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ABSTRACT

Mediator is a prominent multisubunit coactivator
that functions as a bridge between gene-specific
activators and the basal RNA polymerase (Pol) II
initiation machinery. Here, we study the poorly
documented role of Mediator in basal, or activator-
independent, transcription in vivo. We show that
Mediator is still present at the promoter when the
Pol II machinery is recruited in the absence of an
activator, in this case through a direct fusion
between a basal transcription factor and a heterol-
ogous DNA binding protein bound to the promoter.
Moreover, transcription resulting from activator-
independent recruitment of the Pol II machinery is
impaired by inactivation of the essential Mediator
subunit Med17 due to the loss of Pol II from the
promoter. Our results strongly support that
Mediator is an integral component of the minimal
machinery essential in vivo for stable Pol II associ-
ation with the promoter.

INTRODUCTION

Mediator is a large multisubunit complex, conserved
throughout eukaryotes, that plays an essential role in tran-
scription of protein-encoding genes. It was first discovered
in yeast due to its ability to support activator-driven tran-
scription on naked DNA templates in a cell-free system
reconstituted with purified RNA polymerase II (Pol II)
and general transcription factors (GTFs; including
TATA-binding protein (TBP), Transcription Factor
(TF) IIB, TFIIF, TFIIE and TFIIH) (1). Mediator was
shown to interact with numerous yeast and mammalian
gene-specific transcription activators as well as with Pol II
and GTFs, supporting a role as a bridge between gene-
specific regulators bound at enhancers and the basal Pol II
machinery assembled at the core promoter (2). Electron
microscopy analyses combined with biochemical and
genetics data have led to a model of topological organiza-
tion in which the 25 subunits forming the yeast Mediator

complex are distributed into four distinct modules named
as head, middle, tail and CDK8 (3). The head, middle and
tail modules constitute the core Mediator. In the presence
of Pol II, the core Mediator assumes an elongated shape
and makes multiple contacts with Pol II through the head
and middle modules (4). The CDK8 module, which com-
prises a cyclin–kinase pair, associates reversibly and under
specific conditions with the core complex and is mainly
involved in negative regulations (5,6).
A widespread model assumes that Mediator is recruited

to promoters by gene-specific activators bound to
enhancer elements before binding of Pol II and GTFs
(2). This model is supported by various studies, notably
in yeast, showing spatial, temporal and physical separ-
ation between Mediator and Pol II recruitment at some
promoters (7–9). Mediator tail module is viewed as a
major target of gene-specific activators because of the
numerous interactions evidenced between subunits of
this module and various activators both in yeast and in
mammals; however, a number of interactions involving
subunits of other modules were also reported (10,11). A
primary key role of Mediator once recruited by activators
would be to facilitate the recruitment of GTFs and Pol II
to form a pre-initiation complex (PIC). Studies using
electron microscopy and single-particle-reconstruction
techniques have shown that human Mediator undergoes
conformational shifts on binding of activators to its tail
module, supporting an allosteric model in which activa-
tors would trigger a wave of remodeling within Mediator
ultimately stabilizing its association with Pol II and im-
pacting assembly and activity of the PIC (12–14).
Considering the biochemical stability of the ternary
complex between Mediator, Pol II and TFIIF (13,14),
an alternative possibility could be that Mediator is re-
cruited as a larger, holoenzyme-like complex containing
also Pol II. The two models are not exclusive in view of
the results by Esnault et al. (15), suggesting multiple
pathways for recruitment of Pol II and formation of the
PIC in vivo.
In addition to its well-documented role in supporting

activated transcription, Mediator was also shown to
stimulate basal, or activator-free, transcription in both
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yeast and mammalian in vitro systems (16–19). This ob-
servation, together with the fact that inactivation of
Med17 (also known as Srb4) impairs transcription of the
majority of protein-encoding genes in yeast (6), has been
taken into account as evidence that Mediator functions as
a GTF, comparable in importance with Pol II and other
basal factors for transcription initiation (19). However,
there is no evidence to date that Mediator can bind
promoter DNA and function independently of activator
in vivo. Genome-wide localization studies using chromatin
immunoprecipitation coupled with microarrays were
carried out in yeast, but the results were conflicting and
it has been unclear whether Mediator is always present at
active promoters (20–23). Interpretation of these studies is
also complicated by the strong possibility that formalde-
hyde does not crosslink Mediator at enhancer and core
promoter sequences with the same efficiency. Therefore,
the question of knowing whether Mediator is an intrinsic
component of the basal machinery required for transcrip-
tion initiation by Pol II in vivo remains unresolved. To
address this issue, we have carried out ‘activator bypass’
experiments in yeast using molecular tools designed for
recruiting the transcription machinery to a test promoter
in the absence of classical activator, in this case through
artificial tethering of a GTF (24,25). We have used these
tools to determine whether Mediator is recruited alongside
the Pol II machinery and is still required for transcription
in this context. Our results show that Mediator is indeed
found at the promoter when the Pol II transcription ma-
chinery is recruited through tethering of TFIIB or TBP.
Moreover, we show that inactivation of the head module
impairs activator-independent transcription driven by
artificial recruitment of TFIIB or TBP. Altogether, our
results provide evidence that Mediator is an integral
part of the basal Pol II transcription machinery
in vivo and functions as a general transcription initiation
factor.

