (34b). This propagation is
manifestly unitary (in that case without non local pseudo potential) such that the norm
of the s.p. wave functions is strictly conserved. But there is a slight error in dipole
amplitude and energy from the onset (better visible in the left panels) which is due to the
fact that we do not use the exact propagator U but an approximate factorized expression
of it. The splitting error depends on the time step δt as can be seen in the figure (mind the
scales, though). Once we have accepted the initial error, the propagation time-splitting
method proceeds in stable manner for long. The larger δt = 4.8 as produces gradually
increasing deviations after 1 ps (see right panels). They are still rather small and may be
acceptable when simulating hefty excitations with dipole amplitudes and energies larger
than the deviations here and with the smaller δt = 2.4 as one remains at the safe side
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for much longer. It is also to be noted that the time-splitting scheme allows a time step
of δt = 4.8 as, larger than the maximum value allowed for the exponential evolution
(3.53 as). This indicates once more that the time-splitting is more forgiving. Most
importantly, the time-splitting scheme is an order of magnitude faster than exponential
evolution. This therefore makes it by far the preferred option, even at the price of some
small initial deviations.

In any case, this example nicely demonstrates the commonly known fact that any
numerical propagation scheme has a limited time span of reliability which depends on
the numerical representation and, in case of self-consistent mean fields, on the actual
dynamical scenario. It is, therefore, strongly recommended to launch a few test runs for
any new application before starting large scale production.

3.1.6. Absorbing boundary conditions

A grid representation naturally leads to reflecting or periodic boundary conditions.
Reflection emerges for finite difference schemes. A representation of the kinetic energy by
complex Fourier transform is associated with periodic boundary conditions where flow
leaving the box at one side is re-fed at the opposite side. Both can lead to artifacts
if a sizable fraction of electronic flow hits the boundaries. Proper handling of electron
emission requires absorbing boundary conditions which hinder outgoing electrons from
coming back into the simulation box. There are several ways to solve the problem, for
a detailed discussion see [121]. The QDD code employs the simple strategy of applying
a mask function during time evolution [122]. This technique is particularly easy to
implement and has been widely used in the past. Its robustness and efficiency allow
one to develop advanced analyzing techniques on the grid as, e.g., the computation of
Photo-Electron Spectra (PES) and Photo-Angular Distributions (PAD) [36, 123]. We
give below a short explanation.

The left panel of figure 6 sketches the implementation of absorbing boundary condi-
tions with computation of PES and PAD on a coordinate space grid (as 2D cut of a 3D
grid). The absorbing boundary conditions are indicated by the ring area in the figure
in between the radii Rin and Rout, covering here 3 grid points in each direction (actual
calculations typically use 6 and more points). The absorption is performed in each time
step as:

ϕα(r, t) −→ ϕ̃α(r) = Û(t+δt, t)ϕα(r, t) , (35a)

ϕα(r, t+δt) = M(r) ϕ̃α(r) , (35b)

M(r) =





1 for |r| < Rin ,

cosγM
(
π

2

|r| −Rin

Rout −Rin

)
for Rin < |r| < Rout ,

0 for |r| > Rout .

(35c)

First comes one standard KS step (see section 3.1.5) expressed here in terms of the
TDLDA propagator Û defined in (16a), which yields the intermediate wave function
ϕ̃α(r). This is followed by the action (35b) of the mask function M defined in (35c)
and shown in the right panel of figure 6, which steadily reduces the norm of the wave
functions from the inner mask radius Rin to the outer one Rout. We use here a spherically
symmetric mask. The spherical profile is helpful to minimize griding artifacts when
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Figure 6: Left: Schematic view of a coordinate space grid with an absorbing layer (red shaded zone), a
sampling direction rn for accumulating the Photo-Angular Distribution (PAD), see Sec. 3.2.6.3, and a
measuring point rM for the computation of a Photo-Electron Spectrum (PES), see Sec. 3.2.6.4. Right:
mask function M(r) plotted as a function of r, the distance to the center of the numerical grid.

computing angular distributions [124] (simpler rectangular masks may be used if PAD
and PES are not of interest).

The limiting radii need yet to be specified. The outer radius is the smallest distance
from the origin of the box to the bounds, formally Rout = minrν∈bounds(|rν)|) where the
index ν indicates that rν is a grid point. The inner radius is then

Rin = Rout −NMδx , (36)

where δx is the grid spacing. The NM characterizes the number of absorbing points in
one direction. It is a crucial numerical parameters, see table M.10 in the manual.

This looks simple and straightforward. However, the mask technique is not perfect.
One will always encounter a small amount of reflected flow, particularly for electrons with
low kinetic energy. One can minimize the back-flow by proper choice of the exponent γM
entering the mask profile, see Eq. (35c). This depends, however, on the actual numerics
(number of absorbing points, size of time step). Typical values of γM are of order 1/8
or lower. A detailed description and discussion of this approach and its proper choice of
numerical parameters is found in [121].

Absorbing boundary conditions introduce a subtle difficulty in the time propagation.
Indeed, while electronic propagation is built such that it preserves orthonormality of s.p.
wave functions (see section 3.1.5), orthonormality of s.p. wave functions is gradually lost
as soon as absorbing boundary conditions are active. There are two ways to deal with
that. The first is to assume that the wave functions in full space remain orthonormal
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and simply to carry on. Ionization is deduced in this case from the loss of norms of the
s.p. wave functions. The second is to diagonalize the one-body density matrix in the
simulation box which delivers the natural orbitals, for a detailed discussion see [125]. In
the natural orbital basis, the s.p. basis remains orthonormal by construction. The change
of electron content caused by the absorbing boundary conditions then leads to a change
of occupation numbers in the natural basis. Both schemes to TDLDA yield exactly the
same results (up to numerical accuracy), see e.g. [125], but count ionization in different
manner, from loss of norms for straightforward TDLDA propagation, or from changing
occupation numbers in the basis of natural orbitals. RTA does not leave a choice. It uses
natural orbitals by construction and it produces a genuine change of occupation numbers
from relaxation. We conclude from this discussion that the change of occupation numbers
in RTA with absorbing bounds has two sources: relaxation processes modeled by RTA
and ionization induced by absorbing boundary conditions.

