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Abstract: 

  

Masonry is a traditional construction method in Algeria. It is commonly used in the construction of walls, such 

as bearing walls or infill panels between columns and beams. Several factors make it difficult to take the 

material into account in structural analysis, especially in seismic cases. Therefore, engineers usually consider 

the masonry panel as a nonstructural element. However, the contribution of the masonry panel on the 

behavior of a building cannot be ignored, particularly, when talking about confined masonry walls. For this 

reason, a great deal of research has been conducted to generate a database that allows for masonry walls to be 

considered in the structural analysis. The present paper aims to contribute numerically and analytically to the 

study of the behavior of double-panel confined masonry walls. Thus, some of the most used analytical models 

are used to predict the strength and the stiffness of those structures. Moreover, a numerical micro model has 

been selected from the literature and validated using original experimental tests. Furthermore, one of the most 

used simplification strategies was adopted. The paper concluded with suggesting some analytical models and 

with proving the effectiveness of the numerical adopted model to simulate the behavior of confined masonry 

walls under Pushover tests and finally, the paper recommends future seismic study. 
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1. Introduction 
Masonry is commonly used for the walls of buildings, such as bearing walls or infill panels between 

columns and beams. This composite material has its own mechanical characteristics, and it is strongly 

influenced by its environment and how it is constructed. Confined masonry walls (in this study referred to as 

CM walls) are common in Algeria, where the confining elements (tie-columns and tie-beams) are cast around 

the masonry panel. They are scientifically studied in several articles, [1], [2] and [3], among others. They are 

completely different from the RC frame with masonry infill. In terms of construction sequence, masonry panels 

are constructed first for CM walls, followed by the cast in-place of RC tie-columns and tie-beams. While the 

frame is constructed first in the case of RC frame with masonry infill, thereafter, panels are constructed within. 

Several factors make it difficult to take the masonry into account in structural analysis, especially in a dynamic 

environment (seismic behavior). Therefore, engineers usually consider the masonry panel as a nonstructural 

element. However, when talking about confined masonry, the frame/panel interaction cannot be ignored. 

Therefore, a great deal of research has been carried out to study the behavior of these structures applying 

different approaches and techniques [1–7].  

Several models have been proposed in the analytical approach to predict the lateral capacities of CM 

walls as well as RC frame with masonry panels, in particular, their strength and stiffness. Those models consist 

of simplified methods and empirical formulae. In the case of RC frames with masonry panel, Fiorato et al. [8] 

have used the shear beam model analogy to predict the initial stiffness. In the same context, Polyakov [9] 

initially and thereafter Holmes [10] and Stafford Smith [11], have proposed a diagonal strut model. Flanagan et 

al.[12], Crisafulli and Carr [13] and others, [14], [15], [16] just to name a few, have developed the diagonal strut 

model to achieve more sophisticated results. Furthermore, Stafford Smith [11], Fiorato et al. [8] and Liauw and 

Kwan [17] have used the same concept (Diagonal strut model) to predict the lateral strength of the RC frames 

with masonry panel. Schmidt [18], Wood [19] and Mehrabi et al. [20] have developed the model taking into 

account more panel/frame connection mechanisms. In the case of CM walls, the most used approach to predict 

the lateral stiffness of CM walls considers the shear and flexural deformation of the wall under lateral loads. 

Flores and Alcocer [21], Tomaževič and Klemenc [22], and Bourzam et al. [23] have proposed a formula using 

this concept. Rai et al. [24] have introduced the effect of the intermediate column using a confinement factor. 

In the same context, Riahi et al. [25] have used a Backbone model to define the CM walls stiffness during the 

different stages of the damage process (Cracks initiation, significant cracks, failure). Regarding the lateral 

strength of CM walls, two approaches are commonly used based on failure mechanisms. The first one is 

derived from Mohr–Coulomb friction theory, Moroni et al.[26], D’Amore and Decanini [27], Marinilli and 

Castilla [28], San Bartolomé et al.[29], Matsumura [30] and Riahi et al. [25] have used and developed this 

approach introducing various factors while the second approach to evaluate the lateral strength of CM walls is 

based on the assumptions of elementary theory of elasticity. Among the authors who have used this approach: 

Tomaževič and Klemenc [22,31], Bourzam et al.[23], Lafuente et al.[32] and Rai et al.[24]. However, the 

analytical models are simplified methods and formulae to approximately predict the stiffness and resistance. 

They are limited to elastic domain and they are not able to reproduce the real response of those structures or 

simulate their local behavior with the various phenomena. For this purpose, many researchers have focused on 

the use of numerical models to study the behavior of masonry structures (In particular reinforced concrete 

frames with masonry infill or confined panels). Several numerical models are proposed in the literature, they 

are classified into two families according to Bicanic et al.[33], the macro modelling and the micro modelling 

models.  

The macro modelling family includes all the simplified numerical models introduced into finite element 

codes. Thanks to their simplicity, they are mostly used in structural analysis as well as studying the effect of 

masonry panels on the behavior of large-scale masonry buildings. Crisafulli [34], Combescure [35] and 

Chrysostomou [16] are among the users and developers of this type of models. On the other hand, the micro 

modelling family includes all complex numerical models. They are formulated to study the detailed behavior of 

masonry structures. Because of their complexity and calculation costs, the micro models are limited to studying 

the behavior of laboratory samples or representative elementary samples. A complete discretization of all 

masonry components is adopted in these family models. The aforementioned models additionally take into 
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account various phenomena including the nonlinear responses, friction, plasticity, cracks and their opening or 

reclosure. Page [36] is the first user of the micro modelling model in the masonry domain. Cruz-Diaz [37], 

Lourenço and Ramos [38] and Oliveira and Lourenço [39] have used and developed more sophisticated 

constitutive laws. Thereafter, many micro modelling models have been proposed taking into consideration 

more complex factors and behavioral phenomena (Mehrabi et al. [20], Mehrabi and Shing [40], Al-Chaar et al. 