MATERIALS AND METHODS

Yeast strains and media

Genotypes are given in Supplementary Table S1. Strains
expressing the chromosomal SUA7 allele under the
control of the GAL1 promoter were generated by
integrating the KanMX6-PGAL1 cassette from Longtine
et al. (26) upstream of the coding sequence of SUA7 using
standard procedures. Y805 was generated from W303-1A.
Y807, Y809 and Y811 were generated from CL18, CL7
and DY3168, respectively, described in Leroy et al. (27).
Y822 and Y823 were generated from Y400 and Y402,
which contain a null allele of MED17(SRB4) on the
chromosome and plasmids RY2844 (SRB4+, CEN,
LEU2) or RY2882 (srb4-138, CEN, LEU2) in the W303-
1A genetic background (6). Y892 was generated from
Y14, which corresponds to W303-1A with an amino
terminal HA-tagged TBP at the chromosome (28). Y893
and Y894 were generated from Y80 and Y84, which
contain a TAP-KlTRP1 cassette inserted before the stop
codon of Med5 or Med14, respectively (9). Y909 and
Y911 were generated from two isogenic strains containing

either the wild-type RPB1 allele or the rpb1-1 allele at the
chromosome, described in Nonet et al. (29). Y959 and
Y960 were generated from two isogenic strains containing
either the wild-type KIN28 allele or the kin28ts3 allele at
the chromosome, described in Valay et al. (30). Y963 was
generated from a met4D::TRP1 strain, in which nucleo-
tides 180–1848 of MET4 open reading frame (ORF) were
replaced by TRP1. This strain was crossed with Y84 and
appropriate segregants combining met4D::TRP1 and
MED14-TAP-klTRP1 were selected by tetrad analysis
and confirmed by polymerase chain reaction (PCR).

YNB medium contains 0.7% yeast nitrogen base, 0.5%
ammonium sulfate and 2% glucose. Complete
Supplement Mixture (CSM) medium contains, in
addition, a CSM amino acid drop-out mixture.

Plasmids

pRS313-TFIIB-RFX (HIS3, CEN) was generated from
pRS314-TFIIB-RFX (TRP1, CEN) (a gift from Michel
Strubin) by subcloning an Xba1-Xho1 fragment contain-
ing the promoter region of TBP followed by the ORFs of
TFIIB and the human regulatory factor X (RFX) protein.
A short linker coding for the nuclear localization signal
(NLS) of SV40 and the HA epitope from influenza virus is
found in between TFIIB and RFX. YCp91-LexA (CEN,
TRP1) contains the entire LexA coding sequence (residues
1–202) under the control of the ADH1 promoter, followed
by SV40 NLS, an HA epitope and the CYC8 terminator
(24). YCp91-LexA-TBP (CEN, TRP1) contains the
SPT15 coding sequence and terminator in place of the
HA epitope (24). pRS315-LexA was generated by
subcloning into pRS315 a BamH1-Sac1 fragment from
YCp91-LexA containing ADH1 promoter, SV40 NLS,
HA epitope and CYC8 terminator. pRS315-LexA-TBP
was generated by subcloning into pRS315 a BamH1
fragment from YCp91-LexA-TBP containing ADH1
promoter, SV40 NLS and SPT15 coding sequence and
terminator. YCplac33-xMET17-GFP (URA3, CEN) was
constructed by cloning into YCplac33-GFP (a gift from
Dieter Kressler) a PCR fragment spanning nucleotides �1
to �400 of MET17 and containing at position �200 the
sequence CAGTTGCCTAGCAACTACATATGGTCAC
C (refer-red to as X box) including the RFX binding site
found in the polyomavirus enhancer (underlined). The
xhis3 fragment in YCplac33-xhis3-GFP originates from a
LexAop-his3 construct containing a LexA operator
inserted into a derivative of his3 lacking the Tc element
and a functional Gcn4 binding site (31). It was generated
by replacing the LexA operator by the X box using
PCR. YCplac33-xPHO5-GFP and YCplac33-xGAL1-
GFP (URA3, CEN) were constructed by cloning into
YCplac33-GFP PCR fragments spanning nucleotides �1
to �392 of PHO5 or nucleotides �1 to �500 of GAL1,
and containing the X box inserted at position �167 and
�200, respectively. YCplac33-LexAop-MET17-GFP was
constructed by cloning into YCplac33-GFP a fragment,
engineered by PCR, containing the sequence CTACTGT
ATGTACATACAGTAGTTTGTT (LexA operator
underlined) inserted at �200 in a MET17 fragment
spanning from �1 to �400 (relative to ATG).
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Chromatin immunoprecipitation (ChIP)

