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ABSTRACT 
 

We present the results for CAPRI Round 50, the 4th joint CASP-CAPRI protein assembly 

prediction challenge. The Round comprised a total of 12 targets, including 6 dimers, 3 trimers, 

and 3 higher-order oligomers. Four of these were easy targets, for which good structural 

templates were available either for the full assembly, or for the main interfaces (of the higher-

order oligomers). Eight were difficult targets for which only distantly related templates were 

found for the individual subunits. Twenty-five CAPRI groups including 8 automatic servers 

submitted ~1250 models per target.  Twenty groups including 6 servers participated in the 

CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted 

models was evaluated using the classical CAPRI criteria. The prediction performance was 

measured by a weighted scoring scheme that takes into account the number of models of 

acceptable quality or higher submitted by each group as part of their 5 top-ranking models. 

Compared to the previous CASP-CAPRI challenge, top performing groups submitted such 

models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models 

were of high accuracy. Scorer groups achieved stronger performance with more groups 

submitting correct models for 70-80% of the targets or achieving high accuracy predictions. 

Servers performed less well in general, except for the MDOCKPP and LZERD servers, who 

performed on par with human groups. In addition to these results, major advances in 

methodology are discussed, providing an informative overview of where the prediction of 

protein assemblies currently stands.   

 
Keywords: CAPRI, CASP, oligomeric state, blind prediction, protein-protein interaction, 

protein complexes, protein assemblies, template-based modeling, docking, protein docking  



  4 

 
INTRODUCTION 

Large protein assemblies and complexes of proteins with other proteins and macromolecular 

components such as DNA or RNA, carry out critical functions in many cellular processes. 

Their disruption or dysregulation often causes disease 
1,2

. Characterizing the three-

dimensional structure and function of these interactions, at both the molecular and cellular 

levels, and elucidating the underlying physical principles remains an important goal of 

biology and medicine.   

 

Much of our current understanding of protein complexes has been derived from the high-

resolution three-dimensional structures of protein complexes determined by experimental 

methods
3-6

 and deposited in the PDB (Protein Data Bank) 
7
. But unfortunately, little or no 

structural information is available for the majority of the protein complexes forming in the 

cell that can be characterized by modern proteomics and other methods.  

 

The recent spectacular advances in single-molecule cryo-EM techniques, specifically geared 

at determining the structure of large macromolecular assemblies at atomic resolution 
8,9

 

should enable to narrow the gap, but valuable help is also expected from steady progress in 

computational procedures. 

 

Thanks to the continued success of structural biology in enriching the structural repertoire of 

individual proteins, which form the building blocks of larger assemblies, and the recent 

explosion of the number of available protein sequences, computational approaches are now 

capable of modeling the 3D structure of individual proteins with increased accuracy from 

sequence information alone.  This is most commonly done by using structures of related 

proteins deposited in the PDB as templates for the modeling task 
10-12

. The ability to predict 
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the 3D structure of proteins from sequence in absence of available templates, commonly 

referred to as ab-initio modeling, has also significantly improved, thanks to computational 

methods that exploit multiple sequence alignments of related proteins to predict residue-

residues contact crucial to defining the protein fold
13-15

. Further substantial improvements in 

the performance of 3D protein structure predictions by both template-based and ab-initio 

approaches, have been achieved by recent Artificial Intelligence (AI)- Deep Learning (DL) 

techniques
16,17

, that afford more efficient means of leveraging and integrating information 

across the known landscape of protein structures and sequences 
18-21

.  

 

The advantages afforded by these techniques were already highlighted in the previous CASP 

challenge (CASP13) 
22,23

 and dramatically confirmed by the superb structure prediction 

performance of AlphaFold2 from the Google DeepMind team in CASP14 [AlphaFold2, this 

volume], whose submitted models rivaled in accuracy with high-resolution crystal structures.  

Strikingly furthermore, AlphaFold2 seemed to very accurately predict the bound 

conformation of individual subunits of homomeric assemblies (some of which are highly non-

globular) or individual domains of larger proteins [ab-initio structure predictions, this 

volume], that could not possibly adopt this conformation in isolation. This is particularly 

relevant for the prediction of protein assemblies, because it suggests that the AlphaFold2 DL-

based procedure (of which not much has been revealed at the time of writing this paper) is 

picking up evolutionary signals that integrate the stable native state of the multi-domain 

protein or the multi-subunit assembly, where the latter involves preferentially homomeric 

associations, which tend to be more highly conserved across evolution 
24,25

. 

 

Computational approaches have also played an important role in the efforts to populate the 

uncharted landscape of protein assemblies, a role that will hopefully be further bolstered by 
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more closely integrating AI-based techniques with the development of a sufficiently large 

body of structural data on protein assemblies and their conformational diversity, which 

currently is still lacking. So far however, the problem of accurately predicting the 3D 

structure of protein complexes remains a challenging undertaking, which very much depends 

on the protein system at hand and may therefore be considered as the next frontier in the quest 

of modeling the functionally relevant states of proteins.   

 

A classical approach to modelling the 3D structures of a protein complex starts form the 3D 

structures of the individual protein components and uses the so-called ‘docking’ algorithms, 

and the associated energetic criteria to single out stable binding modes 
26-28

. CAPRI (Critical 

Assessment of PRedicted Interactions) (https://www.ebi.ac.uk/pdbe/complex-pred/capri/; 

http://www.capri-docking.org/) is a community-wide initiative inspired by CASP (Critical 

Assessment of protein Structure Prediction). Established in 2001, it has offered computational 

biologists the opportunity to test their algorithms in blind predictions of experimentally 

determined 3D structures of protein complexes, the ‘targets’, provided to CAPRI prior to 

publication. Just as CASP has been very instrumental in stimulating the field of protein 

structure prediction, CAPRI has contributed to advancing the field of modeling protein 

assemblies. Initially focusing on testing procedures for predicting protein-protein complexes, 

CAPRI is now also dealing with protein-peptide, protein-nucleic acids, and protein-

oligosaccharide complexes. In addition, CAPRI has organized challenges to evaluate 

computational methods for estimating binding affinity of protein-protein complexes 
29-31

 and 

predicting the positions of water molecules at the interfaces of protein complexes 
32

.   