[41], Baloevic et al. [42], Rahman and Anand [43]). The main disadvantage of the micro models is their 

calculation costs and the requirement for powerful calculation machines. Moreover, they require a large 

amount of experiments to evaluate the corresponding parameters set. Therefore, Lourenço [44] has proposed 

a simplification technique which suggests lumping the mortar joints and brick-mortar interfaces in one 

interface element. Sutcliffe et al. [45], Cruz-Diaz et al. [46] and [47] are among the authors who adopted this 

simplification strategy. The present paper adopted the same simplification technique too. 

The analytical models present the key factors to build macro modeling models as well as to take into 

account the wall contribution on structural analysis (large scale buildings). All analytical models mentioned 

previously are designed for the cases of simple panel masonry walls. However, how much those models are 

realistic toward the double-panel walls commonly used in Algeria. Consequently, the present paper makes a 

contribution to the numerical and analytical study of masonry panels confined by reinforced concrete frames. 

On the one hand, the commonly used analytical models were assessed on double-panel confined masonry 

walls, which represent the most used construction systems in Algeria. On the other hand, the paper reports a 

numerical study conducted in finite elements code Cast3m including: the characterization method, parameters 

calibration strategy, model validation steps and the numerical results. The adopted model aims to optimize 

precision and simplicity. It is based on the use of one single law for modeling lots of materials. This law is 

adaptable through physical parameters, which makes their calibrations a more practical tasks. Furthermore, 

the paper compares the two adopted construction systems using the validated model and finally suggests a 

future seismic study. 

2. Experimental program 
The present paper corresponds to the following of the work reported in Belghiat et al. [48], in which 

four CM walls (Two uniform CM walls and two toothed CM walls of 2.06×1.52m2) were built. These walls 

comprise two masonry panels separated by a 50-mm air gap (double-panel walls see Fig. 1). The walls made of 

hollow bricks (300×200×100mm3) and cement mortar were confined by a surrounding RC frames of the same 

section 0.25×0.25m2, including four reinforced steel bars (12mm in diameter). The prototype studied is 

adopted to be the middle frame of a two-floor three-bay typical residential building which makes the vertical 

acting loads equivalent to 80 kN. For more details, see Belghiat et al. [48].  

All the building materials were selected to correspond to Algerian standards. However, several series 

of tests (40 tests) were carried out to characterize the different used materials. A total of twelve 16×32 cm2 

concrete cylinders have been realized in accordance with EN 12390-2. Eight cylinders were used for 

compression tests and the rest for splitting tensile tests following EN 12390-3 and EN 12390-6 respectively. Six 

tensile tests were performed on six steel bars of 65 cm length (three on 12mm diameter and three on 6mm 

diameter). Moreover, three compression tests for each direction of the bricks (compared to perforations) were 

performed. In accordance with EN 1015-11, compression tests and bending tensile tests (three point flexural 

tests) were performed on 4×4×16 cm3 mortar prisms. Table (1) below summarizes the obtained results 

including the results of diagonal and vertical compression tests on masonry panels. 

Table 1. Average materials parameters. 

Concrete 

Test Compression tests         Splitting tensile strength tests 

Parameter RC (MPa) E (MPa) εPeak RT (MPa) 

Uniform samples 27.93 14 333 2.82E-3 2.933 

Toothed samples 27.66 14 740 2.75E-3 2.842 

Mortar 
Parameter Bending tensile strength (MPa)  Compression strength (MPa) 

Uniform panels 4.72 3.80 3.89  16.73 16.25 16.26 
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Toothed panels 3.86 3.70 4.21  15.13 15.50 14.00 

Brick 
Load orientation compared to perforations Perpendicular  Parallel  Vertical  

Compression strength (MPa) 0.44 5.45 0.82 

Steel 

Bar types Ultimate strength (MPa) Elastic limit (MPa) 

Ф6 487.7                     288.9 

Ф12 601.0 482.5 

Masonry  
Compression strength Shear strength (tensile)  Young modulus Shear modulus 

1.13 (MPa) 0.82 (MPa) 3 919 (MPa) 1 646.5 (MPa) 

3. Analytic prediction of stiffness and first crack loading 
All past analytical models were designed and assessed for the case of simple CM walls and RC frame 

with one masonry infill panel. In order to assess their efficiencies against double-panel walls, some existing 

analytical models are used in the present section to firstly deduce the lateral stiffness of the samples tested in 

Belghiat et al. [48]. Secondly, they were used to evaluate their lateral strengths at the appearance of first panel 

diagonal crack. In addition to the results in Table (1), some significant experimental results have been 

summarized in Table 2 from the experimental work of Belghiat et al. [48]. During these experiments, the lateral 

strength was not reached for none of the four walls tested. But the damage caused, suggested that the 

maximal experimental load applied was close to the peak of strength. Consequently, it was assumed in the 

following, that those maximal experimental loads could approximate the lateral strengths.    

Table 2. Estimation of significant experimental results. 

Tests KExp (kN) VcrExp (kN)   Vp (kN) 

PC1 176 144 247  

PC2 200 195 269  

PH1 201 177 263  

PH2 198 177 266  

Where, KExp and VcrExp denote respectively, the initial rigidity and the first crack strength that are derived from 

the experimental curves of the work of Belghiat et al. [46]. Vp corresponds to the peak of strength, and is based 

on the assumption outlined above. 

3.1.   Lateral stiffness 

To predict lateral stiffness of confined masonry walls, Flores and Alcocer [21] proposed a model based 

on the flexural and the shear deformations of the sample. Rai et al. [49] derived the stiffness taking into 

account the effect of the intermediate column through a confinement factor (Li,s/P) (see Table 3). Furthermore, 

a Backbone model was used by Riahi et al. [50] to compute the lateral stiffness of CM walls. Figure (1) clarifies 
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some geometrical parameters. 

Fig. 1: Representation of some geometrical parameters mentioned in Table 3. 

These three models are evaluated to predict the stiffness of four CM walls with uniform and toothed 

confinements tested previously in the work of Belghiat et al.[48]. Table (3) summarizes all the used formulae. 

Table 3. Analytical models for stiffness prediction at first diagonal crack in CM walls. 