Cell fixation, chromatin preparation and immunopre-
cipitation were performed essentially as described previ-
ously (27). In Figures 2 and 7A, formaldehyde fixation
was performed at 37�C to maximize crosslinking effi-
ciency, and cells were shifted to 37�C for 60min before
adding formaldehyde. Pol II was immunoprecipitated
using the rabbit polyclonal antibody y-80 (Santa Cruz
Biotechnology) directed against amino acids 1–80 of the
Rpb1 subunit. Typically, 10 ml of antibody was incubated
overnight at 4�C with crosslinked chromatin extracted
from 10ml of culture at OD650=1. TAP-tagged
proteins were immunoprecipitated by incubating the
same amount of crosslinked chromatin with 30 ml of
rabbit Immunoglobulin G (IgG)-agarose (Sigma) for 4 h
at 4�C. DNA was quantified by real-time PCR using the
LightCycler 480 instrument (Roche), and SYBR Premix
Ex TaqTM (Takara). Sequences of primers are given in
Supplementary Table S2. A typical run included dupli-
cates of each IP and input DNA, and serial dilutions of
one input DNA to create a standard curve and determine
the efficiency of the amplification. Data were analysed
with the LightCycler 480 software using the ‘second de-
rivative maximum’ method for quantification. The level of
occupancy at a specific DNA locus is calculated as the
percentage of DNA present in the immunoprecipitate
relative to the total input. Relative occupancy was
obtained by normalizing to occupancy at the IME2 locus.

RNA analysis

Total RNA was extracted with hot acidic phenol following a
protocol derived from Schmitt et al. (32). Briefly, cells col-
lected from 10ml of culture at OD650=0.5–1 were resus-
pended in 400ml of cold AE buffer (50mM sodium acetate,
pH 5.3; 10mM ethylenediaminetetraacetic acid, pH 8; 10%
sodium dodecyl sulphate) and the suspension was mixed
with 400ml of cold phenol saturated with 0.1M citrate
buffer pH 4.3 (Sigma). The mixture was incubated for
8min at 65�C with agitation, quickly frozen in liquid
nitrogen, incubated again at 65�C with agitation for 4min
and centrifuged at room temperature for 10min, 12 000 rpm.
The aqueous phase was extracted once with 1 vol acidic
phenol/chloroform (1:1), once with 1 vol chloroform and
was precipitated with 0.1 vol 3M LiCl and 2.5 vol absolute
ethanol. After centrifugation, the RNA pellet was washed
with absolute ethanol, air-dried and resuspended in water.

Reverse transcription (RT)-quantitative PCR was con-
ducted following a two-step procedure using the
RevertAid H Minus M-MuLV reverse transcriptase
(Thermo Scientific) and random hexamers for priming,
and the SYBR Green I Master mix and LightCycler 480
system (Roche) for real-time PCR. Sequence of primers is
given in Supplementary Table S2.

Primer extension was performed as follows. Ten micro-
liters containing 10 mg of RNA, 1 pmol of 32P-50-labelled
gene-specific oligonucleotides and 20 nmol of each dNTP
was heated for 15min at 65�C and cooled down on ice.
Ten microliters containing 200 units of SuperScript II
Reverse Transcriptase (Invitrogen) in 2� first-strand
buffer and 0.02M DTT was added, and the mixture was

incubated at 42�C for 30min. Reaction was stopped by
adding 10 ml containing 0.9M LiCl, 40 mg of glycogen and
10 mg of RNase. After 5min at room temperature, the
DNA was ethanol-precipitated, centrifuged, air-dried,
dissolved in 6 ml of formamide-containing loading buffer
and electrophoresed in a 6% denaturing polyacrylamide
gel. Sequence of primers is given in Supplementary
Table S3.