 

Thanks to the growing ease with which structural templates can be found in the PDB, docking 

calculations have evolved to routinely take as input homology-built models of the individual 
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components of a complex with an increasing degree of success. It is furthermore not 

uncommon to find templates for the entire protein assembly.  Such cases occur most often for 

assemblies of identical subunits (homodimers, or higher order homo-oligomers), because their 

binding modes (oligomeric states) tend to be conserved in related proteins 
24,25

.  In such 

instances, classical docking calculations may no longer be required because the protein 

assembly can be modeled directly from the template, a task also called ‘template-based 

docking’ 
10,33,34

. 

 

In a significant number of cases however, the modeling task remains challenging because the 

template structure may differ significantly from the structure of the protein to be modeled, or 

adequate templates cannot be identified.  Overcoming these important roadblocks has called 

for a much closer integration of methods for predicting the 3D structure of individual protein 

subunits and those for modeling protein assemblies and developing means for improving the 

accuracy of the resulting multi-subunit models.  This has been the motivation for establishing 

closer ties between the CASP and CAPRI communities by running joint CASP-CAPRI 

assembly prediction experiments.  Three such experiments were conducted in the summers of 

2014, 2016, and 2018, respectively, with results presented at the CASP11, CASP12 and 

CASP13 meetings in Cancún, Mexico, and Gaeta, Italy, and published in 3 special issues of 

Proteins 
35-38

. 

Here we present an evaluation of the results obtained in the CASP14-CAPRI challenge, the 

4th joint assembly prediction experiment with CASP, representing Round 50 of CAPRI. This 

prediction Round was held in the summer of 2020 as part of the CASP14 prediction season. 

Like other CAPRI Rounds, Round 50 also included scoring experiments, uniquely offered by 

CAPRI, where participants are invited to identify the correct association modes from an 

ensemble of anonymized predicted complexes generated during the assembly prediction 
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experiment 
39,40

.  In addition, we also evaluate submitted models in terms of their ability to 

correctly recapitulate the protein-protein interface of the targets
36,41

, i.e. contain the amino 

acids residues part of the recognition surfaces of each protein component of the target 

complex.  These evaluations are carried out using criteria and evaluation protocols agreed 

upon by the CAPRI community. A separate evaluation of the CASP14 assembly prediction 

performance, reported at the CASP14 meeting and in this Special Issue [Ozden & Karaca, this 

issue], was performed by the CASP assembly assessment team in collaboration with the 

CASP prediction center. We wish to highlight the very fruitful collaboration that took place 

between the CASP teams and the CAPRI assessment in defining the prediction problem for 

complex targets, discussing evaluation strategies and comparing assessment results. 

 

CAPRI Round 50 comprised a total of 16 targets, a lower number than in some of the 

previous joint challenges. Experimental structures for 4 of these were not available for 

evaluation, reducing to 12 the number of targets for which predictions have been evaluated. 

The 12 targets included 6 dimers (5 homodimers and 1 heterodimer), 3 trimers (2 

homotrimers and 1 heterotrimer) and 3 large multi-protein assemblies solved by cryo-EM 

comprising: the 27 subunits (representing 4 distinct protein chains) of the T5 phase tail distal 

complex, the 20 subunits homo-oligomeric assembly of a bacterial arginine decarboxylase, 

and the full viral capsid of the duck hepatitis B virus, (with T=4 icosahedral symmetry, 

totaling 240 subunits). The targets of Round 50 were hand-picked by the CAPRI management 

as representing tractable modeling problems for the CAPRI community. A target was 

considered as tractable, when templates could be identified, for at least a portion of the 

components of the target complex, using available tools such as HHblits/HHpred 
42,43

 and 

applying very lenient thresholds for sequence coverage and divergence. Targets for which 

such templates could not be identified, were considered as difficult ab-initio fold prediction 
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problems, since both the 3D structures of the subunits and their association modes need to be 

predicted simultaneously. Although the CASP14 challenge demonstrated that the 3D 

structures of individual proteins chains may in a good number of cases be predicted to high 

accuracy by groups such as Google DeepMind, the corresponding models were not available 

to groups participating in the assembly prediction Round, and CAPRI groups mostly lack the 

expertise to generate such models. As in previous Rounds, such targets where therefore not 

included in CAPRI Round 50.   

This may change in the future prediction challenges, as DL methods are more closely 

integrated with assembly prediction and docking procedures, or when groups such as 

DeepMind automate their prediction method sufficiently to make their accurately modeled 3D 

structures of individual subunits available to docking experts during the prediction Round.  

Using such accurate 3D models, which often faithfully represent the bound conformation of 

the proteins, as input to the docking calculations would be a game changer, particularly in the 

prediction of homomeric assemblies. We know indeed from earlier CAPRI Rounds and from 

various benchmark studies that docking calculations performed starting from the bound 

conformation of the individual subunits, achieve much superior performance 
39

. 