Authors Formula Comments 

Riahi et al. 
[50] ��� � �� ��	
�  

��	 : inertia moments of column ��	: the height of masonry panel.  ��	 : cross section of masonry panel. ��	, �		: Young and shear masonry modulus  ��	 : compressive strength of masonry. ����/�	: confinement factor defined as the ratio of 
the total centerline length of internal grid 
elements, ����, to the centerline length of 
confining elements at the perimeter of the wall, ��.’ ���, �� : cross section and height of wall. �
� : effect of unit material on the panel rigidity, 

equal to (1,13) for clay brick and (0,72) for 

concrete block. 

Rai et al. [49] 

��� � ��� �0.29 � 0.26  !��� "# 

��� � $� ��%
3�	�	# � �����	'

()
 

Flores and 
Alcocer [21] 

��� � $� �	%
3�	�	# � �	�	�	'

()
 

 

In figure (2), the histogram shows the ratios of obtained results to the experiments ones for each 

formula corresponding to all the tested samples, in which, notations PC1 and PC2 represent two samples with 

uniform confining elements and PH1 and PH2 represent two samples with toothed confining elements.  On the 

one hand, the histogram shows that both models of Rai et al. [49] and of Riahi et al. [50] respectively 

underestimated and overestimated significantly the stiffness of all specimens. On the other hand, the model of 

Flores and Alcocer [21] satisfactorily predicted the initial rigidity of the walls, in which the ratio values obtained 

stand within interval (0.96 ≤ Kcal / Kexp ≤ 1.10) for all cases. 

Fig. 2: Ratios obtained from analytical prediction of our four CM walls stiffness at first diagonal crack. 

3.2.   Lateral strengths 

Based on the friction theory, several researchers proposed analytical models to predict the peak 

strength as well as the first crack strength of CM walls. The formulae proposed by Flores and Alcocer [21], 

Moroni et al. [26] and the Official Standard of Chile [51] represent a simple manipulation of Mohr-Coulomb 

theory. Matsumura [52] and Riahi et al. [50] introduced the contribution of the columns through the ratio of 

reinforcement bars ignoring the number of columns. Marques and Lourenço [53], along with Castilla and 
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Marinilli [54] used advanced statistical and regression analyses to predict the peak strength of CM walls. Rai et 

al. [24] introduced the contribution of tie-columns using the total longitudinal reinforcement ratio. The 

formulae used in this work and reported from the works [48,50,55] are shown in Table (4). 

Table 4. Analytical models for crack and peak strengths prediction of CM walls. 

 Authors Formula Comments 

Fi
rs

t 
cr

ac
k 

st
re

n
gt

h
 

A. Matsumura  
[52] 

*�� � $ �+��, � 2��	 � 0.3-.' × 0� × 1 
1 � 0.875 5!� −78� 29 : 

��+ : reduction factor 0.64 for 
partially grouted walls. �, : is the effective width of 
wall. ���,	!�,	0� , ��: represent 
length, width, thickness and cross 
section of wall respectively.  �78� : width of tension column. ��	, -	 , �	 : compressive, shear 
strength and cross section of 
masonry. 

 �-.	: vertical applied stress.  �;<�	: ratio of longitudinal 

reinforcement in column. 

=�>	, ���?	: steel and concrete 

compressive strengths. 

�!�8 �⁄ 	 : defined in table (1). 

�A8� : number of tie-columns. 

��8�	: reinforcement section tie-

columns. 

Chilean 
Standard [51] 

*�� � BCD�0.23-	 � 0.12-.	; 0.35-	 × �� 

Moroni et al. 
[26] 

*�� � �0.19-	 � 0.12-. × �� 

Riahi et al. [50] *�� � �0.424-	 � 0.374-. × �� 	≤ 	 -	 × �� 

Flores and 
Alcocer [21] 

*�� � �0.5-	 � 0.3-. × �� 	≤ 	1.5-	 × �� 

P
ea

k 
st

re
n

gt
h

 

Marques and 

Lourenço [53] 

*I � J1.0072 � 0.4897-	 � 0.5341-.− 0.137 5�� !�9 :
− 0.9966 5�� �	9 :K �� 

Riahi et al. [25] *I �  0.21-	 � 0.363-. � 0.0141L;<��>���" × ��	 
Rai et al. [24] 

*I � M��N2.15 � 0.7�!�8 �⁄ 	O M�� � minS���0.2 � 0.4-.; 0.25��	T 
Castilla and 

Marinilli [54] 
*I � �0.47-	 � 0.29-. × ��� − A8��8� � 4200A8� 	 

The formulae mentioned in the table above were used to predict the load corresponding to the first 

crack of the panel and the peak strength. The obtained results are represented in a histogram in which the 

value deduced from each formula is expressed as a ratio with respect to the experimental results as shown in 

figure (3).  

Fig. 3: Ratios obtained from analytical prediction of our four CM walls strengths at the peak and at the first diagonal 

crack. 
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The histograms of figure (3) indicate that the models proposed by Matsumura, Standard Chilean and 

Moroni et al. [26,51,52] underestimated the first crack strength  and  the obtained ratios are significantly low 

(Vcal / Vexp ≤ 0.82). It is worth noting that these models have shown good results in the work of Riahi et al. [50]. 

Regarding the model proposed by Flores and Alcocer [21], similar results were found in the work of [56]. The 

model overestimated the first crack strength (1.12 ≤ Vcal / Vexp ≤ 1.6) but still stands as a good approximation 

indicator. The best results have been obtained using the model of Riahi et al [50], in which the various ratios 

achieved still stand in the interval [0.99; 1.41]. Regarding the peak strength prediction, the model of Marques 

and Lourenço [53] overestimated the peak strength (1.43 ≤ Vcal / Vexp ≤ 1.55). The model of Rai et al. [24] 

overestimated this strength but still stands as a good indicator in which the ratio values obtained stand within 

interval [1.1 ; 1.9]. Moreover, the model of Riahi et al. [25] underestimated the peak strength in all cases (for all 

samples), similar results were found in [55]. The best  prediction, in a conservative way, is given by the model 

of Castilla and Marinilli [54] (0.88 ≤ Vcal / Vexp ≤ 0.95). 

