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Abstract
Dirac degeneracies are essential ingredients to control topological charge exchanges between bands
and trigger the unique edge transport properties of topological materials. In addition, when Dirac
cones are tilted, exotic phenomena can emerge such as anomalous Hall effect or unconventional
Klein tunneling. However, the unique topological transport properties arising from the opening of
tilted Dirac cone degeneracies have been left completely uncharted. Here, we demonstrate a new
form of Dirac degeneracy that occurs in mechanical granular graphene (MGG): a tilted double
Dirac cone, composed of two counter-tilted type-I Dirac cones. Different from the reported C6

systems, we show that the tilted double Dirac cone is present in a C2 granular graphene.
Remarkably, a pair of anisotropic helical edge waves appears when the degeneracy is lifted. This
leads to an anisotropic quantum spin-Hall topological insulator that possesses unique wave
propagation properties, including anisotropic edge dispersion and direction-dependent edge-bulk
mode conversion.

1. Introduction

In topological materials, the existence of edge/surface states is induced by the topology of bulk bands [1–5].
A non-trivial topology is typically acquired through the lifting of a point degeneracy between bands, such as
the one stemming from a linear band crossing (Dirac cone) in momentum space. The crossing point is
termed Dirac point (or Weyl point in three-dimensional spin-non-degenerate systems) [6–8]. The presence
of Dirac cones, as commonly seen in graphene or graphene-like structures, is protected by time-reversal
symmetry (TRS) and inversion symmetry. Breaking the TRS leads to quantum Hall effect [9] while breaking
the inversion symmetry results in quantum valley Hall phase [10]. Moreover, keeping the TRS and inversion
symmetry, Dirac cones can be lifted by the intrinsic spin–orbit coupling (SOC). In this case, the topological
materials, called Z2 topological insulators, exhibit the so-called quantum spin Hall (QSH) phase [11–13]
and robust helical edge states. Similar phenomena have also been investigated in classical
photonic/phononic/mechanical systems. There, effective spin degeneracy has been emulated using double
Dirac cones (overlap of two Dirac cones), allowing for the observation of classical analogs to QSH effects
[14–21].

Dirac cones can be tilted due to, for example, mechanical deformation [22], external magnetic fields
[23] or anisotropic hoppings [24]. In this case, the zero-energy Fermi surface can take different shapes,
depending on the strength of the tilt [25–27]. In type-I tilted Dirac cone, the strength of the tilt is relatively
weak, thus the Fermi surface remains a point (the Dirac point). Examples include the hydrogenated
graphene [28], organic semiconductor [29] and type-I Weyl semimetals [30]. When the strength of the tilt
is strong, a type-II Dirac cone emerges with the Fermi surface turning into two lines crossing at the Dirac
point. This dispersion has been reported in type-II Dirac and Weyl semimetals [31–34], screw symmetry
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Figure 1. (a) Schematic view of the MGG. The black dash box highlights a unit cell. The red (blue) bonds represent
internal-couplings εi (external-couplings εe). (b) Possible movements of individual particles in the MGG. Schematic presentation
of shear (c), torsional (d) and bending (e) interactions between two adjacent particles.

photonic crystals [35], graphyne-like lattices [36] and metasurfaces [37]. Recently, a type-III Dirac cone is
demonstrated in different systems [38–40], where the Fermi surface is a single line at the critical transition
from a point-like (type-I) to a lines-crossing (type-II) Fermi surface. The successful implementation of
different kinds of Dirac cones could open the door for advanced control of waves [41–43]. In particular,
manipulation of tilted Dirac cones could bring drastically different transport phenomena. For example, in
type-I tilted Weyl metals with broken TRS, anomalous Hall effect can be observed [44, 45]. Moreover, in
some Dirac materials, the anisotropic property due to tilted energy dispersions leads to the unconventional
Klein tunneling [46, 47].

However, the physical properties of tilted double Dirac cones, i.e. a fourfold degeneracy obtained at the
band touching points between two counter-tilted (opposite tilting angle) Dirac cones, have been left
completely unexplored. This is due to the difficulty in obtaining such degeneracies. The requirement of
extra hopping/deformation lowers the symmetry of structures, typically preventing these complex forms of
symmetry-protected Dirac cones to occur in low symmetry lattices [48]. Yet, tilted double Dirac cones may
bring novel wave physics and an unique form of Dirac/Weyl semimetals. Exploring this new area rises
fundamental questions that must be answered. For example, how to obtain a tilted double Dirac cone in a
simple lattice? Once the tilted Dirac degeneracy is lifted by SOC, would a novel form of QSH effect appear?
And if yes what is the influence of the tilt on the properties of the helical edge states?