 
 
THE TARGETS 
 

The 12 targets of the CASP14-CAPRI assembly prediction experiment, which is henceforth 

denoted as Round 50, are listed in Table 1, and illustrated in Figure 1.  The targets are 

designated by their CAPRI target ID followed by their corresponding CASP target ID.  

 

As in previous CASP-CAPRI challenges the majority of the targets (9 out of 12) were homo-

oligomers. The remaining 3 targets were hetero complexes. A majority were proteins from 

bacteria and viruses, with the size of individual subunits spanning a very wide range (93-931 
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residues). Most targets (7) had their structure determined at high-resolution by X-ray 

diffraction. The remaining 5 targets, T165/H1036, T168/T1052, T170/H1060, T177/H1081, 

and T180/T1099, were larger multi-protein assemblies determined by cryo-EM. Most of the 

targets had annotated biological function and the majority had an author-assigned oligomeric 

state of the protein.  

 

The 12 targets of Round 50 were grouped into 2 categories: easy targets (4 in total) for which 

good structural templates were available either for the full assembly, or for the main 

interfaces (of the higher-order oligomers), and 8 difficult (to model) targets (Table 1). Targets 

of both categories included dimers, trimers, and large assemblies. 

 

The easy targets were the human SMCHD1 homo dimer (T164/T1032), the PEX4/PEX22 

complex from Arabidopsis thaliana (T166/H1045), the homo trimer of the Salmonella virus 

e15 tail fiber (T168/T1052), and the 20 subunits assembly of the bacterial arginine 

decarboxylase (T177/T0181) arranged as 2 stacked decameric rings, each adopting D5 

symmetry (Figures 1 and 2). The latter assembly target was categorized as easy, because an 

excellent template was available for the decameric rings. 

 

The 8 difficult targets include 4 homodimers, 2 trimers, and 2 large assemblies (Table 1).  

The 4 homodimers comprise two globular bacterial proteins (T169/T1054 and T176/T1078), 

and two bacterial helical dimers (T178/T1083 and T179/T1087). For all of these, distant 

templates were available only for the individual subunits of each complex. The 2 difficult 

trimers include a hetero complex of the varicella-zoster virus glycoprotein gB trimer, bound 

to a specific monoclonal Ab (T165/T1036), where the main challenge was to predict the Ab 

binding interface, and the phage tail attachment regions protein (T174/T1070). Of the two 
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difficult to model large assemblies, the first is a multi-protein component of the T5 phage 

distal complex (T170/H1060), composed of 4 different chains with stoichiometry 

A6;B3;C12;D6, totaling 27 subunits, arranged in 4 rings stacked on top of one another, one of 

which is in fact composed of 2 concentric rings the inner B3 ring and the outer C12 ring (see 

Figure 3a for details and nomenclature used).  The cryo-EM structure of the full complex, 

included 2 additional rings, composed of subunits with significantly disordered regions, for 

which adequate templates were not available. These additional rings were not part of the 

prediction challenge.   

 

The second target of this category (T180/T1099) was the capsid of the of the duck hepatitis B 

virus, adopting a T=4 icosahedral symmetry with a total of 240 subunits (Figure 4). A 

template corresponding to a distantly related hepatitis B virus capsid was available, but the 

corresponding capsid core protein was lacking an insertion exhibited by the target protein, 

which contributes to the major capsid interface as will be further detailed in our analysis. 

 
 

OVERVIEW OF THE PREDICTION EXPERIMENT 

As in previous CASP-CAPRI challenges and in standard CAPRI Rounds, predictor groups 

were provided with the amino-acid sequence or sequences of the target proteins, usually those 

of the constructs used to determine the structures. In addition, predictors were given 

information on the biologically relevant oligomeric state of the protein, provided by the 

author for most targets, the stoichiometry of the complex and occasionally, some additional 

relevant details about the protein.  

 

Following the common practice in CAPRI, predictors were invited to submit 100 models for 

each target, to be used for the scoring challenge (see below). It was stipulated however, that 
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only the 5 top-ranking models would be evaluated. To continue monitoring the ability of 

predictors to reliably rank their models, we also report the performance of groups on the basis 

of their single top-ranking models.  

Scoring experiments were run for all 12 targets.  After the predictor submission deadline, all 

the submitted models (100 per participating group) were shuffled and made available to all 

the groups participating in the scoring experiment. The ‘scorer’ groups were in turn invited to 

evaluate the ensemble of uploaded models using the scoring function of their choice, and to 

submit their own 5 top-ranking ones. Scorer results based on their top-1 ranking models are 

also reported. Typical timelines for the prediction and scoring experiments were 3 weeks and 

5 days, respectively.  

 

Round 50 participants were invited to submit their models to the CAPRI-EBI management 

system. In preparation for the CASP14 assembly prediction, the CAPRI management system 

was updated to generate CASP compliant versions of the 5 top ranking models submitted to 

CAPRI by predictor and scorer groups, and these compliant versions were automatically 

forwarded to CASP. With very few exceptions this procedure worked very well, affording a 

seamless communication between the CASP and CAPRI management teams.  

 

The number of CAPRI groups submitting predictions and the number of models assessed for 

each target are listed in the Supplementary Material (Table S1).  For Round 50 targets, 25 

CAPRI groups submitted on average ~1250 models per target of which ~1500 were assessed 

here.  On average 20 scorer groups submitted a total of ~190 models per target, of which a 

total of ~1200 models were assessed. 

 

ASSESSMENT METRICS AND PROCEDURES 
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For ready comparison with the results obtained in previous CAPRI Rounds and previous 

CASP-CAPRI experiments 
35,36

, models were evaluated using the standard CAPRI assessment 

protocol. This protocol was complemented with the DockQ score 
44

, a continuous quality 

metric that integrates the main quality measures of the standard CAPRI protocol (see details 

below). 