3.1.7. DCMF

The solution of the DCMF equations (23) was already sketched in figure 3. We add
here a few more explanations. The basic ingredient is the solution of the mean-field
equation (23b) for which we use again the accelerated gradient step (29) with its own

damping parameters however, with different damping parameters E0,damp → E
(RTA)
0,damp

and δ → δ(RTA). New is the iteration of the Lagrangian parameters λ(r) and λj(r) for
density and current constraint in the DCMF mean-field Hamiltonain (23c). These are
driven by the mismatch of density and current as

λ(n+1) = λ(n) + 2µ(%(new) − %)

λ
(n+1)
j = λ

(n)
j + 2µj(j

(new) − j)
(37)

via the quadratic term whose coefficients µ and µj are numerical parameters kept con-
stant throughout the calculations. They should be large enough to drive efficiently.
However too large values slow down iterations again. A proper compromise for them
has to be found and it depends on the actual system. For more details and an example,
see the supplemental material, section M.6.5. The constraint iteration adds one more
termination criterion. As in the accelerated gradient step, we check for convergence of

energy in terms of energy change ∆Esp = |E(n+1)
sp −E(n)

sp | and of variance of s.p. energies
√

∆2hDCMF = (1/Ne)(
∑
α w

(n)
α 〈ϕ(n)

α |(ĥDCMF)2|ϕ(n)
α 〉 −

(
w

(n)
α 〈ϕ(n)

α |ĥDCMF|ϕ(n)
α 〉
)2

), see

also figure 3 in section 2.3.2.2. New is a check for convergence of density in terms of
deviation from the goal

δρDCMF = Nel

∫
dr|ρDCMF(r)− ρ(r, t)|∫

dr
, (38a)

δjDCMF = Nel

∫
dr|jDCMF(r)− j(r, t)|∫

dr
. (38b)

In practice, we found that it suffices to check convergence of δρDCMF.
The DCMF scheme also requires to tune the Fermi distribution to the given particle

number and energy, see Eq. (23e). This is solved by interlaced bracketing [126] which
is reliable and robust, although not very efficient. But this is not an issue for this
inexpensive part of the RTA scheme.
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The most critical and time consuming part in the RTA step is the solution of the
DCMF equations (23) to obtain the local instantaneous equilibrium state. Figure 7
shows an example of typical convergence pattern for DCMF during RTA evolution. The
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Figure 7: Illustration of convergence of the RTA step for the test case Na8 with jellium background
excited by a laser pulse with frequency ωlas = 2.6 eV, duration Tpulse = 25 fs, and intensity I = 5×1011

W/cm2. Left column: as functions of time, z-dipole moment for RTA dynamics compared with mere
TDLDA (bottom) and number of DCMF iterations in each RTA step (top). Right column: as functions
of the number of DCMF iterations, deviation of local density from goal (bottom) and average variance
of s.p. energies (top), both for three times as indicated and highlighted by vertical lines in the upper
left panel.

left lower panel shows the dipole response to the external laser field to demonstrate the
dynamical regime in which the example works. The difference between RTA and TDLDA
indicates the times at which dissipation is most active, namely in the early stages where
the two curves start to deviate and where the impact of the laser amplitude (e.g. in terms
of energy input) is large. The left upper panel shows the number of DCMF iterations
which are needed until the required precision demands are fulfilled. This number changes
dramatically along the dynamical path and it is, indeed, largest where dissipation has
most work. It is to be noted that the needed number of iterations sensitively depends
on the system and strength of excitation. In the present case, we could afford to set a
limit at 1000 iterations. There are situations where one needs considerably more. The
right column of the figure shows detailed convergence patterns in the top panel, variance
of s.p. energies

√
∆2hDCMF and, in the bottom panel, deviation of density δρDCMF/ρ̄,

see Eq. (38a), at three different times. The convergence criteria are not simply going
downward, particularly in the slowest case. The interplay of energy optimization and
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density matching in DCMF can lead to significant fluctuations in the iteration process.
After all, with diligent tuning of the convergence parameters and a bit of patience, we
obtain the nice result in the left lower panel which demonstrates that proper dissipation
eliminates the unphysical long-term oscillations of a resonantly excited system.

3.1.8. Ionic propagation

Time propagation for ionic molecular dynamics (MD) is done with the robust and
reliable Verlet algorithm [127, 126], also known as leap-frog algorithm. We present it here
for one ionic core described by the two vectors R and P, and thus drop the subscript I
that labels the ionic core (we correspondingly label the ionic mass M). We denote by
δtI the ionic time step which is a multiple of the electronic time step δt.

Propagating the ionic equations of motion (25) raises the same problem with update
of the forces as we had experienced in quantum mechanical propagation. The Verlet
algorithm solves this by taking coordinate R and momentum P at different time grids,
shifted by half a time step δtI/2. More precisely, this proceeds as:

R(t+δtI) = R(t) + δtI P
(
t+ 1

2δtI
)
/M , (39a)

P
(
t+ 3

2δtI
)

= P
(
t+ 1

2δtI
)

+ δtI F
[
R(t+δtI), t+δtI

]
, (39b)

where F denotes the total force acting on the ionic core. The advantage of this algorithm
is that this force is needed only for propagating P and it uses the coordinate R evaluated
on the shifted time grid, thus readily available at the moment when it is needed, because
it was computed using the previous momentum P.

The disadvantage of the method appears at initialization and for computation of
observables. In both cases, one has to move one of the variables R or P by half an ionic
time step to have both at the same time. This problem is avoided by slight modification
of the Verlet algorithm, called velocity Verlet [126]. Here, both variables are handled at
the same time grid. The momentum P(t+ 1

2δtI) at intermediate time is estimated by a
predictor and the force at intermediate time is taken as an average of the forces at t and
t+δtI . This amounts to:

R(t+δtI) = R(t) + δtI P(t+δtI)/M + 1
2 (δtI)

2F (R(t), t) /M (40a)

P(t+δtI) = P(t) + δtI
1

2

[
F(R(t), t) + F(R(t+δtI), t+δtI)

]
. (40b)

Note that the force at the new time F(R(t+δtI), t+δtI) is available for the P propagation
(40b) because the R propagation (40a) has been completed before.

Typical values of δtI are a couple of δt, the latter being the electronic time step.
There is no general rule for how large δtI can be. This strongly depends on the system
under study. For explicit examples, the reader can refer to the supplemental material. In
any case, both schemes, Verlet and velocity Verlet, are equivalent in terms of precision,
energy conservation, and stability.

A typical example of ionic motion is given in figure 8. Test case is the H2O molecule
where the electrons are excited initially by an instantaneous boost (see section 2.2.5.3).
The electronic response (see left column) is very fast. The dominant part of the excitation
energy is used up for ionization, leaving a charged molecule out of Coulomb equilibrium
and still with a considerable amount of electronic excitation energy as visible from the
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Figure 8: Illustration of ionic motion in H2O following an instantaneous electronic boost along y direction
with initial energy Eboost = 27.2 eV, with the molecule lying in the xy plane (top middle inset).
Propagation was done with δt = 0.6 as and δtI = 10δt = 6 as. Plotted as functions of time are: left
column, ionization (top) and electronic dipole moment in each spatial direction (bottom); middle panel,
ionic kinetic energy Ekin, total and its three spatial components; right column, ionic velocities (bottom)
and positions (top) in x direction.

ongoing remaining dipole oscillations. Coulomb pressure and dipole fluctuations drive, at
a slower pace, ionic motion. In spite of the considerable excitation, the ionic amplitudes
remain small, reflecting a small transferred energy, at least in the short initial time in-
terval shown here (full thermal equilibration takes much longer). Indeed, the maximum
total ionic kinetic energy is less than 1 eV, while the initial boost brings almost 30 eV
in the system. Along with this small transferred energy, we plot in the right column
of the figure the ionic velocities and positions in x direction. We observe small ampli-
tude oscillations, rather regular and at a pace given by the leading ionic frequencies,
much smaller than the electronic ones, visible in the bottom left panel which shows the
electronic dipole response with very fast oscillations. Through this example, we demon-
strated the non-trivial cross-talk between electronic and ionic dynamics, made possible
by the non-adiabatic coupling between electrons and ions in our TDLDA-MD at the level
of the Ehrenfest approximation.