4. Numerical approach and calibration  
Away from the analytical models, several numerical models have been proposed in the literature to 

study the behavior of CM walls thoroughly. According to Bicanic et al. [33], these models can be classified in 

two approaches: macro-modeling approach and micro-modeling approach. The model adopted in this paper 

carries out an optimum choice between the two approaches. It belongs on the one hand to the micro modeling 

approach, which reproduces the detailed behavior. On the other hand, it adopts one of the simplification 

techniques of the macro modeling approach. This simplification simulates the mortar joint and the two 

interfaces as a single homogeneous element, as proposed by Lourenço [44]. 

4.1.   Adopted model 

Here, a mixed approach was applied between the macro modelling and the detailed micro modelling. 

The joint of mortar and its interfaces with bricks are considered as one homogeneous material. Generally 

represented with interface element, an approach with volumetric finite elements were chosen in the current 

work. Apart from respecting the geometry more precisely, this choice was motivated by the fact that all of the 

brick, the concrete and the mortar materials exhibit a quasi-brittle behavior. These allows the use of the same 

constitutive law for all materials involved, by this way avoiding the limitation of the constitutive law available in 

the used software.  

The model adopted in this work is introduced into finite elements code Cast3m with a numerical 

explicit approach. Concrete and bricks are modelled by eight nodes cubic elements with the adapted law 

proposed, developed and implemented by Sellier et al. [57]. While the steel bars are represented by two nodes 

segments with elasto-plastic perfect law. Regarding the mortar joints, the Lourenço [44] simplification is 

adopted. Consequently, hexahedral elements are used with Sellier et al. [57] law, but first, calibrated in order 

to simulate the combined behavior of the mortar and the two surrounding contact interfaces. Sellier et al. [57] 

law is implemented in finite elements code Cast3m under instruction “ENDO3D”. This constitutive law involves 

both elastoplasticity and damage in tension and compression states. It is initially proposed for concrete 

combining an orthotropic Rankine criterion in traction and the Drucker-Prager criterion in compression. The 

Rankine criterion (��8) is defined in the principal base of undamaged stresses tensor (U�) as a function of the 

effective tensile strength in a principal direction of stress (M�8) and its expressed as follows [58]: 

��8 � U� − M�8  

The Drucker Prager criterion used in compression and for modeling the plastic strain due to the propagation of 

micro cracks induced by shear stresses, is described as follows: 

�� � $VU�WX: U�WX2 � Z [\�U��3 ' − M�� 1√3 − Z3 
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Where (M�) is the compressive strength,  (Z) the Drucker Prager confinement coefficient, (U�WX) the diviatoric 

components of stress tensor [58]. Figure (4) shows a multidimensional plot of the interaction of Drucker Prager 

and Rankine criteria. 

Fig. 4: Drucker Prager and Rankine criteria interaction[58] . 

Moreover, Sellier’s et al. [56] law is formulated to describe, in an anisotropic way, the cracking mechanism. The 

damaging effects are also considered for tensile, compression and shear states. Furthermore, the constitutive 

law takes into account hysteresis effects, plasticity and cracks reclosure. The final form of the constitutive 

equation behavior of the Sellier’s law is expressed as follows : 

U�W � �1 − ^�. �1 − ^8. _.. `�W � �1 − ^�. ^8 . _.. =`�W − `�Wa? 

In which, (^8) is defined as tensile damage tensor, (^�) the compression damage tensor corresponding 

physically to the crashing of materiel. (_.) is the stiffness matrix of undamaged material and (`�Wa ) is the inelastic 

strain associated with the crack opening. Those internals variables were evaluated based on thermodynamics 

framework using the free energy potential. More details can be found in [57]. Other aspects are also combined 

to the mechanical behavior, such as chemo-mechanics, poro-mechanics, but they were not required in the 

present study. It is consequently appropriate to simulate the directional properties of fragile materials [57]. The 

following figure (5) illustrates the response under cyclic uniaxial-tension-compression test reported in [57]. 

Fig. 5: Behavior law obtained from cyclic uniaxial-tension-compression test [57] . 

The main advantage of the adopted model is its ability to simulate all materials by calibrating their intrinsic 

parameters. These physical and mechanical parameters can be identified through a simple and commonly 

characterization tests. Using the same law for all materials provides some interest regarding the convergence 

of numerical calculations. Regarding the modeling technics presented in previous studies (2D modeling 

approach like in [59]), the three dimensional discretization was adopted to match the all dimensional 

characteristics [60].  The modelling considers the mortar joints and the bricks geometries, unlike the commonly 
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used technics which consider zero thickness interface elements. Adopting the Lourenço simplification 

technique, mortar joint and interfaces are considered as continuum elements [44]. 

 

4.2.   Parameters calibration method 

According to Domede et al. [61], two steps are required to use Sellier’s et al. [57] law in the case of 

masonry structures. The first is pure experimental characterization of the masonry components while the 

second step consists of numerical simulations to produce the homogenous parameters. The used calibration 

method in this paper is inspired by  the methodology proposed by Domede et al. [61]. Therefore, three sample 

classes were used in the experimental research presented in this work: material samples, partial structure 

samples and CM wall samples. The material samples are used to define the majority of individual parameters of 

steel, mortar, brick and concrete. During the characterization tests, the potential risk of damages of materials 

imposed to remove the camera during the tests. Consequently, the lack of measuring instruments caused some 

limitations as regards determining the parameters. Then the numerical simulations of these tests addressed 

these limitations by determining the missing parameters. The obtained results from the first samples’ group 

formed a base for the second samples’ group (passage from the material scale towards the local scale). 

The first test of the second group is a three points bending flexural test on the composed interface 

sample. The test aims to deduce the tensile strength, the Young’s modulus and the tensile fracture energy of 

the mortar/brick interface and that of the concrete/brick interface too. On the one hand, the tensile strength is 

deduced experimentally and the tensile fracture energy by an analytical formula from [62]. On the other hand, 

the Young’s modulus is numerically recalibrated to obtain a good coincidence of curves. In the case of mortar, 

concrete and brick, the used parameters are reported from the first samples group results (material scale). 

Afterwards, the obtained parameters from the interface bending test are injected into the triplet model test. 