 

In addition, we evaluated the quality of the predicted protein-protein interfaces in the 

submitted models, namely the extent to which residues from each of the contacting subunits 

that make up the binding interface are correctly identified. This is a distinct problem from that 

of accurately predicting the detailed atomic structure of the binding interface and of the 

protein complex (or assembly) as a whole. It requires identifying only the residues from each 

subunit contributing to the interface (as opposed to predicting their contacts) 
41

 and was 

therefore assessed separately.  

 

The CAPRI assessment and ranking protocols 

The standard CAPRI assessment protocol 
39,40

 was used to evaluate the quality of the 

predicted homo- and hetero-complexes.  This protocol uses three main parameters, f(nat), 

L_rms, and  i_rms  to measure the quality of a predicted model. f(nat) is the fraction of native 

contacts in the target that is recalled in the model. Atomic contacts below 3 Å are considered 

clashes and predictions with too many clashes are disqualified (for the definition of native 

contacts, and the threshold for clashes see reference 
39

). L_rms is the backbone rmsd (root 

means square deviation) over the common set of residues (across all submitted models) of the 

ligand protein, after the receptor protein has been superimposed, and (i_rms) represents the 

backbone rmsd calculated over the common set of interface residues after these residues have 

been structurally superimposed. An interface residue is defined as such, when any of its atoms 
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(hydrogen atoms excluded) are located within 10 Å of any of the atoms of the binding partner.  

On the basis of the values of these 3 parameters models are ranked into 4 categories: high 

quality, medium quality, acceptable quality and incorrect, as previously described 
35

.   

 

For targets representing higher order oligomers featuring multiple distinct interfaces, 

submitted models were evaluated by comparing each pair of interacting subunits in the model 

to each of the relevant pairs of interacting subunits in the target
35

. The quality score for the 

assembly as a whole, ScoreA was computed as a weighted average as follows: 

   

                                          (1) 

Where nACC, nMED and nHIGH are the number of interfaces of the assembly for which at least 1 

acceptable-, medium- and high- quality model respectively, was submitted among the top 5 

ranking models. The values of the weights ‘’ were taken as 1 = 1, 2 = 2 and 3 = 3.  For 

the purpose of ranking the performance of individual groups across all targets we used the 

normalized version of Eq. (1):           
 

 
         , where K is the number of 

evaluated interfaces. This was done in order to avoid large assemblies with multiple interfaces 

weighing too heavily on the global score of individual groups (ScoreG of Eq. (2) below). 

 

The quality of the modeled 3D structure of individual subunits was also evaluated by 

computing the ‘molecular’ root mean square deviation (M-rms), of backbone atoms of the 

model versus the target. It was used mainly to gauge the influence of the quality of subunit 

models on the predicted structure of the assembly. To further evaluate the accuracy of the 

modelled protein-protein interface we also computed the root mean square deviation of 

sidechain atoms (S-rms) of residues at the binding interface. This measure uses the backbone 
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rms fit of the i_rms calculation, to compute rms values over side-chain atoms only. It is not 

used in the classification of models. 

 

The performance of predictor and scorer groups and servers was ranked on the basis of their 

best-ranking model in the 5-model submission for each target. The final score assigned to a 

group or a server was expressed as  an analogous weighted sum to that of Eq.(1), but 

considering the performance for individual targets, expressed in each of the three categories 

(acceptable, medium and high), achieved by that group or server over all targets: 

                                               (2)            

Where NACC, NMED and NHIGH are the number of targets of acceptable-, medium- and high- 

quality, respectively, and the values of weights ‘’ were taken as 1 = 1, 2 = 2 and 3 = 3. 

 

This ranking method was already used in the CASP13-CAPRI challenge 
38

, and the latest 

CAPRI assessment 
45

. It takes into account all models of acceptable quality or higher 

submitted by a given group. For larger assemblies it takes into account the model quality as 

defined by the value of <ScoreA> for the assembly, defined above.  

 

Additional assessment measures 

To enable a higher-level analysis of the performance across targets, we used a continuous 

quality metric as formulated by the DockQ score, to evaluate each modeled interface 
44

 : 

 

                                                              (3)   

With                  
   

  
        

where f(nat), i_rms, and L_rms are as defined above. The rmsscaled represents the scaled rms 

deviations corresponding to either L_rms or i_rms and di is a scaling factor, d1 for L_rms and 
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d2 for i_rms,, which was optimized to fit the CAPRI model quality criteria, yielding d1 = 8.5 

Å and d2 = 1.5 Å  (see  ref. 
44

)  

 

Evaluating predicted interface residues  

Models submitted by CAPRI predictor scorer and server groups were also evaluated for the 

correspondence between residues in the predicted interfaces and those observed in the 

corresponding structures of the 12 targets of Round 50.  A total of 23 distinct protein-protein 

interfaces, sometimes representing more than one interface for each interacting component, 

were evaluated. The number of interfaces evaluated for individual targets in both categories 

(easy and difficult) are listed in Table 1.  Interface residues of the receptor (R) and ligand (L) 

components in both the target and predicted models were defined as those whose solvent 

accessible surface area (ASA) is reduced (by any amount) in the complex relative to that in 

the individual components 
41

. This is a more stringent definition of interfaces residues than 

the one in the official CAPRI assessment protocol, where residue-residue contacts and 

backbone conformation are being evaluated. As in the official CAPRI assessment the surface 

area change was computed from the structures of the individual components in their bound 

form.  