3.2. Observables

3.2.1. Energies

We denote by E(Nel,R
(Nion)) the total binding energy of a system consisting of Nel

TDLDA electrons and Nion ionic cores. Energy is a most prominent observable and
it naturally results from any calculation with density functionals. Comparison with
measurements is usually done in terms of differences of energies, e.g., the monomer
separation energy as the adiabatic energy difference Emono = E(Nel,R

(Nion))−E(Nel −
1,R(Nion−1)) where both energies are to be taken from fully relaxed ionic configurations,
or the vertical ionization potential (IP) EIP = E(Nel,R

(Nion))−E(Nel−1,R(Nion)) where
the new electronic state in the Nel − 1 system has relaxed but the ions are kept in their
original configuration.
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As a byproduct of mean-field calculations, one also obtains the series of s.p. energies
εα. But it is known that the εα’s from (TD)LDA are spoiled by the self-interaction error.
This defect can be cured by a SIC, see section 2.2.2, after which the set of εα provides
a fair map of electron separation energies, particularly of the IP [63, 74]. Experimental
data on s.p. energies are mainly the IP and the sequence of peaks in a PES from one-
photon processes with laser pulses of weak intensity. Note that the QDD code also offers
the possibility to compute fully dynamically a PES in case of pure TDLDA, see section
3.2.6.4. Besides comparison with data, the s.p. energies are very instructive observables
for theoretical interpretation as, e.g., analyzing electronic shell structure [128, 89].

Other “theoretical” observables are the separate energy contributions which are help-
ful to analyze the energy balance in dissipative dynamics [107]. We will address later
on in this paper the intrinsic excitation energy E∗intr and the energy absorbed from the
laser field Eabs. The E∗intr characterizes the amount of internal, so to say thermal, kinetic
excitation of the electron cloud. This is a quantity which plays a key role in the model
for dissipation, as was explained in section 2.3.2.2. The absorbed energy is computed as

Eabs(t) =

∫ t

0

dt′
∫

drE(t′) · j(r, t′) (41)

with an additional small correction for particle loss at the absorbing bounds (for details
see [107]). It provides the total excitation energy delivered to the system.

3.2.2. Densities and shapes

Density functionals also produce the electronic local density %(r, t) as a natural out-
come. The electronic density together with the ionic configuration {RI} constitutes the
shape of a system in all detail. But this can become an overwhelming amount of infor-
mation. The gross structure of a shape is more simply sorted in terms of its multipole
moments. Leading quantity is the root-mean-square (r.m.s.) radius which reads for the
electrons:

rrms(t) =

√∫
dr %(r + rcm, t) r2

Nel
(42a)

where rcm is the electronic center of mass. Next come the quadrupole moments which
quantify the deformation. The QDD code computes and prints the Cartesian quadrupole
moments

Qij =

∫
dr %(r + rcm, t)

(
rirj −

δij
3
r2

)
. (42b)

This is provided not only for the electronic density but also for the ionic configuration
by replacing

∫
dr %... through

∑
I ....

The quadrupole moments (42b) as such change scale with system size. This inhibits
simple comparison of shapes between systems of different size. To that end, it is advisable
to work with dimensionless quadrupole moments which can easily be deduced from the
above radius and quadrupole moments. This is outlined in appendix B.

3.2.3. Polarizability

The static polarizability is a key observable of atoms, molecules, and clusters. We
discuss here the most important case of dipole polarizability αD. One applies a static
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external dipole field Vext(r) = eE
(stat)
0 ·r and performs static calculations for a couple of

E
(stat)
0 . This delivers an electric dipole moment eD̄ = e〈r〉 = e

∫
dr r%(r, t) as a function

of E
(stat)
0 . The tensor of static dipole polarizability is then

(αD)ij = e
∂D̄i

∂E
(stat)
0,j

∣∣∣
E

(stat)
0 =0

for i, j ∈ {x, y, z} . (43)

The polarizability matrix simplifies if the system has spatial symmetries. For example, an
axially symmetric system aligned with the z-axis has (αD)xz = (αD)yz = (αD)xy = 0 and
(αD)xx = (αD)yy. A spherically symmetric system has additionally (αD)xx = (αD)zz.

3.2.4. Optical response

Optical response is a key observable in cluster physics. In the limit of long wave-
lengths, the laser field at the system site is related to the dipole moment D = r where
r is taken with respect to the center-of-mass of the electron cloud. Within QDD, the
dipole excitation strength can be computed by spectral analysis of the dipole response
to an instantaneous dipole excitation of the system. To that end, one starts from a well
relaxed ground state and applies the instantaneous initial excitation by a small dipole
boost ϕα(r, t= 0+) ← exp(ip0 · r)ϕα(r, t= 0), see section 2.2.5.3. One then propagates
electrons with TDLDA and samples a protocol of the dipole moment

D(t) =

∫
dr r %(r, t) . (44a)

After a sufficient time, say Tmax, one multiplies the dipole signal D(t) with an appropriate

window function W(t) [126], Fourier transforms it into D̃(ω), and finally obtains the
spectral strength SDi(ω) for i ∈ {x, y, z} and corresponding spectral power PDi as:

SDi(ω) =
={D̃i(ω)}

p0,i
, D̃i(ω) =

∫
dtW(t) eiωtDi(t) , (44b)

PDi(ω) =
|D̃i(ω)|2
p2

0,i

, (44c)

where p0 is the boost momentum initially applied. We here ignore the posssibility of
(small) cross-talk between different channels i and j and concentrate on the diagonal
elements of the strength tensor. The maximum possible spectral resolution is given by
δω = 2π/Tmax. The window function W(t) serves to attenuate the dipole signal toward
the end point Tmax and to avoid artifacts from non-zero D(Tmax) [126]. Useful windows
areW(t) = cos2n

[
tπ/(2Tmax)

]
where n is an integer number. The choice n = 1 produces

often still a bit rough ={D̃i(ω)} while n = 2 usually performs satisfyingly well. It is
interesting to note that this treatment in connection with absorbing boundary conditions
(see section 3.1.6) allows one to compute correctly the escape width of spectral states
lying in the electron continuum. For details of spectral analysis and variants thereof, see
[129].

Spectral analysis can equally well be performed with other observables, as e.g. higher
multipoles, spin modes, etc. The full TDLDA furthermore allows one to go beyond the
linear regime. The more appropriate observable is then the power spectrum (44c).
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The same principles of spectral analysis can also be applied for computing the vibra-
tion spectra of clusters and molecules. Here we concentrate on the MD part of TDLDA-
MD. The analyzing times are then to be taken much longer to supply sufficient spectral
resolution for excitation in the meV range, characteristic of ionic vibrational states, and
the ionic multipole moments ought to be used for the spectral analysis of ionic motion
[130].