The interface Drucker-Prager (referred in this paper by D-P) confinement factor is calculated analytically as 

reported in [61] and its compressive strength is numerically recalibrated until the coincidence of the numerical 

and experimental curves. Next, the interface parameters previously obtained are injected into the model of 

vertical compression panel test. The brick Young’s modulus is deduced thanks to the image correlation 

technique [63] and its compressive strength from the compression test on the brick unit of the first samples 

group. The tensile fracture energy and the strength of the brick are analytically calculated as reported in [62]. 

Finally, the D-P confinement factor is numerically recalibrated until the coincidence of curves. The last test in 

partial structures group is a diagonal compression test on a masonry panel. The parameters set used in the 

previous vertical compression test are adopted. Due to the anisotropic nature of the masonry, a significant 

dissimilarity between the numerical curves and the experimental one is obtained. Thus, the Young’s modulus, 

the compressive strength and the tensile strength of bricks required a readjustment to this new test 

configuration. The experimental stiffness and the initial slope of the strain-strain curve obtained, according to 

the standard [64], are used to determine the shear coefficient and the diagonal Young’s modulus of the brick. 

Thus, the tensile strength and the diagonal compression strength of the bricks are adjusted to match the 

coincidence of curves. 

The last group (CM wall samples) represents two types of tests (monotonic and cyclic loading). In the 

first testing type, the diagonal compression test parameters are used for the bricks and the interfaces, whereas 

the concrete and steel are simulated according to the first samples group (Materials). Subsequently, the same 

set of parameters is introduced in the first model of cyclic tests to calibrate the Drucker-Prager plastic 

deformation characteristic associated with the damage (EKDC), which manages the reversibility of the 

response. Finally, the second model of cyclic tests validated this final parameter set. 

4.3.   Numerical results  

The present section reports the characterization processes and the validation of the adopted model by 

the partial structures as well as the CM walls samples. The section also shows the competency of the model to 

simulate the CM walls behaviors under Pushover tests using the calibrated parameters with characterization 
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tests. It is worth noting that a software dedicated to digital image correlation technique was used on most tests 

reported in Belghiat et al. [48]. This software is named 7D and works by comparing images provided from a 

tested sample at different experimental stages, details of computing strategy are reported in [65].  

 

4.3.1.   Interfaces 

In order to calibrate the interface parameters and to demonstrate the effectiveness of the adopted 

model to simulate the behavior of these elements, two test types were carried out: Three point bending 

flexural tests on composed interface samples and shear tests on confined masonry triplets (see Fig.6). 

Fig. 6: Physical and numerical interfaces models: (a) Experimental composed interface model, (b) Experimental triplet 

model, (c) numerical composed interface model, (d) numerical triplet model. 

The interface fracture energy, tensile strength and Young's modulus are calibrated using three point 

bending flexural tests. Initially, the tensile strength is deduced experimentally taking into account the shrinkage 

effect of the mortar and posing process of the units as reported in the work of Lourenço [44]. Consequently, 

the net contact area of the interface is restricted to 59% of the total area. The tensile fracture energy is 

deduced using the formula (1) proposed by Drougkas [62]. Young modulus is then calibrated to reproduce the 

experimental curve. 

�ab � 0.025�2�8..c      (1) 

Afterward, those traction interface parameters are used into shear confined triplet tests. While, the D-

P confinement factor is calculated analytically via the internal friction angle using the formula (2) reported from 

the work of Domede et al. [61], the compressive interface strength is calibrated until the curves coincidence. 

The adopted parameters for the interface are summarized in table (5) , where, (Rt), (Gf
t), (E), (δ) and (Rc) 

represent respectively: tensile strength, tensile fracture energy, Young's modulus, D-P confinement factor and 

the compression strength of the interface. 

δ=
d√%×efg∅%(efg∅        (2) 
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Table 5. Parameters set for interface element (Triplet and composed samples). 

Parameter 
Mortar/brick Interfaces  Concrete/brick Interfaces  

Ep1 Ep2 Ep1 Ep2 Ep3 

Rt (MPa) 0.06 0.12 0.25 0.105 0.18 

Gf
t (MJ/m2) 1.5e-3 1.8e-2 5.1e-2 1.1e-2 9.1e-2 

E (MPa) 350 550 800 1000 180 

δ 1.34 1.34 1.34 1.34 1.34 

Rc (MPa) 9.24 9.24 9.25 9.25 9.25 

During the numerical simulations the applied boundary conditions are represented in images (c) and 

(d) of figure (5). The vertical loads are applied with displacement controlled condition and the lateral load with 

load controlled condition (to apply the confinement force on masonry triplets). As shows figure (7), on the one 

hand, the obtained results from the three points bending flexural tests as well as the experimental ones, are 

represented as curves translating the deflection of composed samples as function of the applied loads (For 

three concrete/brick interfaces and two mortar/brick interfaces). On the other hand, the shear tests results 

applying four confinement values are translated into Mohr-Coulomb failure criterion. As shown in figure (7), 

the experimental and the numerical criteria are classified in two types, initial and residual criteria. The initial 

criterion relates the ultimate strengths of the interfaces with the applied confinements, while, the residual 

criterion represents the residual strengths of the interface as a function of the applied confinements. 

Fig. 7: Experimental Vs numerical curves from tests on interface elements. 

As shown in figure (7), the adopted model reproduces accurately the response of composed 

concrete/brick and mortar/brick interface samples under three points flexural test.  Thanks to the displacement 

directions map provided by the software 7D [65], the correlation images technique showed that the lower 

interface area is a tension zone and that the upper area is a compression zone (Fig. 8-a). The same 
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phenomenon has occurred in the numerical model (qualitative comparison) as reflected by the distribution of 

volumetric deformations illustrated in figure (8-b). Otherwise, the adopted model also suitably simulates the 

ultimate and residual criteria, more precisely, in the confinement range of 0 to 0.2 MPa. It could then 

reproduce the response of confined triplets under shear tests. Similar failure modes were witnessed in all 

tested triplets, the middle brick slips downwards with interfaces detachment. The numerical model has 

succeeded in reproducing this failure mode as demonstrated in the images (c) and (d) of figure (8). 