 

The agreement between the residues in the predicted versus the observed interfaces was 

evaluated using the two commonly used measures, Recall (sensitivity) and Precision (positive 

predictive value). Recall is denoted as f(IR), the fraction of the residues in the target interface 

that are part of the predicted interface. Precision = 1 – f(OP), where f(OP) is the fraction of 

the residues in the predicted interface that are not part of the target interface, i.e. over-

predicted or false positives.  
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RESULTS AND DISCUSSION 

This section is divided into 5 main parts. The first part presents the results of human 

predictors, servers and scorer groups for the 12 individual CAPRI Round 50 targets for which 

the prediction and scoring experiments were conducted. In the second part we present the 

rankings of the same groups established on the basis of their performance across all targets. In 

the third part we report results of the binding interface predictions obtained by the different 

categories of participants for all targets.  The fourth and final part analyzes methods and 

factors that may have influenced the prediction performance.  

 

Predictor server and scorer results for individual targets 

Detailed results obtained by all groups (predictors, servers, and scorers) for individual targets 

analyzed in this study can be found in Tables S2 and S3 of the Supplementary Material.  

Results of the CAPRI evaluation for predictor groups that submitted models only to the CASP 

prediction center are also included, but will only briefly discussed, since their performance is 

evaluated in a separate publication (Ozden & Karaca, this issue).   Values of all the CAPRI 

quality assessment measures for individual models submitted by CAPRI participants for the 

12 Round 50 targets have been communicated to the participants and will be posted on the 

CAPRI website (URL: http://pdbe.org/capri). Additional information on the performance of 

individual groups can be found in the Supplementary Material (Individual Group 

Summaries). 

 

Easy Dimer targets: T164, T166 

The two easy dimer targets were, the homodimer of SMCHD1 (Structural maintenance of 

chromosomes (SMC) flexible hinge domain-containing protein 1 (T164/ T1032), and the 

PEX4/PEX22 heterodimer from Arabidopsis thaliana (T166/H1045).  The homodimer of 

http://pdbe.org/capri
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T164 featured a sizable interface (1585 Å
2 

buried area), and several medium quality templates 

~30% sequence identity; backbone rmsd values ~2.8 Å), displaying similar interfaces to that 

of the target, were available.  For the hetero dimer (T166), which featured a rather small 

interface (765 Å
2
), several good quality templates (21-39% sequence identity; backbone rmsd 

values 0.5-1.6 Å) were available for each of the subunits, in addition to a good quality 

template for the complex as a whole. 

 

As expected for this type of targets, models of acceptable quality or higher were submitted by 

a majority of the CAPRI predictor groups and servers (19/23) for T164. However, only two 

predictor groups (Gray and Seok) and 1 docking server (MDOCKPP) submitted at least one 

medium quality model among their top 5 models, whereas none of the groups or servers 

submitted a high-quality model (Supplementary Table S2). A better performance overall was 

obtained for T166. A majority of the CAPRI predictor and server groups (18/24) submitted 

correct models for his target, of which as many as 12 groups (but no server) submitted at least 

1 medium quality model and 3 groups (Chang, Venclovas and Takeda-Shitaka) submitted 1 

high quality model each (the model of Venclovas featured the highest f(nat) value (0.81), that 

of Takeda-Shitaka the lowest i-rms (0.74 Å), and the Chang model had the lowest L-rms (2.11 

Å). Lastly, 4 servers (GALAXYPPDOCK, MDOCKPP, SWARMDOCK, HDOCK) 

submitted at least 1 acceptable model each among their top 5 models (Supplementary Table 

S2). 

 

Of the 8 servers submitting models for T164, 6 submitted correct models, whereas only 1 

server (MDOCKPP) submitted a medium quality model for this target. Of the 7 servers 

submitting models for T166, only the above mentioned 4 servers, each submitted 1 correct 

model for this homodimer. 
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Seventeen groups and servers participated in the scoring experiment for T164, and all of those 

submitted at least one correct model or better among their top 5 ranking models, a rather good 

performance. Two scorer groups (Bates and Huang), and 3 scorer servers (SWARMDOCK 

HDOCK and MDOCKPP) submitted medium quality models, whereas the remaining 12 

groups and servers submitted acceptable models. Interestingly, the 2 best performing scorer 

groups and the SWARMDOCK servers (from the Bates group) submitted a medium quality 

model as their top 1 ranking one, whereas none of the manual predictor groups or servers had 

such models ranked on top. Scorer groups and servers also performed well for T166.  Of the 

19 groups participating in the scoring experiment for this target 2 human scorer (Kihara, 

Takeda-Shitaka) and 1 scoring server (LZERD, by the Kihara group) produced high quality 

models among their top 5 scoring models, 11 groups and servers produced medium quality 

models, and 1 group submitted an acceptable model. 

 

Difficult Dimer Targets: T169, T176, T178, T179 

These difficult dimer targets included the outer-membrane lipoprotein homodimer from 

Acinetobacter baumannii (T169/T1054), for which only a distantly related template, adopting 

a different binding mode from that of the target was available, and as a result no acceptable 

models were submitted by any of the predictor groups, even though the target dimer features a 

large buried surface area (1530Å
2
).  

 

The prediction performance was a little better for T176/T1087, the SSCRP protein, although 

only very distantly related templates were available for this target (rmsd of 3.9-6.8 Å for the 

individual subunits; seq-ID of ~11-17%), which furthermore displayed binding modes that 

differed from that of the target. Yet, 2 predictor groups (Zou and Seok) and the server 
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MDOCKPP submitted acceptable models among their top 5 scoring predictions.  On the other 

hand, nearly half of the participating scorer groups and servers (8/19) were able to identify a 

correct model in the shuffled set of models offered for scoring, and these included 3 servers 

(SWARMDOCK, MDOCKPP and HAWKDOCK) in addition to 5 human scorer groups. 