3.2.5. Momenta probing exotic modes

As explained in section 2.2.6, QDD also allows one to excite more subtle modes as
spin-dipole and scissors oscillations. These modes require, of course, specific observables
for proper analysis. The spin-dipole mode is tracked by the spin-dipole moment

DS(t) =

∫
dr r %↑(r, t)−

∫
dr r %↓(r, t) . (45)

The observable related to the scissors mode is the orbital angular momentum

L =
∑

α

wα〈ϕα|r̂× p̂|ϕα〉 (46)

where r is to be taken with respect to the center-of-mass of the electron cloud.

3.2.6. Ionization

Absorbing boundary conditions as explained in section 3.1.6 provide a pertinent pic-
ture of electron emission. There are several observables associated with emission from
(photo-)excited systems: total ionization, ionization probabilities, photo-electron angu-
lar distribution (PAD), and photo-electron spectra (PES). We discuss them in the next
four paragraphs.

3.2.6.1 Total ionization

The first observable is the total ionization, i.e. the number of escaped electrons denoted
by Nesc. The, now decreasing, norm of the s.p. wave function ϕα defines the depletion
Nα of state α, from which one computes the ionization from this state, Nesc,α, as the
complement of Nα:

Nα(t) = 〈ϕα(t)|ϕα(t)〉 and Nesc,α(t) = 1−Nα(t) . (47)

The total ionization then reads as the sum of the level ionizations:

Nesc(t) =

Ω∑

α=1

ωαNesc,α(t) (48)

Both, total ionization and detailed level depletion as functions of time, are very instruc-
tive observables [131].
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3.2.6.2 Ionization probabilities

Total ionization can be further analyzed in terms of detailed ionization probabilities.
The probability to find the system at time t in one of the possible (positive) charge
states k to which the system can ionize is denoted by P (+k)(t). A scheme to estimate the
P (+k)(t) has been derived for pure mean-field states with integer occupation probabilities
by combinatorial analysis [132]. We summarize it here briefly.

The physical change of charge state is related to ionization which is realized numeri-
cally by absorbing boundary conditions. From the time evolution of the level depletions
and ionizations per state, Nα(t) and Nesc,α(t) respectively, defined in Eq. (47), one starts
with the following relation

1 =

Ω∑

k=0

P (+k)(t) =

Ω∏

α=1

[
Nα(t) +Nesc,α(t))

]
. (49)

The product in the right-hand side is then expanded and the resulting terms are rear-
ranged, collecting terms containing k factors Nk

α (Nesc,α)
Ω−k

which allows one to identify
them to the ionization probability P (+k) [132]. For examples of application and details
see, e.g., [99, 33].

The irradiation of the C3 chain by an intense laser pulse is taken as an example and
various time evolutions are shown in figure 9. The dipole moment (lower left panel) gives
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an impression of the dynamical response of the molecule. It shows the typical pattern
for an off-resonant excitation. The dipole signal follows the laser profile and some small
asymptotic oscillations remain, due to a small excitation of the system’s eigenmodes.
The total ionization (top red curve in upper left panel) increases in the region of large
dipole amplitudes and then levels off. We also show the ionizations from the HOMO,
HOMO−1 and two degenerate HOMO−2, 3 levels. These are the key ingredients in
evaluating the charge-state probabilities P (+k). The emerging P (+k) are shown in the
right panel. Their time evolution corresponds to the pattern of total ionization. The
neutral state loses probability with increasing ionization while all other take

increasingly their share. Finally, the average charge state of Q = 0.8, read off from the
total ionization, is mainly distributed with 40% of charge state Q = 0 and 40% of charge
state Q = 1. Charge state +2 gather appreciable 14% and the higher charges share
the leftovers with rapidly decreasing amounts (only visible on logarithmic scale). The
distribution visualizes a subtle feature of TDLDA in connection with absorbing boundary
conditions: it generates inevitably a mixed state (which becomes apparent in a natural-
orbital representation [133]) and this state embraces very different charge states when
decomposed properly. The different charges produce different Coulomb fields. TDLDA
can describe only the average charge and an average mean field.

So far, we have discussed the case of pure mean-field states with integer occupation.
RTA inevitably produces mixed states with fractional occupations wα. The extension
to this situation is formally trivial and actually implemented in QDD, provided that we
merely generalize the level depletion of state α as Nα(t) = wα〈ϕα(t)|ϕα(t)〉 and apply
the combinatorial decomposition as before. Although technically simple, the physical
interpretation of the resulting P (+k) is involved. Fractional occupations wα as generated
by RTA produces also a spread in charge states which has nothing to do with ionization,
but reflects a general weakness of a thermal mean-field state, namely that it represents
unavoidably an ensemble covering different electron numbers [134]. The resulting P (+k)

of RTA with absorbing boundary conditions thus mixes effects from ionization with
effects from thermalization. It is a task for future research to disentangle these two
contributions.

3.2.6.3 Photo-electron angular distributions

Photo-angular distributions (PAD) are evaluated in angular segments, see Fig. 6. An
angular segment can be described by an azimuthal angle θ and a polar angle φ. The ref-
erence frame for these two angles is usually the z axis identical with the laser polarization
axis. We collect all probabilities which were removed by the absorption step (35b) and
accumulate it. The grid points in a given angular segment and in the absorbing zone are
denoted rn in Fig. 6, with n an index vector that differs from one segment to the other.

A straightforward collection of grid points in a segment n tends to produce noisy
results because the number of grid points per segment fluctuates. We therefore associate
with each grid point a smoothing function S centered at rn which distributes the strength
over a vicinity of order of grid spacing. This suffices to produce acceptably smooth
distributions. The total PAD A(θ, φ) and the state-specific PAD Aα(θ, φ) are computed
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as :

A(θ, φ) =

Nel∑

α=1

Aα(θ, φ) , (50a)

Aα(θ, φ) =
∑

n∈abso.zone

∫
dr r2 S(rer − rn)nesc,α(rn) , (50b)

S(r) =
max(δx− |x|, 0)

δx

max(δy − |y|, 0)

δy

max(δz − |z|, 0)

δz
, (50c)

nesc,α(rn) =

∫
dt |ϕα(rn, t)|2

[
1−M(rn, t)

]
, (50d)

where er = (sin θ cosφ, sin θ sinφ, cos θ) is the unit vector in the direction of the wanted
angles. The smoothing is done by tent functions which comply with the integration rule
used in the normalization. The angular segments in Fig. 6 schematically symbolize this
smoothing which collects (weighted) information in the vicinity of a ray. An example of
PAD is given in section 4.3 in connection with RTA dynamics.