Protein analysis

Protein extracts were prepared using mechanical breakage
with glass beads as described in Dunn and Wobbe (33).
One microgram of total protein was separated by 12%
sodium dodecyl sulphate-polyacrylamide gel electrophor-
esis and transferred to nitrocellulose. Green fluorescent
protein (GFP) was visualized using mouse anti-GFP
monoclonal antibodies (Roche) and the SuperSignal
West Pico chemiluminescence detection system (Thermo
Scientific).

RESULTS

Experimental system

To assess the role of Mediator in basal transcription
in vivo, we took advantage of molecular tools allowing
artificial recruitment of the Pol II machinery to a test
promoter in the absence of classical activator protein in
yeast (see Figure 1A). We first used the system developed
by Strubin et al., in which TFIIB is fused to RFX, a
human sequence-specific DNA binding protein with no
activation potential in yeast (34,35). The RFX binding
site was introduced at 73 bp upstream of the unique
TATA element present in the promoter of the methionine
biosynthetic gene MET17. Transcription of MET17 is
induced by the activator Met4 in the absence of methio-
nine; however, under conditions of excess of methionine,
Met4 activity is downregulated through a mechanism
involving degradation by the ubiquitin–proteasome
system, and as a result, MET17 transcription is shut
down (36,37). MET17 is also induced by cadmium,
which inactivates the ubiquitin-ligase targeting Met4
even in the presence of excess of methionine (38). A
plasmid bearing this test promoter (named as xMET17)
fused to the coding sequence of the GFP was introduced,
with a plasmid bearing TFIIB or TFIIB-RFX, into a
strain containing the chromosomal TFIIB allele under
control of the glucose-repressed GAL1 promoter to shut
down expression of the endogenous TFIIB. As expected,
the xMET17 promoter remained inactive in cells express-
ing TFIIB in the presence of 0.5mM methionine, and at-
taching TFIIB to RFX led to a strong increase in
xMET17-GFP transcription (Figure 1B). We confirmed
through primer extension analysis that transcription
driven by TFIIB-RFX was initiated at the same positions
as transcription driven by Met4 (Figure 1C). Moreover,
inactivation of Met4 rendered cells auxotroph for
blocked transcriptional induction of the endogenous
MET17 genes by cadmium but had no effect on activation
of xMET17-GFP by TFIIB-RFX (Supplementary Figure
S1). Therefore, artificial tethering of TFIIB to MET17
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Figure 1. TFIIB-RFX supports accurate transcription initiation from a MET17 promoter containing an upstream RFX binding site.
(A) Experimental strategy. See text for details. (B) Strain Y892 (see Supplementary Table S1) containing YCp33-xMET17-GFP, and either
pRS314-TFIIB (IIB) or pRS314-TFIIB-RFX (IIB-RFX), were grown in glucose-containing CSM medium supplemented with 0.5mM methionine
(+methionine), or in glucose-containing YNB medium with no methionine (�methionine). RNA levels for xMET17-GFP, MET17 and ACT1 were
quantified by RT-qPCR and normalized to 25S rRNA levels. Values are expressed as a percentage of the maximum value. Error bars represent
standard deviations from three independent experiments. (C) Same RNA preparations as in (B) were subjected to primer extension analysis with
primers for MET17 and xMET17-GFP starting in both cases at exactly the same distance from MET17 TATA box (175 bp). U3 snoRNA was used
as a control.
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results in efficient and accurate transcription initiation in
the absence of the activator.

Tethering TFIIB to the xMET17 promoter leads to
recruitment of Mediator

To determine whether Mediator is present at the xMET17
promoter when transcription is driven by TFIIB-RFX, we
carried out chromatin immunoprecipitation (ChIP) ex-
periments using cells containing TAP-tagged versions of
Med5 and Med14, two Mediator subunits belonging to
the middle and tail modules, respectively. The results for
Med14-TAP and Med5-TAP showed a 3- to 4-fold
increase in occupancy at the xMET17 promoter in the
strains expressing TFIIB-RFX compared with the strains
expressing TFIIB (Figure 2A, bottom). In contrast, no
increase of occupancy was observed in the untagged
strains or at the promoter of MET2, another Met4-
regulated gene not activated in the presence of methionine.
As expected, Pol II occupancy at xMET17 was similar in
the tagged and untagged strains expressing TFIIB-RFX
(Figure 2A, top). To ascertain that Mediator recruitment
occurred in association with the Pol II machinery and not
through interaction with the RFX moiety, we also used
Med14-TAP cells expressing RFX fused to the helix-loop-
helix-leucine zipper dimerization motif present in the
human Max oncogene (25). Expression of Max-RFX did
not lead to any increase in Med14 occupancy at xMET17
(Figure 2A, bottom), indicating that the RFX moiety is
not able to recruit Mediator. In parallel, we checked
Mediator occupancy at xMET17 in cells containing the
rpb1-1 temperature-sensitive mutation within Pol II,
which causes a genome-wide transcriptional arrest at
37�C (6). The results showed that Med14 occupancy was
3-fold lower in the rpb1-1 mutant compared with the wild-
type cells after 45min at 37�C (Figure 2B, left graph).
Finally, to completely rule out any participation of
Met4, Med14-TAP occupancy was also assayed in the
met4D strain containing a null allele of the MET4 gene.
The results showed no effect of MET4 deletion on Med14-
TAP association with xMET17 (Figure 2B, right graph).
We concluded from all these results that Mediator can be
recruited to xMET17 in cells containing TFIIB-RFX by
virtue of its ability to interact with Pol II and its GTFs.