 

Interestingly the AlphaFold2 procedure of Google DeepMind did predict a highly accurate 

structure for the bound subunit for T176 (with 93% of the Cα atoms of the structure lying 

with 1 Å of their positions in the target). Had this structure been available to participants for 

assembly modeling, medium to high quality models would have been obtained, because 

docking calculations tend to yield more accurate models when using as input the bound 

structures of the interacting subunits
39

.  

 

The difficulty with the remaining 2 targets of this category (T178/T1083, T179/T1087) 

stemmed from the fact that they comprised two very long helical hairpin structures bound to 

one another, where the main challenge resided in uniquely aligning the helical subunits 

relative to one another. The very distantly related templates, available for these targets (rmsd 

4.7-5.7 Å, seq-ID ~ 7%), were all of higher order helical assemblies, and were therefore of 

limited relevance.  

Nevertheless, of the 26 predictor and server groups submitting prediction for T178/T1083, 12 

groups including 3 servers (LZERD, MDOCKPP, HAWKDOCK) submitted an acceptable 

quality model as one of their top 5 predictions, and only one other group (Venclovas) 

submitted a medium quality model. The five remaining participating servers submitted only 

incorrect models.  The performance of scorers and scoring server groups was somewhat better 

than that of predictors. Half of the 19 participating groups submitting at least 1 model of 

acceptable quality or better (among their top five-ranking models), with however 2 human 



  21 

scorers (Takeda-Shitaka and Chang) and 1 server (HAWKDOCK) submitting medium quality 

models (Table S2). Interestingly, the scorer group of Venclovas was unable to identify their 

own medium quality model in the shuffled set and ended up submitting only an acceptable 

model. 

A very similar performance was obtained for T179/T1087. Ten out of the 24 participating 

human predictor and server groups all submitted only 1 acceptable model for this target. Two 

of these acceptable models were submitted by the LZERD and MDOCKPP servers, whereas 

only incorrect models were submitted by the remaining 6 participating servers. 

 

It is again noteworthy that the AlphaFold2 procedure of Google DeepMind did predict a 

highly accurate structure for the bound subunit of this target (96% of the Cα atoms of the 

structure lying with 1 Å of their positions in the target). Had this structure been available to 

participants, most likely more accurate models would have been obtained. 

 

Trimer Targets:  T165, T168, T174 

These trimer targets include 2 difficult targets, the monoclonal Ab bound to the varicella-

zoster virus glycoprotein gB (T165/T1036), and the phage tail attachment region protein 

(T174/T1070), and one easy target, the tail fiber of the salmonella virus epsilon15 

(T168/T1052). 

 

For T165, the main challenge was to predict the binding mode of the monoclonal Ab to the 

protein trimer, and not to model the viral glycoprotein trimer itself, for which a closely related 

template was available for the full trimer (backbone rmsd 1.0 Å, seq-id 60%). T174 was a 

difficult modeling problem, because templates could not be identified even for the individual 

protein chain, whereas modeling the timer in T168 was an easy problem, given that high 
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quality templates (backbone rmsd 0.76Å, seq-id 42%) were available for the tail fiber viral 

protein. 

 

For T165/T1036, where we evaluated only the binding mode with the monoclonal Ab, and 

for T174/T1070, where the full assembly was evaluated, only incorrect models were 

submitted (see supplementary Table S2). Unsurprisingly in contrast, a very good prediction 

performance across predictors and servers was obtained for T168/T1051. Of the 24 

participating predictor and server groups, 16, including 4 servers (GALAXYPPDOCK, 

LZERD, MDOCKPP, SWARMDOCK) submitted at least one medium quality model among 

their top 5 ranking ones, and 2 additional predictor groups submitted 1 acceptable model each.  

As expected from the good performance of predictors and servers, who contributed many 

medium quality models to the shuffled set offered for scoring, the scorer performance was 

very good as well, with all but 2 of the 17 scorer groups submitting at least one medium 

quality model among their top 5 ranking ones. 

 

Large Assembly Targets: T170, T177, T180 

These 3 targets, the component of the T5 phage tail distal complex (T170/H1060), the 

bacterial arginine decarboxylate from (T177/T1081) and the duck hepatitis B virus capsid 

(T180/T1099), were all large multi-protein complexes, whose 3D structure was determined 

by cryo-EM.  These large assemblies comprised between 20-240 subunits. They featured 

different internal symmetries, with protein subunits engaging in several distinct binding 

modes involving interfaces of varying sizes. Therefore, correctly, not to mention accurately, 

modelling the 3D structure of the full assembly for each of these targets represented a very 

challenging prediction problem. 
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For multi-protein assemblies such as these, predictions were evaluated for individual 

interfaces of each target, as well as over the full assembly. In the latter case the ScoreA 

expression of Eq (1) was used. The prediction performance of predictor server and scorer 

groups for individual interfaces of each target is provided in Table S2 of the Supplementary 

Material, whereas the performance of the same individual groups for the assembly as a whole, 

can be found in supplementary Table S3. 

 

The T177/T1081 assembly of the 2 stacked decamers each adopting D5 symmetry, was 

undeniably the easiest assembly modelling problem as at least one closely related template 

(backbone rmsd 0.46Å, Seq-ID, 71%) was available for the entire decameric ring. The 

assembly features a total of 4 distinct interfaces (I.1-I.4). Three of these are within rings, 

comprising 2 quite larges interfaces, burying respectively 5000 Å
2
 (I.1) and 1250 Å

2
 (I.2), and 

another very small interface (180 Å
2
).  Only one distinct quite small interface (300 Å2) (I.3), 

formed diagonally between subunits in different rings and repeated 5 times, affords the inter-

ring contacts (Figure 2).  