In this work, we answer the above questions, demonstrating a novel form of anisotropic QSH effect. We
first demonstrate how to form a tilted double Dirac cone in a modified mechanical granular graphene
(MGG) under out-of-plane motion excitation [figure 1(a)]. One of the key ingredients is that the MGG, in
which each bead possesses one translational and two rotational degrees of freedom (DOFs) [49–52],
provides sufficient number of modes for a fourfold degeneracy. This is the key for a tilted double Dirac cone
in a C2 symmetry lattice, which is completely distinguished from the band-folding technique on C6

structures [19, 53]. Another key ingredient is the existence of rotations which play a significant role as
providing two pairs of rotational degenerate modes at the Brillouin zone (BZ) center. In the presence of two
in-plane rotations, a double Dirac cone can be achieved by tuning the rigidities. Interestingly, when
modifications are introduced which lower the symmetry of the MGG from C6 to C2, the existence of the
double Dirac dispersion is not affected due to the accidental nature of the degeneracy. However, the
modifications lead to a novel type of Dirac dispersion: a tilted double Dirac cone. We show that lifting the
Dirac degeneracy can introduce a Z2 band gap, which supports a pair of topological helical edge modes. We
further demonstrate the transport properties of the anisotropic spin-locked helical edge waves. Our results
as well as the recent experimental studies confirm the relevance of MGG as a reliable platform to study
novel Dirac and topological wave physics reported here [54, 55].

2. Model

The MGG, a two-dimensional (2D) monolayer granular crystal, is shown in figure 1(a). Considering the
out-of-plane motion, each bead exhibits one out-of-plane translation u and two in-plane rotations ϕ, φ
(with respect to the x- and y- axes, respectively) i.e., figure 1(b). The movements of individual particles lead
to the following forces and/or interactions: (1) shear forces with the rigidity ξs (figure 1(c)); (2) torsional
moments with the rigidity ξt (figure 1(d)); (3) bending moments with the rigidity ξb (figure 1(e)). For
simplicity, we set ξt = ξb, and denote them as ηb = ηt = εe, where ηb,t = ξb,t/ξs are the ratios of
bending/torsional rigidities to shear rigidity. Each unit cell (highlighted by black dash box) can be viewed as
a molecule with internal-couplings εi (red bonds) within the molecule, and with external-couplings εe (blue
bonds) to its neighbors.
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Figure 2. Dispersion curves for (a) εe = εi = 0.5, (b) εe = 0.45, εi = 0.6, and (c) εe = 0.5, εi = 0.6. A double Dirac cone
appears in (a) and (b) at the Dirac frequency ΩD. The inset of (a) shows the Brillouin zone. The dashed lines in (b) correspond to
the dispersion in (a).

By analyzing the motions between beads related to the unit cell and applying the Bloch wave solution, a
dynamical equation of the MGG is given by (the full derivation can be found in references [54, 55]),[

D1 D2

D∗
2 D1

]
v = Ω2v, (1)

where v = [uA; ΦA; ΨA; uB; ΦB; ΨB] with Φ = Rϕ, Ψ = Rφ (R is the radius of the beads). ∗ denotes the
complex conjugate. Ω = ω

√
M/ξs is the normalized frequency, ω is the cyclic frequency. D1 and D2 are

3 × 3 matrices of the following forms,

D1 =

⎡
⎢⎢⎢⎢⎣

3 0 0

0

(
2εe + εi +

3

2

)
P 0

0 0

(
2εe + εi +

3

2

)
P

⎤
⎥⎥⎥⎥⎦ , (2)

D2 =

⎡
⎣−(α+ 2β)/P iγ/P (α− β)/P

−iγ (1 + l)β − εiα −iγ/2
−(α− β) −iγ/2 lβ + (1 − εi)α

⎤
⎦ . (3)

Above, l = (1 − 4εe)/2, and α = P e−2iqx , β = P eiqx cos qy, γ =
√

3P eiqx sin qy. qx = kxR, qy =
√

3kyR
are the normalized wave vectors for kx, ky, respectively. P = MR2/I with I the moment of inertia. Normally,
P ∈ [1.5 2.5] corresponding to a hollow sphere where all the mass is at the sphere periphery (P = 1.5) and a
homogeneously filled sphere (P = 2.5), respectively. To this end, we set P = 1.55.