Transcriptional activation by TFIIB-RFX is not affected
in mutants of Mediator tail module

Mediator tail module is viewed as the main interface
through which transcriptional activators come into contact
with the Mediator. Accordingly, we showed in our previous
report that transcriptional activation of Met4-dependent
genes, including MET17, is severely affected by deletion of
the non-essential tail subunits Med2 and Med3, or by a C-
terminal truncation in the essential tail subunit Med14 (also
known as Rgr1) (27). Therefore, we asked whether the same
mutations would also affect transcriptional activation of
xMET17-GFP by TFIIB-RFX. The results showed that
the med2D, med3D and med14-100 mutations did not lead
to any significant defects in Pol II occupancy at xMET17
(Figure 3A), and they affected neither xMET17-GFP tran-
script levels (Figure 3B) nor GFP protein levels (Figure 3C).

As already reported (39), transcription of ACT1 was not
affected in the mutants, whereas transcription of TPI1
was decreased by 2-fold. These results are consistent with
the observation that inactivation of Med2 or Med3 affects
only a limited subset of genes (40), which suggests no essen-
tial role in assembly and activity of the Pol II machinery.
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Figure 2. Transcriptional activation of xMET17 by TFIIB-RFX leads
to Mediator recruitment. (A) Untagged (No TAP) and TAP-tagged
cells (Y892, Y893 and Y894) containing YCp33-xMET17-GFP and
either pRS313-IIB or pRS313-IIB-RFX, or pRS313-IIB plus pRS315-
Max-RFX, were grown in glucose-containing CSM medium supple-
mented with 0.5mM methionine. Mediator and Pol II occupancy at
xMET17-GFP and MET2 was measured by ChIP. DNA was
quantitated by qPCR using primers specific for the ORF (Pol II
ChIP) or for the promoter (Mediator ChIP). Occupancy levels were
normalized using the ORF of the transcriptionally inactive gene
IME2. Error bars indicate standard deviations from three independent
experiments. (B) Left graph: A Med14 TAP-tagged rpb1-1 mutant and
the isogenic wild-type strain (Y909 and Y911) containing YCp33-
xMET17-GFP and pRS313-IIB or pRS313-IIB-RFX, were grown to
early log phase at 25�C in CSM medium supplemented with 0.5mM
methionine, and were shifted to 37�C for 45min before formaldehyde
fixation. Mediator occupancy was measured by ChIP as in (A). Right
graph: A met4-disrupted, Med14 TAP-tagged strain (met4D) and the
isogenic wild-type strain (Y894 and Y963) containing YCp33-xMET17-
GFP, and pRS314-IIB or pRS314-IIB-RFX, were grown and submitted
to ChIP as above.
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Med17 is required for transcriptional activation by
TFIIB-RFX

We next used a mutation in the Med17 subunit located at
the Mediator head module, knowing that this module
makes multiple contacts with Pol II in the structural
models (4,41). Med17 has recently been shown to

interact directly with Pol II in vivo (42). We used the
well-characterized med17-138 temperature-sensitive
mutant, which ceases transcription of all mRNA in a
manner similar to the rpb1-1 mutant at 37�C (6).
Mutant and isogenic wild-type cells expressing TFIIB-
RFX showed similar levels of Pol II occupancy at
xMET17-GFP at 28�C (Figure 4). In contrast, occupancy
was decreased 3- to 4-fold in the mutant compared with
the wild-type cells 60min after transfer to 37�C.
Importantly, a similar decrease was observed with
primers centered on the TATA box of MET17, and
primers positioned at the beginning or at the end of the
ORF of GFP (Figure 4, top graph), which indicates a
defect in Pol II recruitment to the promoter and not a
defect in promoter clearance or elongation. Consistently,
the decrease in Pol II association was accompanied by a
similar decrease in mRNA levels (Supplementary
Figure S2).