3.2.6.4 Photo-electron spectra

A Photo-Electron Spectrum (PES) can be deduced from the temporal phase oscillations
of the s.p. wave functions ϕα(rM, t) at measuring points rM close to the absorbing
bounds, see Fig. 6 [135]. The result for the PES sampled at rM is

Y(Ekin,ΩM) =
∑

α

wαYα(Ekin,ΩM) , (51a)

Yα(Ekin,ΩM) =

∣∣∣∣
∫

dt√
2π

eiEkint−iδq
√

2Ekin+iδΩ+iE0F (t)e0·rMϕα(rM, t)

∣∣∣∣
2

, (51b)

δq(t) = E0

∫ t

0

dt′ F (t′) , (51c)

δΩ(t) =
E2

0

2

∫ t

0

dt′ F (t′)2 , (51d)

Note that the formula does not only give the total PES, but also the PES Yα for emission
specifically from state α. In Eq. (51b), e0 = E0/|E0| is the direction of (linear) polar-
ization of the electrical field E0 and ΩM the solid angle associated with rM. This form
applies for the wave function ϕα(rM, t) in length gauge as computed in the code. In

Eqs. (51c) and (51d), F (t) =
∫ t

0
dt′ f(t′) exp (−iωlast

′) is the time integrated laser pulse
envelop introduced in Eq. (9).

A detailed derivation of Eqs. (51) is found in [136]. We summarize here the ideas
behind that compact formula. It is deduced under the assumption that the measuring
point rM is sufficiently far away from the system (placed around r = 0) such that an
outgoing electron wave has direction ek = eM = rM/rM. We expand the wave function
at rM into outgoing waves with direction ek and momenta k > 0. These are plane waves
eikek·rM for weak fields and for stronger fields the corresponding electron waves in the
time-dependent laser field (Volkov states). The fact that we have only outgoing waves in
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one direction allows one to identify uniquely energy and momentum as k = ek
√

2meEkin.
The energy is read off from the phase oscillations of ϕ(rM, t) and the direction ek ⇒ ΩM
from the position of the measuring point. The practical evaluation of PES is done in a
two-step process. QDD prints out the phase information at the measuring point to a file
which is afterward analyzed by an auxiliary program, for details, see the Supplemental
material, section M.7.3.1 therein.

The formula (51) applies for weak and for strong fields, but still fails for extremely
strong fields. The limits of validity depend on system and time structure of the pulse. To
give an order of magnitude, an intensity for long laser pulses impinging on Na clusters
is I ≈ 1015W/cm2. For details, see [136].

This evaluation of PES through the above explained phase sampling is extremely
efficient. However, it is not yet applicable to dissipative dynamics as RTA, because that
causes jumps in the wave functions and thus spoils phase information. A proper extension
of the scheme has yet to be developed.

An example of a PES is given in figure 10. Test case is the H2O molecule, irradiated

-31.6

-21.2

-17.3
-15.1

ε1

ε2

ε3
ε4

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

ε 2
+

2h̄
ω l
as

ε 1
+

3h̄
ω l
as

ε 3
+

2h̄
ω l
as

ε 4
+

2h̄
ω l
as

ε 2
+

3h̄
ω l
as

ε 3
+

3h̄
ω l
as

ε 4
+

3h̄
ω l
as

0 5 10 15 20

ε1ε2ε3ε4

H2O I = 3× 1014 W/cm2

ωlas = 11.4 eV, Tpulse = 36 fs

s.
p
.e

.
(e

V
)

P
h
ot

o-
E

le
ct

ro
n

S
p

ec
tr

u
m

(a
rb

.
u
n
it

s)

Ekin (eV)

Figure 10: Photo-Electron Spectrum obtained in H2O, in the xy plane (see inset of Fig. 8), irradiated
by a laser pulse with characteristics as indicated. The laser polarization is along the z direction. The
single particle energy spectrum is shown as an inset. The short vertical lines at the bottom indicate the
single particle energies shifted by multiples of ωlas.

by an off-resonant laser pulse. In this off-resonant regime, the total ionization remains
small (2 × 10−3). The values of the s.p. energies (see inset of the figure) thus remain
almost constant in time. The PES clearly exhibits sharp peaks (mind the vertical log
scale) above the background signal. These peaks correspond to a map of the s.p. energy
spectrum, shifted by a multiple of the laser frequency ωlas. A PES is thus a standard
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tool to access the single particle energy spectrum of a system. For instance, the 1st, 3rd
and 4th peaks, respectively at 2.6, 5.5 and 7.7 eV, come from a 2-photon absorption of
states 2, 3 and 4. Analogously, the 2nd, 7th, 8th and 9th peaks, respectively at 1.7, 13.1,
16.9 and 19.1 eV, come from a 3-photon absorption of the four states. As expected, the
higher the multi-photon process, the smaller the peak height.

A final word is in order on the peak widths. The longer the laser pulse, the better
the resolution of the peaks. Still, there is physics contained in the width of the peak. In
particular, this way to obtain such a PES, that is from the calculation of the ionization
dynamics, allows the encoding in the peak width of the dynamical coupling between
electrons but also between the electrons and the ionic background. In other words, a
PES contains at the same time static information but also valuable dynamical ones at
the side of the electron emission. This technique is therefore superior to the simple
production of a PES by shifts of the energy spectrum and an artificial widening of the
peaks by, e.g. convolution of a Gaussian with a constant width. Note also that this allows
one to compute a PES also in the on-resonant regime (not shown here), then bearing all
the impacts of a large electron emission can have on the irradiated system, in particular
on the time evolution of the s.p. energy spectrum.

3.2.7. Observables specific to relaxation

Most of the observables computed with RTA are exactly the same as for TDLDA,
e.g., energy, density, excitation spectra, ionization, or PAD. New are observables related
to the mixed character of the one-body operator which is characterized by the occupa-
tion numbers wα. A specific quantity in that respect is the one-body entropy which is
computed in diagonal representation (18) by the standard expression [134]

S = −
∑

α

[wα logwα + (1−wα) log(1−wα)] (52)

in units of Boltzmann constant. It serves as a direct indicator of thermalization and
allows one to read off the typical time scale of relaxation processes. An example will be
discussed along with Fig. 12, when a comparison of a RTA and a TDLDA dynamics is
performed. Note that S remains strictly zero at TDLDA level with constant values of
wα = 0 or 1.

3.3. The structure of the TDLDA and RTA packages

The QDD package, providing TDLDA as a basis with the more elaborate RTA on
top, is a rather complex collection of routines. A rough schematic overview is given in
Fig. 11. It shows the basic structure and switches in a self-explaining manner. A more
detailed tree structure for the code and its subroutines at a deeper technical level is given
in the Supplemental material.