Fig. 8: Experimental and numerical tests result: (a) displacement directions of bending interface, (b) volumetric 

deformations of the interface, (c) experimental triplet failure mode, (d) numerical triplet failure mode. 

4.3.2.   Masonry panel 

The second step aims to simulate, using the same model, the masonry panel behaviors under the 

diagonal and vertical compression tests (see Fig 9).  
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Fig. 9: Vertical and diagonal compression tests on masonry panels: (a, c) Physical models, (b, d) numerical models. 

The interfaces parameters are reported from table (5), and the bricks parameters from material 

characterization tests as represented in table (6), while the Drucker-Prager confinement coefficient of bricks is 

recalibrated until the coincidence of the curves. Young's modulus is determined experimentally from the initial 

slope of the compression test curve. However, the fracture energy is analytically calculated using the formula 

(1) as reported in Drougkas et al. [62] and the tensile strength is estimated to be 9% of the compressive 

strength as proposed in Drougkas et al. [62].  

Table 6. Parameters set of masonry panels (Vertical and diagonal compression tests).  

Parameters Brick Interfaces  

Rc : Compression strength (MPa) 0.85 9.24 
RT : Tensile strength (MPa) 0.1 0.12 
E: Young modulus (MPa) 175 348.5 

GFT: fracture tensile energy (MPa) 3.6E-2 2.9E-3 

DELTA : Drucker-Prager confinement factor 0.78 1.34 

During both tests the load was applied in (Z) direction by imposed displacement condition. In the 

vertical compression test, the lower panel surface was blocked in (Z) direction. Similar boundary conditions are 

used on contact areas (100x300 mm2) of panel with metallic supports in diagonal compression test (Z direction 

were blocked). As shown in figure (10), the experimental and numerical panel responses under the vertical 

compression were translated as curves of variation of the displacement as function of the applied load. 

Similarly, the resulted curves of diagonal compression tests are illustrated in figure (10).  

Fig. 10: Experimental and numerical load-displacement curves of vertical and diagonal compression tests. 

From the curves of figure (10), the model properly simulates the initial rigidity and the maximum 

loading of the panel under the vertical compression test, but the failure that occurred during the experiment 

was more brittle than the one produced in the numerical model. The effect of representing the anisotropic 

hollow bricks by a continuous volume of cubic elements can justify the post peak behavior difference. 

Regarding the diagonal test, the numerical curve reflects a much lower stiffness than the experiment with 

numerical stiffness equal to 3.4% of the experimental one. The given ratio ensures that the Young modulus of 

the brick in the vertical direction and in the diagonal direction is not the same and that the anisotropy of brick 

affects strongly the directional proprieties of bricks. Also, according to Shaan and Torrenti in [66], the Young 

modulus of the brick can vary between 7220 MPa, in parallel to perforations to 405 MPa in perpendicular to 

perforations. Due to difficulties of determining the Young's moduli of brick in any case, a numerical calibration 

of the diagonal Young modulus has been engaged. The slopes of load-displacement curve and the stress strain 

curve, deduced by the instructions of the standard diagonal compression test on masonry panel [64], are used 

on the one hand to recalibrate the diagonal Young modulus. On the other hand, the compressive and tensile 

strengths are recalibrated until the total coincidence of the curves. Finally, the recalibrated parameter set used 
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in the numerical model is reported in table (7). The estimation of the value of the diagonal Young modulus is in 

good agreement with those of Shaan and Torrenti [66]. 

Table 7. Recalibrated parameters set used for the bricks in diagonal compression test.  

Parameters Brick 

Rc : Compression strength (MPa) 3.25 
RT : Tensile strength (MPa) 2.75 
E: Young modulus (MPa) 7212 
GFT: fracture tensile energy (MPa) 3.1-4 
DELTA : Drucker-Prager confinement factor 0.78 

The obtained load-displacement curve after the recalibration of the bricks parameters are represented 

in figure (11). Moreover, thanks to the displacements of the points 1 to 4 as shown in figure (9-c) obtained by 

the images correlation technique, the variation curve of the shear stresses as a function of the angular 

deformations of the panel were outlined according to the instructions of the standard of the diagonal 

compression test on masonry panels [64] (See Fig. 11). 

Fig. 11: Experimental and numerical obtained curves of diagonal compression tests after recalibration. 

The model efficiency was proved by the reproduction of the response of the panel under the diagonal 

compression load in terms of the variation of the loading as a function of displacement as well as the variation 

of the stress as a function of strain (Fig.11). Furthermore, the concordance of the numerical model with the 

physical one has been validated by the uniformity of the failure modes obtained in both cases. Qualitative 

comparison was then illustrated by images of figure (12), in which the image (a) presents the  logarithmic 

deformations provided by the software 7D [63] on the physical model while the image (b) presents the 
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volumetric deformations thanks to the internal variables on the numerical model. 

Fig. 12: Panel failure mode under diagonal compression, (a) logarithmic deformations using the software 7D [63], 

Volumetric deformations using the internal variables TEPS. 

 

5. Confined masonry walls simulations 
The reported Pushover tests from Belghiat et al.[48] on confined masonry walls were used in this 

section to validate the adopted model. Four tests were carried out, the first one is a monotonic lateral loading 

test on CM wall with uniform confining elements (PC1), whereas the second one is a loading unloading test on 

CM wall with uniform confining elements (PC2). The third test is a monotonic loading test on a CM wall with 

toothed confining elements (PH1) and the last one is a loading unloading test on a CM wall with toothed 

confining elements (PH2). Thanks to the symmetric shape of the samples, the numerical models were limited to 

half of the studied walls in the out-of-plane direction. The two types of models as well as the detailed 

discretization are shown in figure (13). During the numerical tests, the vertical load (80 kN) was uniformly 

applied with load control conditions on the upper section of the beam. The lateral loading was applied with 

displacement controlled conditions firstly in a progressive way and secondly in a loading-unloading way to 

ensure the similarity of loading conditions between the numerical and experimental tests. Alternatively, the 

symmetric plan was blocked following the (Y) direction and the tie-beam volume following the three directions 

(X, Y and Z). 

Fig. 13: Finite element model for confined masonry walls introduced in software Cast3m. 

The parameters sets used were quoted from the previous characterization tests (Tables 5, 6 and 7). 