For comparison, ChIP experiments were also per-
formed with strains carrying a temperature-sensitive
mutation in the kinase subunit of TFIIH. We used the
kin28-ts3 mutation already known to cause a global
shutdown of mRNA synthesis at 37�C (6,30). The
mutant and the wild-type cells expressing TFIIB-
RFX showed similar levels of Pol II occupancy at
xMET17-GFP at the permissive temperature (25�C;
Supplementary Figure S3). However, occupancy was
decreased by 3- to 4-fold in the mutant cells compared
with the wild-type cells at 37�C. Therefore, inactivation
of Med17 and Kin28 has the same effect on transcrip-
tional activation of xMET17-RFX by TFIIB-RFX.

To validate further our findings, we used three add-
itional test promoters containing the RFX binding site
inserted within HIS3, PHO5 or GAL1 promoters
(Figure 5). HIS3 is regulated by the activator of the
general amino acid control Gcn4. The HIS3 promoter
possesses two TATA elements: a TR element that
contains a canonical TATA sequence and is responsible
for transcription from the+13 initiation site, and a more
upstream TC element that lacks a conventional TATA
sequence and is responsible for transcription from the
+1 site (43). The his3 derivative used here is devoid of
the TC element and carries two mutations that completely
inactivate the binding site for Gcn4 (44) (see diagram in
Figure 5A). PHO5 and GAL1 are two tightly regulated
promoters: PHO5 is not expressed under high-phosphate
conditions because of exclusion of the activator Pho4 from
the nucleus (45); GAL1 is not expressed in the absence of
galactose because of inhibition of the activator Gal4 by
the repressor Gal80, which binds Gal4 activation domain
and prevents recruitment of the Pol II machinery,
including Mediator (46). PHO5 and GAL1 both contain
a unique conventional TATA element (see diagram in
Figure 5B and C). The results in Figure 5 and
Supplementary Figure S4 show that attaching TFIIB to
RFX led to an increase in Pol II recruitment (Figure 5A
and B) and transcription (Figure 5C and Supplementary
Figure S4) for all three genes (note that only RNA levels,
not Pol II recruitment, were assessed for xGAL1-GFP
because transcriptional activation was too weak to give
ChIP signals over background). Moreover, as in the case

TPI1

xMET17-GFP
ACT1

Pol II ChIP

O
cc

u
p

an
cy

(%
 in

p
u

t)

A

IIB IIB-RFX IIB-RFX IIB-RFX IIB-RFX

WT med2 med14-
100

med3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IME2

mRNA levels

0

20

40

60

80

100

120

%
 m

ax

B

IIB IIB-RFX IIB-RFX IIB-RFX IIB-RFX

WT med2 med14-
100

med3

25 kDa

IIB-RFX

WT

C

GFP

GFP protein levels

D D

D D

Figure 3. Mutation of Mediator tail module has no effect on transcrip-
tional activation of xMET17 by TFIIB-RFX. The med2D, med3 D and
med14-100 mutants (Y807, Y809 and Y811) and the isogenic wild-type
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of xMET17-GFP, inactivation of Med17 resulted in a
decrease in transcription activation of the three promoters
by TFIIB-RFX (Figure 5 and Supplementary Figure S4).
For instance, Pol II occupancy at xhis3-GFP and xPHO5-
GFP was decreased by 4- and 6-fold, respectively, in the
med17-138 mutant compared with the wild-type cells after
60min at 37�C (Figure 5A and B), and mRNA levels for
xGAL1-GFP were decreased >10-fold (Figure 5C).

Primer extension analysis was also performed to assess
whether Med17 inactivation had an effect on transcription
start site (TSS) selection. We analysed TSS positions at
xMET17 and xhis3, which both possess multiple TSSs

(Figure 6). The results showed a parallel decrease in tran-
scription initiated at all sites in both cases, and no obvious
change in positions (Figure 6). Therefore, inactivation of
Med17 leads to a decrease in transcriptional activation by
TFIIB-RFX, but does not change the position of the
TSSs.