 

The prediction performance was evaluated for the 2 large interfaces within each ring (I.1, I.2), 

and the intra-ring interface I.3. Given that a high-quality template was available for the 

decameric rings, the main challenge for this target was predicting the inter-ring contacts (I.3).  

Not too surprisingly, given the closely related template for the decameric rings, an excellent 

prediction performance was obtained for the 2 large intra-ring interfaces I.1, I.2, but a lower 

performance was achieved for I.3 (Table S2).  For example, of the 24 predictor and server 

groups submitting models for I.1, 17 groups including 5 servers (SWARMDOCK, HDOCK, 

MDOCKPP, CLUSPRO, LZERD), submitted between 2-5 high quality models among their 
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top 5 ranking models. Another 3 groups (including 1 server: GALAXYPPDOCK) submitted 5 

medium quality models. 

 

As expected, an excellent performance for I.1 was also obtained by scorer groups, with 16 out 

the 18 scorer groups (6 servers included), all submitted between 3-5 high quality models 

among their top 5 ranking predictions. A very similar tally of high-quality models was 

obtained across different groups for I.2.   

The main challenge posed by T177/T1081, namely, to correctly predict the smaller inter-ring 

interfaces (I.3), was met by a smaller number of groups and servers, and consequently by 

scorer groups as well. Among the 24 predictors and server groups submitting model for this 

inter-ring interface, only one server (MDOCKPP) submitted 1 high quality model (and 4 

medium quality ones) as their top 5 ranking ones for this interface. This server thereby 

surpassed the performance of other groups (Venclovas, Zou, Grudinin, Kozakov/Vajda) and 

the CLUSPRO server that submitted at best 1-3 medium quality models or only acceptable 

quality ones (Table S2). The best performing servers were MDOCKPP, SWARMDOCK and 

CLUSPRO.  Somewhat better performance was obtained by scorer groups, with 3 groups (2 

servers: SWARMDOCK and HAWKDOCK, and the human scorer Bates), submitting at least 

1 high quality model for I.3, and 7 additional groups (including the MDOCKPP, and LZERD 

server) obtained at least one medium quality model among their top 5 ranking predictions. 

 

Combining the performance across all 3 distinct interfaces of T177/T1081, using the scoring 

scheme of Eq (1), yields the overall ranking of predictor and scorer groups for the assembly 

(see Supplementary Table S3).  Of the 6 top-ranking predictor groups and servers, submitting 

models of medium quality or higher for all 3 interfaces, the MDOCKPP ranked first. This 

server was the only participant submitting high quality models for all three interfaces, 
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including the more challenging inter-ring interfaces (I.3). This top performer is followed by 4 

human predictors (Zou, Venclovas, Pierce, Kozakov/Vajda) and the CLUSPRO server, all 

submitting high quality models for the 2 intra-ring interfaces, and a medium quality model for 

I.3. Four additional CAPRI groups, and 2 servers (SWARMDOCK, HDOCK), managed only 

an acceptable model for the I.3, in addition to high quality models for Interfaces I.1 and I.2. 

Of the 13 CASP predictors, only 5 groups submitted correct models for all 3 interfaces, but 

only medium and acceptable quality models for interface I.3. 

 

Not surprisingly, the scorer performance was excellent overall (Table S3). Three scorer 

groups: 2 servers (HAWKDOCK and SWARMDOCK) and the human scorer group of Bates 

(author of SWARMDOCK), submitted high quality models for all three interfaces of the 

target. Eight additional groups (including the LZERD and MDOCKPP servers), submitted 

models of medium quality or better for all three interfaces, and three groups also correctly 

predicted all three interfaces albeit to lower accuracy. 

On the basis of these combined results this assembly can be considered as quite successfully 

predicted overall. The best model overall was submitted by MDOCKPP and the scoring 

server HAWKDOCK, as their second-highest ranked model in both cases. It features an 

average DockQ value of 0.87 ± 0.02, corresponding to f(nat) values of 0.7-0.85, L_rms values 

of 0.8-1.2 Å and i_rms values of 0.6-0.7 Å for the three interfaces. 

 

Next in terms of the modeling challenge was T180/T1099, the duck hepatitis B virus capsid. 

This capsid adopts a T=4 icosahedral symmetry with a total of 240 subunits, comprised of 

identical protein chains. Structurally the subunits assemble into 60 identical copies of an 

asymmetric unit composed of 4 helical proteins with slightly different conformations 

(backbone rmsd 0.4-0.74Å). The icosahedral capsid formed by these 60 identical copies 
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engage in a total of 5 distinct interfaces (Figure 4b,c).  But the high similarity between the 

two dimers in the asymmetric unit, and the differences in backbone conformations of the 4 

individual subunits of the asymmetric unit, enable the formation of quasi-identical interfaces 

between the AB dimers in the pentameric face and the CD dimers in the trimeric face of the 

icosahedron (see Figure 4b,c). As a result, only 2 unique interfaces had to be evaluated for 

this target: I.1, the larger interfaces between the individual subunits in the AB and CD dimers 

(1970 Å
2
), and I.2 the one between subunits B and D between dimers (1100 Å

2
).  

 

Aware of the high degree of quasi symmetry between the different interfaces forming the 

capsid of this target, the organizers (of both CASP and CAPRI) invited predictors to submit 

the minimum number of subunits necessary to include the unique interfaces defining the 

capsid assembly. As it turned out, many predictor groups were unclear about what this 

minimum number should be. Only a third of the 125 models submitted by the 25 predictor 

groups for this target contained 4 subunits (chains), the number of subunits in the asymmetric 

unit, that were indeed sufficient to define the 2 unique interfaces of this target. A number of 

other groups submitted assemblies comprising with between 6-20 subunits, and a few groups 

submitted models with only 2-3 chains. 