4. Examples of RTA dynamics

A distinctive feature of RTA dynamics is that it accounts for electronic dissipation
which manifests itself by a gradual transformation of the available excitation energy
into heat. We will illustrate this process with two of the initial excitations available
in QDD, namely an initial instantaneous boost on the one hand and a femtosecond
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general initializations (grid, pseudopotentials, ...)

static branch

terminate static, optionally save on static save−file

read s.p. states from static save file

initialize s.p. states

static iterations

initialize with static state from static save−file

continue from dynamic save file

dynamical propagation

optionally with dissipative step (RTA)

terminate dynamic, optionally save on dynamics save−file

(static branch was not run before)

(static branch must have been run before)

(static branch was not run before)

initialize with static state from actual static run 

dynamic branch

Figure 11: Schematic flow diagram of the QDD code.

laser pulse on the other hand. In addition to the standard observables accessible in
TDLDA, we will study the time evolution of the one-body entropy S defined in Eq. (52)
as a specific quantity characterizing dissipative features. Indeed, S is strictly zero in
a TDLDA evolution. Any non-vanishing value of S thus provides a direct indicator of
dissipation.

4.1. Electronic response to an initial boost

A simple way to visualize RTA dynamics is to consider an instantaneous excitation
and to follow in time the dynamics of relaxation of the electrons. Such a perturbation
can be delivered by an instantaneous initial boost of the electron cloud with respect to
the ionic background, see section 2.2.5.3.

We take here such an initial boost along the z direction applied on Na+
11 as an il-

lustrative example. The ionic background is here described by a soft jellium model,
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see section 2.2.4. Three different values of the boost are used, delivering three different
initial excitation energies E∗. We compare in figure 12 the time evolution of the one-
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Figure 12: Time evolution of the one-body entropy (bottom), the total ionization (middle) and the
envelop of the dipole moment in z direction (top, vertical log scale) of Na+11 after various initial boosts
delivering different excitation energies E∗ as indicated. Full curves are obtained in RTA while dashed
curves are obtained with TDLDA.

body entropy, the total ionization and the dipole moment along z for the three E∗ as
indicated, on the one hand obtained in TDLDA (dashed curves) and on the other hand
in RTA (full curves). Note that we chose to plot the envelop of the dipole amplitude
rather than the full signal for a better readability and that we plot it in logarithmic
scale to point out the attenuation of the signal. Without entering details, which can
be found elsewhere [62, 57], we briefly discuss the general outcomes. The dipole signal
(upper panel) shows a fast, near exponential decay in the early phase up to 10 fs. This
is the same for RTA and TDLDA thus having nothing to do with dissipation. It stems
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from Landau damping which is already present in TDLDA [33]. Dissipation becomes
effective in the second phase and here we see clear differences. The TDLDA signal goes
on undamped while RTA leads to further, slow decrease. The effect of dissipation is also
seen in the ionization signal (middle panel). It reduces electron emission because part of
the excitation energy is converted into intrinsic energy thus being not available anymore
for direct electron emission. The most striking difference occurs in terms of the entropy
S. It vanishes for TDLDA and acquires significant values for RTA. One observes a clear
increase of S as a function of time, relaxing sort of exponentially toward an equilibrium
value. This asymptotic value of S increases with initially deposited excitation energy E∗

and the typical relaxation time needed to reach the asymptotics in turn decreases with
E∗, features which are expected in such a dissipative theory.

4.2. Electronic response to a laser

We here illustrate how RTA practically works in case of a realistic laser irradiation.
We take the H2O molecule as test case and consider the electronic response to laser pulses
at two different frequencies [137]. The water molecule has an optical response with a well
identified strong transition around 10 eV, well below its IP (around 15 eV) followed by a
highly fragmented response spectrum mostly in the continuum [137]. We compare RTA
and TDLDA for two laser frequencies: one on resonance with ωlas = 11.4 eV, and one
off-resonance with ωlas = 10.2 eV, the other laser characteristics being maintained. The
laser polarization axis goes along the z direction, while the H2O molecule lies in the xy
plane, see Fig. 8 for the orientation of the molecule in space.

Figure 13 compares the time evolution in terms of three basic observables: electronic
dipole, absorbed energy Eabs as defined in Eq. (41), and ionization. Let us first discuss
the resonant case (right panels) corresponding to a laser frequency slightly above the
lowest excitation energy mode (10.2 eV). The early stages of irradiation progressively
ionize the molecule which produces a slight blue-shift of the resonance and thus places
the system, still during the pulse, exactly on top of the resonance with all consequences
of resonant excitation. These are particularly well visible in TDLDA, namely enhanced
dipole response whose envelope deviates soon from the pulse envelope and which con-
tinues to oscillate long after the pulse is over leading also to ongoing electron emission.
The mechanism is well known and was used to analyze expansion of clusters irradiation
by strong lasers [138, 139]. Even if the mechanism is well understood, it has mostly
been described theoretically using TDLDA-like approaches, see e.g. [140]. The major
interest of the case here is the striking difference between RTA and TDLDA dynamics
during the second phase of the response. While TDLDA dynamics leaves long lasting
dipole oscillations, dissipation in RTA manages to curb down the dipole signal by turning
energy away from the dipole channel and distributing it over the great manifold of other
excitation modes. A remarkable feature is seen in the energy absorption from the laser
field (right middle panel). TDLDA shows strong oscillations between absorption and
(induced) emission of energy very similar to Rabi oscillations [141]. RTA reduces these
oscillations because attenuation of the dipole reduces emission. This, in turn, gives way
to absorb more energy from the laser field.

The situation is clearly different in the off-resonance case illustrated in the left column
of figure 13. The electron dipole follows the external laser field closely and dies out once
the latter is over. Emission is reduced as compared to the resonant case. Most striking
is the comparison between TDLDA and RTA. At variance with the on-resonance case,
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Figure 13: Comparison of TDLDA (blue) and RTA (red) time evolution of three basic observables for
H2O: dipole moment perpendicular to molecular plane (bottom), absorbed energy (middle) and total
ionization (top). The water molecule was excited by a laser pulse with frequency ωlas = 11.4 eV for the
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frequencies, the laser intensity is I = 5.6 × 1013W/cm2, and the total pulse length Tpulse = 36 fs. The
water molecule is in the xy plane and the laser polarization is along z, see inset of figure 8.

differences between the approaches are much reduced. Dipole signals in particular are
very similar. A larger difference is seen for energy absorption where RTA allows the
system to soak more energy from the laser, similar as in the resonant case. Only small
differences can be spotted on ionization, with RTA emitting slightly more because it
absorbs much more energy (most of that used up for internal heating). Altogether,
dissipation effects are much more pronounced near resonance and less so off resonance.
This example, varying laser frequency, shows that dissipation depends sensitively on the
details of the dynamical scenario. The great versatility of laser pulses offers many more
variations of properties and a rich field for explorations [107].