Transcription activation by artificial tethering of TBP also
depends on Mediator head module

Finally, we asked whether Mediator is also required when
the Pol II machinery is recruited to DNA by tethering
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Figure 4. Med17 inactivation affects transcriptional activation by TFIIB-RFX from the xMET17 promoter. The med17-138 mutant and an isogenic
wild-type strain (Y822 and Y823) containing YCp33-xMET17-GFP, and either pRS314-IIB or pRS314-IIB-RFX, were grown at 28�C to early log
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deviations from four independent experiments.
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TBP instead of TFIIB. To this end, we used a LexA-TBP
hybrid containing TBP fused to the full-length bacterial
repressor LexA (24), and a LexAop-MET17-GFP test
reporter containing one LexA operator inserted 69 bp
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Figure 5. Transcriptional activation by TFIIB-RFX from HIS3, PHO5
and GAL1 promoter derivatives containing the RFX binding site is
affected in the med17-138 mutant. (A) Top diagram: schematic repre-
sentation of the xhis3-GFP test gene containing an RFX binding site
72 bp upstream the canonical TATA element (TR) of HIS3. The thick
lines corresponds from left to right to positions �750 to �464, �125 to
�108 and �78 to �1 of HIS3, and the asterisks indicate mutations in
the Gcn4 binding site. TR is at �70. Graph: Pol II occupancy at GFP,
ACT1 and IME2 ORF measured by ChIP. The med17-138 mutant and
an isogenic wild-type strain (Y822 and Y823) containing YCp33-xhis3-
GFP, and either pRS314-IIB or pRS314-IIB-RFX, were grown in
glucose-containing CSM medium at 28�C to early log phase, and
were shifted to 37�C. Samples were processed for ChIP analysis as in
Figure 4. Error bars represent standard deviations from two

Figure 5. Continued
independent experiments. (B) Upper diagram: schematic representation
of the xPHO5-GFP gene containing an RFX binding site 80 bp
upstream PHO5 TATA element. The thick line corresponds to pos-
itions �392 to �1 of PHO5. The TATA element is at �101. Graph:
Pol II occupancy at GFP, ACT1 and IME2 ORF measured by ChIP.
The med17-138 mutant and an isogenic wild-type strain (Y822 and
Y823) containing YCp33-xPHO5-GFP, and either pRS314-IIB or
pRS314-IIB-RFX, were grown and processed for ChIP analysis as in
(A). (C) Top diagram: schematic representation of the xGAL1-GFP
gene containing an RFX binding site 67 bp upstream of the GAL1
TATA element. The thick line corresponds to positions �500 to �1
of GAL1. The TATA element is at �147. Graph: RNA levels
for xGAL1-GFP and ACT1 quantified by RT-qPCR as shown in
Figure 1. Error bars represent standard deviations from two independ-
ent experiments.
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upstream of the TATA box of MET17 (see schematic in
Figure 7A). ChIP experiments were carried out using
Med14 TAP-tagged strains. The results showed a modest
(1.8-fold) but significant increase in Med14 occupancy at
LexAop-MET17 in the TAP-tagged strain expressing
LexA-TBP compared with the TAP-tagged strain express-
ing LexA alone (Figure 7A, bottom graph). This low oc-
cupancy is consistent with the fact that LexA-TBP led to
lower levels of Pol II recruitment than TFIIB-RFX. ChIP
experiments were also carried out using the med17-138
mutant and the isogenic wild-type strain. As shown in
Figure 7B, mutant and isogenic wild-type cells expressing
LexA-TBP showed similar levels of Pol II occupancy at
LexAopMET17-GFP at 28�C. In contrast, occupancy was
decreased 9-fold in the mutant compared with the wild
type cells after 60min at 37�C. Therefore, transcription
activation by tethering TBP to the promoter is also
accompanied by recruitment of Mediator and is also sensi-
tive to inactivation of Med17.

DISCUSSION

Mediator recruitment can occur independently of activator

Conventional and genome-wide ChIP analyses in yeast
have clearly demonstrated that Mediator is crosslinked
by formaldehyde preferentially to enhancers rather than
to core promoters where Pol II binds; moreover, based on
time-course experiments and mutant studies, it was
also shown that Mediator association with promoters is
independent of Pol II, GTFs and core promoter sequences
(7–9,20,21,47). Altogether, these studies support the view
that the recruitment of Mediator to promoters occurred
through activators bound to enhancers. We show here
that Mediator can also be recruited to promoters in vivo
independently of the presence of an activator, solely via its
ability to interact with Pol II and the GTFs. Mediator has
been known for a long time to form a biochemically stable
complex with Pol II (16,48), and physical contacts with
GTFs such as TBP and TFIIH were also shown (15,49).
The demonstration of a direct interaction between individ-
ual subunits of Pol II and Mediator in vivo has also been
reported recently (42) but, to our knowledge, this study
provides the first demonstration that the recruitment of
Mediator to a promoter can occur in vivo in the absence
of interaction with an activator. This scarcity of data is
certainly a consequence of the transient nature of the
interaction between Mediator and Pol II at promoters,
which occurs only during transcription initiation and
must be broken to allow Pol II escape (50), whereas the
interaction between Mediator and activators is more
stable and persists after Pol II has left the promoter (9,51).