Equation (1) leads to the Ω− k dispersion as shown in figure 2(a) when εi = εe = 0.5. It can be seen
that a double Dirac cone appears at the Dirac frequency ΩD =

√
3P at the Γ point (the BZ center). The four

degenerate modes at the Γ point are purely rotational modes. When εi = εe, the graphene structure holds a
C6v symmetry. An accidental degeneracy of the wave functions corresponding to E1 and E2 irreducible
representations of the C6v group occurs when 2εe + εi = 3/2, leading to a double Dirac cone of purely
rotational modes at the Γ point. Interestingly, even when the symmetry is reduced to a C2 by setting
εi = 0.6, εe = 0.45 [figure 2(b)], the double Dirac cone is preserved at the Γ point since 2εe + εi = 3/2 is
still valid. Although the irreducible representations of the C2 group are one-dimensional (symmetry or
asymmetry), the tilted double Dirac cone is a degeneracy of twofold symmetric and asymmetric modes, see
appendix A. In the MGG, the number of pure rotational modes is twice the number of the irreducible
representations of C2, the extra modes of the same nature (rotations) would double the number of wave
functions of the same irreducible representations, leading to twofold symmetric and asymmetric modes in
the C2 MGG at the Γ point. By keeping 2εe + εi = 3/2, accidental degeneracy of the twofold modes occurs
again, forming the double Dirac cone. However, the influence of symmetry reduction to C2 is to tilt each
individual Dirac cone in opposite angle with respect to the Dirac point, leading to the tilted double Dirac
cone. The full gap by tuning εe and εi [εe �= εi, figure 2(c)] does not break C2 symmetry, but destroys the
accidental degeneracy, giving rise to a Z2 topological phase transition of bulk bands accompanying with the
band inversion as discussed appendix A.

3. Tilted double Dirac cone

To unveil the bulk properties of the tilted double Dirac cone and derive the effective Hamiltonian in the
vicinity of the Dirac point (δk = (δkx, δky)), we follow an asymptotic model developed in reference [56]

3
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Figure 3. (a) A standard double Dirac cone when εe = εi = 0.5. (b) A tilted double Dirac cone when εe = 0.45, εi = 0.6. (c)
Iso-frequency contours of the upper cones of the untilted Dirac cone in (a). The black curves correspond to the frequency
Ω = 2.16. (d) The cross section (black and red curves) by cutting the untilted Dirac cone of (a) at Ω = 2.16. (e) Iso-frequency
contours of the upper cones of the tilted Dirac cone in (b). (f) The cross section (black curves) by cutting the tilted Dirac cone of
(b) at Ω = 2.16. The red and green dashed ellipses are the predictions of Hθ

±.

(see appendix B). The following dynamical equation is obtained,

[
H0 mσz − imsσ0

mσz + imsσ0 H0

]
ψ = ΔΩψ (4)

where H0 = VDδk · σ is a 2 × 2 Dirac Hamiltonian with the Dirac velocity VD = ΩDR/4. σ = (σx,σy,σz)
are the Pauli matrices and σ0 is the identity matrix. ΔΩ = Ω− ΩD − m where m = (4εe + 2εi − 3)ΩD/12
denotes the ‘effective mass’ due to SOC that breaks the degeneracy [54]. ms = 4/3 ∗ ε′VDδkx is a
symmetry-breaking mass with the modified parameter ε′ = εi − εe. For nonzero δk, it suggests that ms

relies on the propagating direction. The four components spinor ψ = [p; d] consists two circular polarized
basis p = [pL; pR] = [ΦA + iΨA; iΦB +ΨB )]/

√
2 and d = [dL; dR] = [−(ΦB + iΨB); iΦA +ΨA )]/

√
2.