4.3. Impact of dissipation on PAD

There is one more observable which we have not yet looked at in the context of RTA.
This is the PAD introduced in section 3.2.6.3. To that end, we take up the test case
from section 4.1, namely Na+

11 described with a soft jellium model, excited by an initial
boost along the z direction. The Na+

11 cluster is a cylindrically deformed system and
the laser is aligned with the symmetry axis. Thus the PAD does not depend on the
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angle φ and it suffices to look at the ϑ dependence. (less symmetric systems usually
require some angular averaging [142]). Figure 14 shows the PAD in RTA (solid lines)
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Figure 14: Photo-Angular Distributions after initial boost along z applied in Na+11, for three different
boosts delivering three excitation energies E∗ as indicated. The dashes show the results obtained in
TDLDA, the solid curves those obtained in RTA.

and TDLDA (dashed curves), obtained after initial boost excitation in Na+
11. Results

from three different boost momenta, and consequently three different initial excitation
energies E∗ as indicated, are compared. The stronger the excitation, the more forward
peaked are the PAD. This is a well known and plausible feature because the stronger the
field, the more it pulls electrons along its direction [36]. Comparing RTA with TDLDA
results, we see that dissipation modeled in RTA reduces the anisotropy (trend to forward
peaking). But this is a rather weak effect for the extremely short excitation here. Two
aspects are to be remarked here: First, dissipation requires time to unfold and the
longer a process takes, the more effective it is. Second, we have not added the isotropic
background from thermal emission coming much later. This contribution reduces the
anisotropy substantially [143].

5. Conclusions and perspectives

We have presented in this paper the first, to the best of our knowledge, open source
package QDD (Quantum Dissipative Dynamics) allowing the account of dissipative elec-
tronic dynamics in finite systems, from atoms and molecules to clusters. The present
implementation of dissipation is realized at the simplest level of a quantum Relaxation-
Time Approximation which nevertheless includes essential features of dissipative dynam-
ics. QDD has been constructed as an extension of a real-time real-space TDLDA package
developed over the past two decades, in order to study off-equilibrium dynamics in clus-
ters and molecules. As such, and to comply with major experimental signals such as PES
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and PAD, the TDLDA package already contained these key observables characterizing
electronic emission. One objective of this paper is to present in a practical manner how
these observables can be computed at the TDLDA level. These observables can, for most
of them, be exported to RTA dynamics. The evaluation of PES in RTA is still a pending
question, the difficulty being due to the technique used for computing the PES. Work
along that line will be pursued.

In terms of physical properties, we have seen that the RTA dynamics displays the
expected features of a dissipative approach. It has revealed quite different from TDLDA
in many situations, the larger the excitation energy, the larger the effect. This is es-
pecially true when the system is driven towards one of its eigenfrequencies. One then
observes both quantitative and qualitative differences between RTA and TDLDA. Differ-
ences shrink in fully off-resonance scenarios, although simulations remain quantitatively
different on some observables. The implementation of dissipative features via RTA on top
of TDLDA thus definitely appears as a crucial step forward in the theoretical modeling
of far-off equilibrium dynamics such as encountered in numerous irradiation scenarios.
This is true for cases in which one observes significant differences between TDLDA and
RTA, as is obvious. But it is also true for cases in which TDLDA and RTA deliver qual-
itatively comparable results. Indeed, if one can conclude that TDLDA is an acceptable
approximation in such cases, it is impossible to draw this conclusion without the input
of a more elaborate approach such as RTA.

At variance with other open source real-time TDLDA packages, our QDD approach
has not been focused on a large variety of otherwise well established parameters. By this,
we mean a wide set of different DFT functionals or various kinds of pseudopotentials.
This is justified in many respects. First, the whole spirit of the QDD project has always
been to focus on far-off equilibrium scenarios for which structural details can be energeti-
cally overlooked. The set of parameters used in QDD have of course been checked against
experimental or theoretical results when available, and allowed us to reproduce them in
a perfectly acceptable manner. Such a reduced set of parameters thus allows us to focus
on dynamical questions. It should also be noted that QDD routinely includes a simple
strategy for the Self-Interaction Correction (SIC) strategy, namely Average-Density SIC
(ADSIC). It restores key structural properties such as the IP which is crucial to obtain
correct electron emission properties in real-time dynamics of irradiation scenarios.

This first release of QDD contains the full capabilities of TDLDA, particularly con-
cerning all observables of electron emission. In the regime beyond TDLDA, it concen-
trates on simple and robust extensions, ADSIC for the self-interaction correction and
RTA for dissipative dynamics. Extensions are in preparation for both approximations
concerning SIC as well as dissipation. For the latter, we work on an implementation
of Stochastic Time-Dependent Hartree-Fock (STDHF) which deals with an ensemble of
mean-field trajectories to represent incoherent dynamical correlations. It includes by
construction mean-field fluctuations, which opens the door to elaborate dynamical sce-
narios involving dissociative processes and, generally speaking, bifurcation dynamics. At
the side of technical developments, the next steps are implementation of an MPI parallel
version and a GPU version, the latter being already under way. At the formal side, we
will prepare in near future a release which includes also a full time-dependent SIC as a
further option, following our prototype implementation [144].
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A. Iterative correction of total energy

The RTA scheme as summarized in figure 2 leaves as preliminary final result the

new one-body density matrix ρ̂(t1) =
∑

α

|ϕα(t1)〉w̃α〈ϕα(t1)| which, however, may miss

slightly the given energy E. The mismatch is corrected by a slight readjustement of the
occupation numbers

w̃α −→ wα = w̃α + δwα . (A.1)

The adjustment is done as if an equilibrium Fermi distribution (23d) were to be changed
slightly. The Fermi distribution is obtained by maximizing entropy

S =
∑

α

s(wα)
!
= max. ,

s(wα) = −wα logwα − (1−wα) log(1−wα) , (A.2a)

with the requirement (constraint) to match total particle number and s.p. energy

N =
∑

α

wα , Esp =
∑

α

wαεα , (A.2b)

while the actual status is

Ñ =
∑

α

w̃α , Ẽsp =
∑

α

w̃αεα . (A.2c)
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Linearizing this for small changes δwα leads to a simply solvable system of linear equa-
tions. This scheme was used in our early implementations of RTA [62, 107]. However,
that tends to overshoot occasionally which calls for costly re-iterations. A more stable
scheme is obtained by modifying the maximal entropy principle to a quadratic criterion
calling for minimal change of entropy in the form

∑

α

(
s(w̃α + δwα)− s(w̃α)

)2 !
= min. , (A.2d)

together, again, with the constraints (A.2b). This amounts to the variational condition

d

d δwα

[∑

α

(
s(w̃α + δwα)− s(w̃α)

)2 − λ
∑

α

(w̃α + δwα)− µ
∑

α

(w̃α + δwα)εα

]
= 0 .

(A.3)
Linearizing that yields in straightforward manner the occupation change as

δwα ∝ −
λ+ µεα

(s′(wα))2
(A.4a)

with the Lagrangian parameters obtained by the solution of the linear equations

δN = λ
∑

α

(s′(wα))−2 + µ
∑

α

(s′(wα))−2εα , (A.4b)

δEsp = λ
∑

α

(s′(wα))−2εα + µ
∑

α

(s′(wα))−2ε2
α . (A.4c)

where δN, δEsp, are the differences between status and target values of N,Esp, as outlined
in Eqs. A.2b and A.2c, and s′ denotes the derivative of s with respect to w (s′ = ds/dw).
Note that this rather robust scheme is applied for the spin-up and spin-down subsets
separately.