Mediator head is required for activator-independent
transcription in vivo

Our results with med17-138 demonstrate a role of
Mediator in assembly of the basal Pol II initiation machin-
ery at promoters even in the absence of signals transmitted
by activators. Importantly, this conclusion was reached
using two GTFs tethered to four different test promoters
through two different DNA binding proteins. Strikingly,
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Y84) containing YCp33-opMET17-GFP (see schematic representation)
and either pRS313-LexA (Lex) or pRS313-LexA-TBP (LexTBP) were
grown as shown in Figure 2. Pol II and Med14-TAP occupancy at
opMET17-GFP and MET2 was measured by ChIP. DNA was
analysed by qPCR using primers for the ORF (Pol II ChIP) or the
promoter (Mediator ChIP). Occupancy levels were normalized using
IME2 ORF. Error bars indicate standard deviations from three (Pol II
ChIP) or four (Mediator ChIP) independent experiments. Asterisks
indicate P< 0.005 in a Student’s t test. (B) The med17(srb4)-138
mutant and an isogenic wild-type strain (Y400 and Y402) containing
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and 60min after the shift. DNA was analysed by qPCR using
primers for the 50-end of GFP ORF, ACT1 ORF and IME2 ORF.
Error bars indicate standard deviations from two independent
experiments.
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inactivation of Med17 has a more pronounced effect on
Pol II recruitment to opMET17 via LexA-TBP than
on Pol II recruitment to xMET17 via TFIIB-RFX
(compare Figures 4 and 7). This result suggests that
tethering of TFIIB to the promoter can, at least partly,
compensate for the loss of Med17, thus pointing toward a
role of Mediator in stabilizing TFIIB within the PIC
in vivo. This view is in line with a previous in vitro study
showing that the requirement of human Mediator for
basal transcription in nuclear extracts can be alleviated
by increasing the TFIIB amount (52). Part of the
residual Pol II recruitment observed in the med17-138
mutant at a restrictive temperature is also certainly
owing to incomplete inactivation of Med17. Indeed, it
was observed that the MED6-101 dominant mutation
could suppress the temperature-sensitive phenotype of
med17-138 but not the lethality associated with the
med17-null allele, indicating that the Med17-138 protein
retains some function even at a non-permissive tempera-
ture (53). This explains why Pol II occupancy remains
higher at ACT1 than at IME2 in med17-138 after 60min
at a non-permissive temperature (Figures 4 and 7).
In contrast with Med17, we have found that inactiva-

tion of subunits of the tail module does not affect activa-
tion of the xMET17 promoter by TFIIB-RFX, even
though this module is required for activation of MET
genes by Met4 (27). In agreement with the idea that the
tail module serves mainly as an interface for activators,
our results provide in vivo confirmation to the finding that
Mediator head alone is sufficient to stimulate basal tran-
scription in vitro (41,54).

Mediator association with Pol II in vivo does not require
activator-induced conformational change

Structural studies showed that the yeast Mediator
complex adopts two different conformations when free
or when associated with Pol II: the free complex
presents a compact conformation with the middle and
tail modules folded on each other, whereas the complex
associated with Pol II presents an extended conformation,
with Pol II binding in a pocket generated when Mediator
changes conformation (55). It is not known whether this
change in conformation occurs in the context of the living
cell. However, if it does occur, the question remains
whether it occurs spontaneously or is triggered by
contact with activators. Our results argue that Mediator
can be recruited to promoters and exert its function on
assembly and activity of the PIC in the absence of an ac-
tivator. Therefore, if any change in conformation is
required, it can happen without the presence of an activa-
tor. This conclusion is in line with recent cryo-EM
analyses of the human Mediator-Pol II-TFIIF assembly,
which showed that Pol II binds Mediator at the same
general location in the presence or the absence of an
activator (13,14).
Mediator is often presented as a relay conveying regu-

latory signals from gene-specific activators bound at distal
regulatory elements to the basal Pol II machinery located
at the core promoter. The present study shows that the
yeast Mediator functions not only through targeted

recruitment by gene-specific factors, but also in an
untargeted manner, strongly supporting a model in
which Mediator is an integral part of the basic Pol II ini-
tiation machinery and can exert a function independently
of regulatory signals conveyed by activators. Considering
the functional and structural conservation of Mediator
(2,56), this model should apply to all eukaryotes.
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