Table (8) reports more details about the adopted parameters sets for each sample’s components where (Rc) 

and (Rt) represent respectively the compressive and the tensile strengths. The parameters (E) and (GFT) are the 

Young modulus and the fracture energy in tension and (EKDC) represents the plastic deformation associated to 

compression damage. 

Table 8. Parameters adopted set for Pushover tests on confined masonry walls. 
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PC1 

Rc  (MPa) 29.89 390 506 3.25 9.24 9.24 9.25 

Rt  (MPa) 2.83 390 506 2.75 0.12 0.12 0.25 

E   (MPa) 14370 150558 170558 7212 348.5 348.5 500 

GFT (MPa) 8E-3 / / 3.1E-4 2.9E-3 2.9E-3 1.5E-2 

EKDC 9E-4 / / 9E-5 1E-4 1E-4 1E-4 

PC2 

Rc  (MPa) 28.24 390 506 3.25 9.24 9.24 9.25 

Rt  (MPa) 2.78 390 506 2.75 0.12 0.12 0.25 

E   (MPa) 14370 150558 170558 7212 348.5 348.5 500 

GFT (MPa) 8E-3 / / 3.1E-4 2.9E-3 2.9E-3 1.5E-2 

EKDC 9E-4 / / 6.5E-5 1E-4 1E-4 1E-4 

PH1 
 

Rc  (MPa) 26.26 390 506 3.25 9.24 9.24 9.25 

Rt  (MPa) 2.78 390 506 2.75 0.12 0.12 0.25 

E   (MPa) 14420 150558 170558 7212 348.5 348.5 500 

GFT (MPa) 9E-3 / / 3.1E-4 2.9E-3 2.9E-3 1.5E-2 

EKDC 4E-4 / / 9E-5 1E-4 1E-4 1E-4 

PH2 

Rc  (MPa) 26.26 390 506 3.25 9.24 9.24 9.25 

Rt  (MPa) 2.78 390 506 2.75 0.12 0.12 0.25 

E   (MPa) 14420 150558 170558 7212 348.5 348.5 500 

GFT (MPa) 9E-3 / / 3.1E-4 2.9E-3 2.9E-3 1.5E-2 

EKDC 4E-4 / / 6.5E-5 1E-4 1E-4 1E-4 

The obtained results were translated as response curves which relate the variation of lateral loading as 

function to the lateral displacement of the beam. Figure (14) shows the numerical curves versus the 

experimental ones for all samples, including the monotonic tests and the loading-unloading tests. 
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Fig. 14: Numerical and experimental load-displacement curves of uniform and toothed samples under monotonic and 

loading unloading conditions. 

As shown in figure (14), the model reproduces accurately, in monotonic loading conditions, the 

uniform and the toothed samples responses. It simulates correctly the initial rigidity of samples PC1 and PH1 

and their nonlinear responses. Moreover, the model has succeeded to simulate the initial rigidity, degraded 

rigidities and the unloading responses of the uniform and the toothed samples under loading unloading 

conditions (PC2 and PH2). Furthermore, the cracks propagation path of the numerical model and the 

experimental one were compared qualitatively for all samples. Figure (15) represents the experimental cracks 

propagation paths obtained thanks to the logarithmic deformation provided by the software 7D [63] and the 

numerical cracks propagation path produced by the volumetric deformations thanks to the internal variable 

(TEPS) of Sellier’s law [57].   
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Fig. 15: Numerical Vs experimental cracks propagation paths for all samples. 

Comparing the numerical model and the physical one from figure (15), the flexural cracks appeared, 

on the one hand, on the loaded column are similar in all samples in terms of orientation and propagation along 

the column height. On the other hand, the diagonal cracks propagated in the panel, in the numerical model, 

have the same orientation, shape and diffusion area of those that appeared in the physical model 

(experiment). Furthermore, the cracks continuation phenomena from the confinement element (column) 

toward the panel were also captured in the numerical model. Particularly, the cracks of the top right corner 

propagated through the masonry panels. Consequently, the efficiency of the model to simulate the CM walls 

behaviors were proved globally by load-displacement response curves and in detail using cracks propagation 

paths. 
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 In order to further investigate the efficiency of the numerical model to simulate the seismic behavior 

of CM walls with various frame/walls connections (Uniform and toothed confinements), two parameters were 

studied for the numerical model and the experimental one, the rigidity degradation and the energy dissipation 

capacity. For this purpose, the realized loading unloading cycles were used to illustrate the evaluation of the 

rigidity degradation (The rigidity of each cycle as a function of the displacement associated with the loading 

branch and exactly the end point of the linear branch). Furthermore, those cycles were used to illustrate the 

evaluation of the cumulative dissipated energy for the two types of samples (the dissipated energy deduced by 

the area under the curve of each cycle as a function of the maximum displacement of the cycle). Figures (16) 

and (17) present the numerical versus the experimental obtained curves concerning the rigidity degradation 

and the dissipation energy capacity respectively. Otherwise, the obtained calculation results are presented in 

table (9). 

Fig. 16: Numerical versus experimental evaluation curves of rigidity as function of displacement. 

Fig. 17: Numerical versus experimental evaluation curves of cumulated dissipated energy as function of maximal 

displacement cycle. 

As show in figure (16), the model has properly simulated the rigidity degradation of the two sample 

types (uniform and toothed confinements). The shape of the numerical curves was similar to those of the 

experimental ones. The error margin, as shown in table (9), remained within the range of 5% to 32% in the 

uniform sample case, and 4% in the toothed sample case. Regarding the numerical and the experimental 

curves of figure (17), the model produced a perfectly coincidence curve to the experimental results of the 

uniform sample, which means that the model dissipates the same quantity of energy through the loading-

unloading process compared to the experimental result. The measured error margin in the case of toothed 

sample remained within the range of 8% to 0% (See table 9). 

Table 9. Calculation results of rigidity degradation and dissipation energy capacity. 
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Rigidity 
degradation 

(kN/mm). 