‘L/R’ represents the left/right circular polarization, which is the pseudo-spin DOF in the MGG. When the
accidental degeneracy is valid (2εe + εi = 3/2), m is zero. Thus, the fourfold degeneracy is guaranteed at
the Γ point no matter the value of ms, leading to a double Dirac cone in the C2 MGG. This indicates that
the mass ms is not responsible for the opening of the Dirac cone. In fact, ms is responsible for the change of
is the standard double Dirac cone [figure 3(a)] to tilted one [figure 3(b)]. This can be more easily
demonstrated, by transforming the Hamiltonian of equation (4) as follows (see details in appendix B),

Ht =

[
H+ mσz

mσz H−

]
(5)

where H± = ±(4/3∗ ε′VD)δkxσ0 + VD(δkxσx + δkyσy), is the standard tilted Dirac Hamiltonian [23],
indicating that two standard Dirac cones are tilted in the x direction to opposite angles denoted by the signs
±. Applying the mass ms into the Hamiltonian, it reads: H± = ±msσ0 + VD(δkxσx + δkyσy). It is clear that
when ms = 0, H± = H0. Therefore, the double Dirac cone is the overlapping of two standard Dirac cones.
However, when ms �= 0, the Dirac cones of H± are tilted in opposite angles with respect to the Dirac point,
leading to the tilted double Dirac cone.

4
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Figure 4. Edge dispersion in (a) the VZI with θ = −π/2 (the insert of (a)) and in (b) the IZI with θ = −π/6 (the inset of (b)).
(c)–(e) Unidirectional transport. The sources are labeled by the stars. The three color areas indicate the different mode-type
regions corresponding to figure 5(a).

The tilt parameter defined as ṽ ≡
√

V2
x +V2

y

V2
D

determines the tilted type of Dirac cone [23]. According to

H±, we have Vx = 4/3 ∗ ε′VD, Vy = 0, therefore ṽ = 4|ε′|/3. In this work, we consider ṽ < 1, namely the
tilted Dirac cones belong to type-I category. However, by tuning ε′, other types of tilted double Dirac cone
can also be achieved, see appendix C.

Due to the tilting effect, wave behavior around the Dirac point exhibits anisotropic properties.
Figure 3(e) shows the iso-frequency contours (IFCs) of the two upper branches of figure 3(b). For
comparison, the IFCs of the untilted case [figure 3(a)] are shown in figure 3(c). In both cases, the contours
of Ω = 2.16 are marked in black curves as examples. The cross sections by cutting the two upper cones of
(a) and (b) at 2.16 are presented in (d) and (f), respectively. It shows that the IFCs of the untilted case are
circles, suggesting isotropic property of wave propagation. However, in the C2 MGG, the IFCs are deformed
to complex shapes, resulting in the wave behavior that is highly related to the direction of propagation.

To confirm that the anisotropic properties stem from the tilt, we further simplify the Hamiltonian in
equation (5) to a block diagonal form: [Hθ

+, 0; 0,Hθ
−] with the 2 × 2 tilted Hamiltonian, see appendix B,

Hθ
± = V±Δk · σ ± mσz. (6)

Above, V± = (1 ± 4/3 ∗ ε′ cos θ)VD is the anisotropic Dirac velocity, and θ ∈ (−π,π] is the angle of wave
vector to the x-axis. The tilted Hamiltonian in equation (6) shows that the slope of the linear dispersion
(V±) around the Dirac point is anisotropic, depending on the propagation angle θ. When m = 0, the
elegance of Hθ

± to capture the wave physics around the Dirac point is shown in figure 3(f), where the cross
section of the counter-tilted double Dirac cone [obtained from equation (1)] at Ω = 2.16 is presented in
black curves. The red and green dashed ellipses correspond to the prediction of Hθ

+ and Hθ
−, respectively.

The perfect match of the two colored ellipses with the black curves verifies our theory, that is, the Dirac
cone of Hθ

+ (red ellipse) is tilted to the positive x-direction, while Hθ
− (green ellipse) to the negative,

resulting in the anisotropy around the Dirac point.
It should be mentioned that the Hamiltonian in equation (6) can be rewritten as

Hθ
± = VDδk̃± · σ ± mσz where δk̃± = δk +A± with A± = ±4/3 ∗ ε′δk cos θ. This indicates that the

symmetry reduction to C2 equally introduces a pseudomagnetic field, defined as B± = ∇×A± as
discussed in references [57–59]. However, this reduction does not break TRS because the total
pseudomagnetic field of the counter-tilted double Dirac cones, B = B+ + B−, is zero. See the discussion of
TRS in appendix D. Under TRS, the nonzero m due to SOC induces a Z2 topological phase, leading to a
nontrivial topological gap around the Dirac point as discussed in appendix A. Thus, equation (6) is an
anisotropic QSH Hamiltonian, formed by two copies of tilted Dirac fermion Hamiltonians Hθ

+ and Hθ
−.