B. Dimensionless quadrupole moments

In section 3.2.2, we introduced the basic form parameters of a density distribution.
They are plagued by the inconvenience to scale with system size. To concentrate on
shape, the concept of dimensionless quadrupole moments was used since long in nuclear
physics [145, 146]. It turned out also be useful in cluster physics [128, 89] and surely
helps to sort the gross structure of molecules. We review here briefly the steps from
Cartesian quadrupole moments to dimensionless ones.

The first step is to map Cartesian quadrupole moments into spherical quadrupole
moments Q2µ [147]

Q20 =

√
5

2π

Qzz
3

, Q2±1 = ∓
√

15

8π
(Qzx ± iQzy) , Q2±2 =

√
15

32π
(Qxx −Qyy ± iQxy) .

(B.1)
The dimensionless moments are then obtained as

αlm(t) =
4π

5

Q2µ

Nel r2
rms

, (B.2a)
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A simple signature of shape can already be read off here: Axially symmetric systems
aligned along z-axis are distinguished by αlm6=0 = 0.

However, the example of axial systems indicates a next problem, namely the orienta-
tion of the system. The appearance of αlm6=0 6= 0 can have two causes: first, the system
is not aligned along z-axis, and second, there is a true breaking of axial symmetry. The
first action is then to determine the principle axes of the system and to rotate the system
such that the z-axis is identical with the dominant principal axis. This leads by defi-
nition to α2±1 = 0 and α2 +2 = α2−2. Axial symmetry is truly broken if we then still
find α226=0 6= 0, signaling triaxial shapes. One often regroups the quadrupole deformation
parameters into total deformation β2 and triaxiality γ as

β2 =

√∑

m

α2
2m , γ = atan

(√
2α22

α20

)
. (B.3)

This convention has been originally introduced to characterize shapes of nuclei [145] and
has been taken over for clusters at several places, e.g. [148, 149, 150]. It is to be noted
that γ = 0◦ as well as γ = 60◦ represent axially symmetric shapes. The case γ = 0◦

corresponds to prolate shapes and γ = 60◦ to oblate ones.
The same definitions apply to ionic shapes if we replace

∫
dr %(r) rirj by

∑
I RI,iRI,j

in Eqs. (42).

C. Handling of basis sets in RTA

C.1. Transformation to natural orbitals

Before entering the RTA step, we have a one-body density matrix obtained from a
couple of TDLDA steps

ρ̂ ≡ ρ̂mf =
∑

α

|ϕ(mf)
α 〉 w(mf)

α 〈ϕ(mf)
α | . (C.1)

The absorbing boundary conditions remove electron content from the wavefunctions
which thus lose their strict ortho-normality leading to a non-unit norm matrix

Nαβ = 〈ϕ(mf)
α |ϕ(mf)

β 〉 . (C.2)

We first need to represent the actual one-body density matrix in terms of natural orbitals

ρ̂ =
∑

i

|ϕ(nat)
i 〉w(nat)

i 〈ϕ(nat)
i | (C.3)

which are ortho-normal, i.e. 〈ϕ(nat)
i |ϕ(nat)

j 〉 = δij . The loss of electron content is taken

up by a change of the occupations to w
(nat)
i .

The natural orbitals are defined by the eigenvalue equation

ρ̂|ϕ(nat)
i 〉 = |ϕ(nat)

i 〉w(nat)
i . (C.4)

We expand them in terms of the TDLDA obitals

|ϕ(nat)
i 〉 =

∑

α

|ϕ(mf)
α 〉Wαi . (C.5)
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The task is now to determine the transformation matrix Wαi.
We insert the expansion (C.5) into the eigenvalue equation (C.4) and obtain a matrix

equation

ραβWβi = NαβWβiw
(nat)
i , (C.6)

ραβ = 〈ϕ(mf)
α |ρ̂|ϕ(mf)

β 〉 =
∑

γ

Nαγw(mf)
γ Nγβ .

We first determine eigenvalues and eigenvectors of N̂ through

NαβVβl = Vαlnl (C.7)

and use that to build the inverse root of N̂ as

(N−1/2)αl = Vαln
−1/2
l . (C.8)

With that, we can map the eigenvalue equation (C.6) into standard form

(N−1/2)†lαραβ(N−1/2)βl′Ul′i = Uliw
(nat)
i . (C.9)

Having determined the eigenvalues w
(nat)
i and eigenvectors Uli, we realize that

ραβ(N−1/2)βl′Ul′i = (N+1/2)αlUliw
(nat)
i = Nαβ (N−1/2)βlUliw

(nat)
i . (C.10)

and conclude that the searched transformation for the expansion (C.6) is finally composed
as

Wαi = (N−1/2)αlUli . (C.11)

The new occupation numbers w
(nat)
i were already given from solving the eigenvalue equa-

tion (C.9)

C.2. Mixing of two one-body matrices

At the end of one RTA step, we mix two one-body density matrices as

ρ̂(mix) = (1− η)ρ̂(mf) + ηρ̂(eq) , (C.12)

see step 5 in section 2.3.2.2. The aim is to produce eventually ρ̂(mix) in the basis of its
natural orbitals. The problem is that the constituents

ρ̂(mf) =

Ω∑

α=1

|ϕ(mf)
α 〉 w(mf)

α 〈ϕ(mf)
α | ,

ρ̂(eq) =

Ω∑

α=1

|ϕ(eq)
α 〉 w(eq)

α 〈ϕ(eq)
α |

are represented on different sets of s.p. states from which {ϕ(mf)
α , α = 1...Ω} is not even

ortho-normalized.
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We combine the two sets of s.p. states to one super-set {φA, A = 1...2Ω} as

φA =

{
ϕ

(mf)
α for A = α ∈ {1...Ω}

ϕ
(eq)
α′ for A = α′ + Ω , α′ ∈ {1...Ω}

(C.13a)

WA =

{
w

(mf)
α for A = α ∈ {1...Ω}

w
(eq)
α′ for A = α′ + Ω , α′ ∈ {1...Ω}

(C.13b)

This yields a one-body density in double-space

R̂ =

2Ω∑

A=1

|φA〉WA〈φA| (C.14)

with a basis {φA} which is not northo-normalized. That is exactly the task to find
natural orbitals which was solved in section C.1. We undertake the same steps (of
course, in doubled space) and end up with

R̂ =

2Ω∑

A=1

|φ(nat)
A 〉W (nat)

A 〈φ(nat)
A | (C.15)

whereby we take care to order the states to a sequence of decreasing occupations W
(nat)
A .

This one-body density is still given in a space which is twice as large as the s.p. space
before mixing. But the occupations for large A are extremely small. This allows to
reduce R̂ back to standard size and in natural orbitals as

ρ̂(mix) =

Ω∑

α=1

|ϕ(mix)
α 〉 w(mix)

α 〈ϕ(mix)
α | , ϕ(mix)

α = φ(nat)
α , w(mix)

α =W(nat)
α . (C.16)
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