Uniform 

Experimental 175,44 175,44 104,66 65 

Numerical 185 185 115 86,22 

Error (%) 5 5 10 32 

Toothed 

Excremental 176,78 176,78 172,56 77,2 

Numerical 184,8 184,8 171 73,87 

Error (%) 4 4 1 4 

Cumulated 
dissipated 

energy  
(J). 

Uniform 

Experimental 3,442 162,392 383,012 715,251 

Numerical 3,526 147,18 380,45 745 

Error (%) 2 9 1 4 

Toothed 

Excremental 2,694 25,861 123,723 453,016 

Numerical 2,696 25,795 113,93 430,45 

Error (%) 0 0 8 5 

 

The results above indicate the effectiveness of the used finite elements model to reproduce the 

characterization tests. Its ability at wall scale was also confirmed by reproducing the pushover experimental 

program reported in Mehrabi and Shing [20]. The corresponding simulations are presented in [67,68]. During 

the current experiments, it was not possible to reach the peak of strength of the four CM walls, because of the 

excessive solicitation and the risk of instabilities.   Consequently, the numerical model was used to predict the 

complete load-displacement curve of the tested samples. The aim is to study the maximum strength and the 

post-peak response of the two types adopted (uniform and toothed confinement). The previously described 

model was used (section 4.1) while keeping the same materials parameters (table 8). Boundary conditions (Fig. 

13) are also the same, except to a more important horizontal displacement in order to overtake the maximal 

strength capacity of the walls. The obtained loading-displacement curves for all cases are shown in figure (18). 

Fig. 18: Complete numerical load-displacement curves of samples PC1, PC2, PH1 and PH2. 

The numerical extended curves allow us to deduce the maximal lateral resistance of each sample, and 

consequently compare the two construction types in term of strength. The sample with uniform confinements 

reached a strength of 260.5 kN under monotonic lateral loading (PC1) and 257.2 kN under the loading-

unloading condition (PC2) while the CM walls with toothed connections reached a strength of 282.1 kN in the 

case of the monotonic condition (PH1) and 256.5 kN in the case of the loading-unloading condition (PH2). It 

should be noted that these values are close to those assessed experimentally from the curves (see Table 2). 

This confirms that the lateral strength was almost reached during the experimental phase. Comparing the 

sample types, the toothed sample resists a little more than the uniform one. In the case of monotonic tests, the 

use of toothed masonry confinements improves the lateral resistance by 8.29%, but no improvement was 

recorded in the case of cyclic tests. The obtained ratio demonstrates that the toothing of the confinement 

elements in CM walls has not increased the strength significantly. Similar results have been found in the work 

of Matošević et al. and also Wijaya et al.  [56,69]. 
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6. Conclusion 
This paper reports an analytical and a numerical study on the behavior of confined masonry walls in monotonic 

as well as loading-unloading conditions. Based on the obtained results and the observations during the tests, 

the following conclusions can be drawn: 

1. Regarding the assessed analytical models in this study, the model of Rai et al. [49] and Riahi et al. [50] 

respectively underestimated and overestimated significantly the stiffness of all the samples. The 

model of Flores and Alcocer [21] satisfactorily predicted the initial rigidity of the walls, in which the 

ratio values obtained stand within the interval (0.96 ≤ Kcal / Kexp ≤ 1.10) for all the samples. In the case 

of the first crack strength, the model of Matsumura, Standard Chilean and Moroni et al. [26,51,52] 

underestimated the first crack strength as long as the obtained ratios are significantly low (Vcal / Vexp ≤ 

0.82). The model proposed by Flores and Alcocer [21] overestimated the first crack strength (1.12 ≤ 

Vcal / Vexp ≤ 1.6) but still stands as a good approximation indicator. The best results have been found 

using the model of Riahi et al [50], where various obtained ratios remained within the interval [0.99; 

1.41]. Regarding the peak strength prediction, Marques and Lourenço [53] model’s overestimated the 

peak strength (1.43 ≤ Vcal / Vexp ≤ 1.55), also the model of Rai et al. [24] overestimated this strength 

but still stands as a good indicator where the ratio values obtained stand within interval [1.1 ; 1.9]. The 

model of Riahi et al. [25] underestimated the peak strength in all the cases (for all samples). The best  

predicting model, in a conservation way, corresponds to the model of Castilla and Marinilli [54] (0.88≤ 

Vcal / Vexp ≤ 0.95). 

2. A finite elements model was adopted and introduced in Cast3m software, which offered an optimal 

choice as far as calculation cost and precision are concerned. It was also able to simulate the global 

response, cracking paths and failure modes of all partial structures including an interface element 

under three-point bending tests, masonry triplet under shear tests, masonry panel under vertical 

compression test and masonry panel under diagonal compression test. Furthermore, the model has 

properly simulated the behavior of CM walls (with uniform and toothed confinements) under lateral 

loading when combined with vertical load. It was able to significantly reproduce the response of all 

samples in terms of loading-displacement curves, failure modes, cracks propagation paths, rigidity 

degradation and energy dissipation capacities.  

3. Curves responses of the tested samples were extended using the validated model. Therefore, the CM 

walls with toothed confining elements as well as uniform confining elements’ lateral strengths were 

compared. Based on this comparison, the results of Wijaya et al.[69] and Matošević et al.[70] has been 

confirmed, the toothing of confining elements does not improve the lateral strength of the CM walls.  

The numerical model used in the present paper was validated using some new and original experimental 

results. It will be used in the near future in the existing literature in order to generalize their techniques and 

their characterization process. Thanks to the simplified techniques adopted in the model, it can be used to 

analysis the behavior of small multi story buildings using powerful calculation machines. However, one of the 

drawbacks of the confined masonry walls is being highly rigid in the vertical direction, as the RC frame is cast in 

the masonry panel directly. It means that a significant ratio of the vertical loading is transmitted from the beam 

to the lower masonry panel, instead of being transmitted to the columns. Experience has shown that a building 

with more than one story may experience severe damage in case of seismic loading, when confined masonry 

panels are used. Hence, the main objective is to understand the real behavior the CM walls and consequently 

provides suitable macro models able to study the full scale buildings. Furthermore, the model will be used to 

study the seismic behavior and to deduce the Pushover curves of two story structures with uniform and 

toothed confined masonry double-panel walls. 
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