5
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Figure 5. Topological edge-bulk modes conversion. (a) Three cases of mode types that correspond to the color regions in
figure 4. (b)–(d) Spatiotemporal simulations of topological transport in (b) case I (yellow in figure 4), in (c) case II (green) and
in (d) case III (light blue).

Consequently, equation (6) predicts the existence of a pair of time-reversal edge modes (helical edge waves)
with exotic transport properties.

4. Anisotropic quantum spin-Hall effect

The anisotropic QSH Hamiltonian Hθ
± supports the unidirectional propagation of topological rotational

waves along different interface configurations. As shown in the inserts of figures 4(a) and (b), a vertical
zigzag interface (VZI) with θ = −π/2 and an inclined zigzag interface (IZI) with θ = −π/6 are
constructed. We set cyan bonds εe = 0.5 for both sides, while the red bonds εi = 0.6 (ε′ = 0.1, gray beads),
and the black bonds εi = 0.4 (ε′ = −0.1, green beads). On the interface, the bonds is equal to 0.5. We also
scale down the mass of beads in green by a factor f = 0.92 to ensure that a full gap appears around ΩD.
Figures 4(a) and (b) show the edge dispersion. The bulk modes are labeled in gray, and the edge modes are
marked by red and blue. More details about the calculation of edge mode spectra can be found in appendix
E. It can be seen that the two zigzag interfaces support a pairs of topological edge waves, since the edge
waves (red and blue lines) are spin-locked, they support unidirectional transport along the interfaces. As
examples, the spatiotemporal evolution of edge waves (propagation of rotation-dominated waves) on the
VZI are implemented in figures 4(c) and (d). An interface unit cell is used to be a harmonic source
(green star) to excite the eigenmodes in the red or blue branches. The color scale represents the total
magnitude of rotation (|Φ|+ |Ψ|) in each bead. It shows that the edge wave transport is either upward
[figure 4(c)] or downward [figure 4(d)], manifesting the one-way propagation property. The
unidirectionality of edge transport along the IZI is demonstrated in figure 4(e), where the helical edge waves
propagate solely to the θ = −π/6 direction.

As can be seen from figures 4(a) and (b), there is a difference in the edge dispersions along the VZI and
the IZI direction. This is translated into distinct wave propagation along these directions. It is reasonable to
relate this direction-dependent edge transport with the resulting anisotropic property of the bulk waves
around the Dirac point when the condition 2εe + εi = 3/2 is kept. Once the tilted double Dirac cone is
lifted, the edge waves, that appear in the bulk gap, also exhibit such a direction-dependent transport. Thus,
we observe an interesting bulk-edge correspondence that ‘transfers’ the anisotropy character of the
underlying bulk waves to the resulting edge waves.

Remarkably, the direction-dependent property of edge wave transport leads to the topological edge-bulk
mode conversion in the MGG. To demonstrate, an interface path is constructed by combining the VZI and
IZI [inserts of figures 4(a) and (b)]. Thus, a corner appears to connect the VZI and IZI as shown in figure 5.
When edge waves are excited from the source (stars), the turning of waves on the corner depends highly on
the frequency location of different mode types. As shown in figure 5(a), there are three cases of mode types
corresponding to the three colored areas in figures 4(a) and (b). The spatiotemporal evolution of edge
waves for the three cases are shown in figures 5(b)–(d), respectively. In case I where topological edge modes
do not exist in the IZI [figure 5(b)], the edge waves of the VZI, which are topologically protected, can only
transfer to the bulk modes when meet the corner. Therefore, the topological edge waves spread into the bulk
and reflect back when bulk waves come to the free edge on the bottom, leading to zero transport of waves
along the IZI. In case II [figure 5(c)], since all the three types of modes can exist in the MGG, the edge
waves of the VZI can transfer into the bulk and the IZI at the corner, resulting in the spreading of waves
into both the bulk and the IZI. In case III [figure 5(d)], due to the fact that the MGG does not support the
propagation of bulk modes, i.e., frequencies in the band gap, the edge waves in the VZI transfer only to the
IZI at the corner.

6
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Figure A1. Dispersion curves and the corresponding rotational modes around the tilted Dirac cone for 2εe + εi < 3/2 (left
panel) and for 2εe + εi > 3/2 (right panel).

5. Conclusions

In this work, we report a tilted double Dirac cone in a C2 MGG under out-of-plane motion excitation. We
found that the bulk dynamics around the Dirac cone is described by an effective anisotropic QSH
Hamiltonian, which in contrast with the conventional case, is formed by two copies of the counter-tilted
Dirac fermion Hamiltonians. The tilting effect results in a pair of helical edge waves with rich anisotropic
transport properties. Our results can stimulate the study of novel Dirac/Weyl materials, and far-reaching
applications for beam-splitters, switches and filters.
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Appendix A. Band inversion mechanism

Band inversion occurs in the C2 MGG by tuning εe and εi to pass through 2εe + εi = 3/2. The mechanism
is demonstrated in the figure A1. The critical point for the band inversion is exactly the condition for the
accidental degeneracy: 2εe + εi = 3/2. There are two symmetric modes (S1, S2) and two asymmetric modes
(A1, A2) around the Dirac frequency. When 2εe + εi < 3/2, the two modes of the lower cone are
asymmetric modes, while the ones of the upper cone are symmetric. These four modes overlap when
2εe + εi = 3/2, forming the tilted double Dirac cone. When 2εe + εi > 3/2, the two modes of the lower
cone become the symmetric modes, while the ones of the upper cone become the asymmetric ones. The
topological phase transition happens at 2εe + εi = 3/2.

Appendix B. Hamiltonian of tilted double Dirac cone

At the Γ point, equation (1) predicts four degenerate modes at the Dirac frequency ΩD =
√

3P:

ΦA = [0; 1; 0; 0; 0; 0], ΨA = [0; 0; 1; 0; 0; 0], ΦB = [0; 0; 0; 0; 1; 0], ΨB = [0; 0; 0; 0; 0; 1]. (A1)

Below, we follow an asymptotic model developed in reference [56] to get the wave dynamical equation
around the Dirac point. When kx, ky are close to zero and Ω to ΩD, modes v around the Dirac point can be
expressed as the linear combination of those at the Γ point,

v = Xμ+ δv, ‖δv‖ 
 ‖v‖, (A2)

where μ = [μ1;μ2;μ3;μ4], and X = [ΦA,ΨA,ΦB,ΨB]. Similarly, the dynamical matrix can be written as,

D = D0 + δD, (A3)

where δD = η′∂η′D + ε′∂ε′D + δkx∂kxD + δky∂kyD is the first order correction stemming from the small
perturbations of η′ and ε′ in the vicinity of Dirac frequency Ω = ΩD + δΩ (‖δΩ‖ 
 ‖ΩD‖) around the Γ
point (δkx, δky). Substituting equations (A2) and (A3) to equation (1) and using

7
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(ΩD + δΩ)2 ≈ Ω2
D + 2ΩDδΩ, we arrive at the following equation, by ignoring the second and higher order

corrections,
D0δv + δDXμ = Ω2

Dδv + 2ΩDδΩXμ. (A4)

By left multiplying the projector X† to equation (A4), finally we can get the following equation,

Hμ = ΔΩμ, (A5)

where the effective Hamiltonian H is given by,

H =

⎡
⎢⎢⎣

0 0 iVDδkx − m + ims −iVDδky

0 0 −iVDδky −iVDδkx − m + ims

−iVDδkx − m − ims iVDδky 0 0
iVDδky iVDδkx − m − ims 0 0

⎤
⎥⎥⎦ . (A6)

Above, VD = 3PR
4ΩD

, ms =
4
3ε

′VDδkx, and ΔΩ = Ω− ΩD − m with m = Pη′
2ΩD

. Equation (A5) describes the
wave dynamics around the Γ point near the Dirac frequency. H can be mapped into a Dirac equation, by
changing the linear basis of equation (A5) to a circular polarized one:

ψ = Uμ, U =
1√
2

⎡
⎢⎢⎣

1 i 0 0
0 0 i 1
0 0 −1 −i
i 1 0 0

⎤
⎥⎥⎦ . (A7)

This circularly polarized spinor basis defines the pseudo-spin in the granular graphene. Under the new basis
ψ, equation (A5) reads,

Hsψ =

[
p
d

]
=

[
H0 mσz − imsσ0

mσz + imsσ0 H0

] [
p
d

]
= ΔΩ

[
p
d

]
, (A8)

where H0 = VD(kxσx + kyσy) is the Dirac Hamiltonian and the spin basis,

p =

[
pL

pR

]
=

[
ΦA + iΨA

iΦB +ΨB

]
, d =

[
dL

dR

]
=

[
−(ΦB + iΨB)

iΦA +ΨA

]
. (A9)

The subscripts L, R represent the left or right circular polarization defined by the unitary matrix U (i.e.
equation (A7)) acting on the linear basis μ. The tilting of the Dirac cones can be investigated by applying
the following unitary matrix,

U ′ =
1√
2

⎡
⎢⎢⎣

1 0 −i 0
0 1 0 −i
−i 0 1 0
0 −i 0 1

⎤
⎥⎥⎦ . (A10)

Equation (A8) becomes,

Hts =

[
H+ mσz

mσz H−

] [
s+
s−

]
= ΔΩ

[
s+
s−

]
= ΔΩs, (A11)

with s = U′ψ and H± = ±VAδkxσ0 + VD(δkxσx + δkyσy) the general form of type-I tilted Dirac
Hamiltonian. When m = 0, Ht describes two counter-tilted Dirac cones H± overlapping at the Dirac point.

By applying the unitary matrix,

U ′′ =
1

2

⎡
⎢⎢⎣

1 e−iθ 1 −e−iθ

eiθ 1 −eiθ 1
−1 e−iθ 1 e−iθ

eiθ −1 eiθ 1

⎤
⎥⎥⎦ , (A12)

where θ satisfies δkx = |δk| cos θ, δky = |δk| sin θ, Ht can be rewritten as follow,

Hθ =

⎡
⎢⎢⎣

m V+(δkx − iδky) 0 0
V+(δkx + iδky) −m 0 0

0 0 −m V−(δkx − iδky)
0 0 V−(δkx + iδky) m

⎤
⎥⎥⎦ , (A13)

or in a compact form, Hθ = [Hθ
+, 0; 0,Hθ

−] with Hθ
± = V±(kxσx + kyσy) ± mσz , and

V± = VD(1 ± 4
3ε

′ cos θ). The anisotropic basis is sθ = U′′s. The Hamiltonian Hθ in equation (A13) gives
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Figure A2. Type-II double Dirac cone when ṽ = 1.4 (ε′ = 1.05) and type-III double Dirac cone when ṽ = 1 (ε′ = 0.75). The
white dashed lines correspond to the Fermi surface.

rise to two decoupled equations, Hθ
±(δk)sθ± = ΔΩsθ±. For m = 0, Hθ is the Hamiltonian of tilted double

Dirac cone. For m �= 0, Hθ is the anisotropic QSH Hamiltonian.

Appendix C. Type-II and type-III double Dirac cones

According to the Hamiltonian Hθ
±, the tilt parameter ṽ = 4|ε′|/3 determines the tilted type of the double

Dirac cone. Figure A2 shows the type-II and type-III double Dirac cones by tuning ε′.

Appendix D. Pseudo-TRS and Berry curvatures

In a spin-1/2 system, the QSH topological phase is protected by TRS where T2 = −1 guarantees the
existence of the Kramers’ pair. And a T-invariant Bloch Hamiltonian must satisfy,

TH(kx, ky)T−1 = H(−kx,−ky). (A14)

Due to its bosonic nature where T2 = 1, the analogies of QSH phase in spinless systems are not protected by
the real TRS but a pseudo-TRS is constructed usually by other symmetries, e.g., C6 in many reported
photonic/phononic systems. Next, we show that the effective Hamiltonian of the MGG around the Γ point
satisfies the same property as equation (A14) under the C2 symmetry.

Let us consider the rotation axis along z-axis passing through the midpoint of the center distance of A
and B beads. The C2 operation can be described by a rotation matrix (we ignore z component as its
contribution to the Dirac physics around the Γ point is negligible),

Rπ =

[
cos ϑ − sin ϑ
sin ϑ cos ϑ

]
ϑ=π

=

[
−1 0
0 −1

]
. (A15)

In addition, sublattices A and B change positions after a 180◦ rotation,[
B
A

]
= S

[
A
B

]
, S =

[
0 1
1 0

]
. (A16)

Thus, a C2 operator is expressed as Cπ = S ⊗Rπ . It is easy to prove that the Hamiltonian in equation (A6)
satisfies,

CπH(δkx, δky)C−1
π = H(−δkx,−δky). (A17)

Compared equations (A14) and (A17), it leads to an important conclusion that the Cπ acting on the
effective Hamiltonian of the MGG has the same property as T on the Bloch Hamiltonian of a spin-1/2
system. Under the C2 rotation, the Hamiltonian is invariant. In this way, pseudo-TRS Tp can be constructed
based on the Cπ as long as it holds T2

P = −1 and commutes with Cπ. Therefore, one pseudo-TRS is
constructed as TP = −iσ0 ⊗ σyK (K is complex conjugation). It is possible to check that T2

P = −1 and
[Cπ, TP] = 0. One should also notice that the C2 rotation holds (δkx, δky) → (−δkx,−δky),
H(δkx, δky) → H(−δkx,−δky) with the rotating axis must passing through the Γ point of the BZ center.
Thus, the discussion here is valid around the Dirac point at the high symmetry Γ point.

The Berry curvature around the Dirac point can be calculated using the eigenmodes of Hθ
±. Taking Hθ

+

as an example, its eigenvalues are λ± = ±
√

V2
+(δk2

x + δk2
y ) + m2, and the corresponding eigenmodes can

9
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Figure A3. Berry curvatures calculated from the eigenvectors of the Hamiltonian Hθ
±. They show a Z2 invariant around the BZ

center where qx ∼ 0 and qy ∼ 0. (a) Berry curvatures of lower cone. (b) Berry curvatures of upper cone.

Figure A4. Top: schematics of a strip used to calculate the edge wave dispersion. Bottom: the corresponding wave spectra of the
strip.

be chosen as,

v± =

⎡
⎣V+(δkx − iδky)

λ± − m
1

⎤
⎦ . (A18)

The definition of the Berry connection is given by, A = i〈v±|∇k|v±〉, and the Berry curvature by
B = ∇k × A. Therefore, based on equation (A18), we can numerically calculated the Berry curvatures
around the Dirac frequency. In figure A3, we show the Berry curvatures of the four branches around the Γ
point. The Chern number is defined as the integral of the Berry curvature of the same spin over the
Brillouin zone. Since our granular system exhibits pseudo-spin and pseudo-time-reversal symmetry, then
the pseudo-spins up and down have independent Chern integers N+ and N−, which are −1, +1 for the
two-fold degeneracy of lower cone, and +1, −1 for the two-fold degeneracy of upper cone based on the
Berry curvatures in figure A3. Due to the real TRS, the overall Chern number (N = N+ + N−) is always
zero for each two-fold degeneracy. However, the spin Chern number, defined as Ns = N+ − N−, is nonzero
due to pseudo-time-reversal symmetry. This leads to a Z2 invariant in the granular graphene.

Appendix E. Edge wave spectra

As shown in figure A4, we consider a strip consisting of 60 cells with the zigzag interface in the middle. The
direction perpendicular to the strip is treated as periodic. Since each particle has three DOFs, we can write
down in total 3 × 2 × 60 equations of motion including the interface configuration. Combining the
boundary condition of free edges on the two ends of the strip, the spectra including bulk, interface and free
edge modes can be derived, see the bottom panel of figure A4. In main text, figures 4(a) and (b) are the
projections of bulk modes to the VZI and IZI based on the bulk Hamiltonian. To be more specific, all the
bulk modes at each point of the BZ can be obtained from the bulk Hamiltonian, and they are projected to
the directions along VZI or IZI when we focus on the waves along the interfaces. The edge wave dispersions
for the two interfaces are obtained by further solving the boundary condition of the interfaces. By
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comparing the results of the VZI in figure 4(a) with the one in figure A4, it is clear that they are consistent
to each other. There, we highlight the interface branches as blue and red, while we mark the bulk region in
grey.
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