 

Several templates of distantly related viral capsids were available for this target. These 

included the reconstituted hepatitis B viral capsid (3J2V) adopting the same icosahedral 

symmetry and featuring the most closely similar subunit structure (backbone rmsd 2.0Å). 

Unfortunately, however, the template protein lacked the crucial insertion (residues 75-125) 

present in the target protein, which contributes significantly to the target dimer interfaces (I.1) 

(Figure 4e). This resulted in a very poor prediction performance, with only one predictor 

group (Seok) submitting a single acceptable model for I.1 among their top 5 submissions, 
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representing a real feat (Table S2), which was achieved with the help of published 

mutagenesis data on this virus (see the Seok group summary in the Supplementary Material). 

Of the 18 groups participating in the scoring challenge for this target, only 3 groups 

(Venclovas, Fernandez-Recio, Huang) and 1 server (Fernandez-Recio’s PYDOCKWEB), 

were able to identify Seok’s acceptable models for this interface in the shuffled set of models.  

 

It is noteworthy that here too, AlphaFold2 of Google DeepMind predicted a highly accurate 

model of the individual subunits of the asymmetric unit of the capsid protein (including the 

extra insertion). Using this model would have certainly enabled more of the participating 

predictor groups to produce highly accurate models for this interface, and probably for the 

capsid as a whole, since rather good predictions were obtained for I.2 of this target.   

 

Indeed, a total of 13 groups predictor groups (out of 15) submitted medium quality models for 

I.2 of T180/T1099, with one group (Venclovas) also submitting 1 high quality model among 

their 5 top-ranking models, and only 6 groups submitting only incorrect models. Of the 7 

participating servers, 3 submitted medium quality models, and 1 server submitted 1 

acceptable model.  Scorers performed well on this interface, with 11 groups, including 4 

servers (LZERD, MDOCKPP, HDOCK, SWARMDOCK) submitting at least one medium 

quality model, and 6 other groups (including the PYDOCKWEB server) submitting an 

acceptable model (Table S2). The best performing groups for this interface were the LZERD 

and MDOCKPP servers, and the group of Zou, but neither was able to identify the high-

quality model predicted by Venclovas. 

 

Combining the performance across the two distinct interfaces of T180/T1099, using the 

scoring scheme of Eq (1), yields the overall ranking of predictor and scorer groups for the 
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assembly (see Supplementary Table S3). The top-ranking groups for this target are Venclovas, 

who submitted the only high-quality model for I.2, and Seok, with a medium quality model 

for I.2 in addition to the single acceptable models for the challenging I.1 interface.  An 

additional 12 groups submitted medium quality model (only for I.2), followed by 6 groups 

who managed only 1 acceptable model for I.2. The best performing prediction servers for this 

target were LZERD, CLUSPRO and GALAXYPPDOCK. Of the 8 CASP predictor groups 

for this target (Table S3), 4 groups (Seok-assembly, Kihara-assembly, CoDock and Baker) 

performed best with 1 medium quality model each, for I.2. 

 

The scorer performance for the assembly was good overall. The best performance was 

achieved by Huang, the only group submitting correct models for both interfaces: an 

acceptable model for I.1 and a medium quality model for I.2 (Table S3). Only 3 other groups 

submitted correct models for both interfaces; all were only of acceptable quality. 

 

By all accounts, the 27-subunit component of the T5 phage tail distal cryo-EM complex 

(T170/H1060), was the most challenging assembly prediction problem of the entire Round. 

This component included a total of 4 multi-subunit rings (A-D) stacked on top of one another 

(Figure 3a). Rings A and B each comprise 3 copies of protein A (464 residues). Ring C 

comprises 2 concentric rings: an inner ring composed of 3 copies of protein B (298 residues), 

and an outer ring with 12 copies of protein C (140 residues). Ring D is composed of 6 copies 

of protein D (204 residues) (bold underlined capital letter are ring identifier; capital letters are 

protein identifiers).  

Closely related templates were available for proteins A and D (monomeric forms), and a 

rather distantly related templates were available for proteins B and C (see Figure 3b for 

details). 
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The 27 subunits of the assembly form a total of 9 unique pairwise interfaces within and 

between rings. The area buried in these interfaces, the subunits that contribute to each 

interface (using the chain identifiers provided by the authors) and the total area buried 

between neighboring rings is listed alongside in Figure 3c.    

 

On the basis of the available templates, and the buried areas between the subunits, the 3 

unique interfaces of ring C (interfaces I.5, I.6, I.7), involving proteins B and C, were expected 

to be the most difficult to predict, whereas the remaining 6 interfaces (I.1-I.4, I.8-I.9) seemed 

to represent easier prediction problems (see Figure 3c for details). These expectations were 

partially borne out by the prediction results (Table S2). The best prediction performance was 

obtained for interfaces I.1 (between subunits within rings A and B), I.5 (between subunits 

within the outer C ring), and I.8 (between subunits within ring D).  For I.1, 13 out of the 22 

predictors groups submitted at least 1 acceptable model or better among their 5 top ranking 

models, among which 2 servers (HDOCK and MDOCKPP), and 3 human predictors (Huang, 

Shen, Zou) submitted at least one medium quality model. Scorers performed extremely well 

for this interface, with all 17 scorer groups submitting acceptable models or better, and more 

than half of these submitting at least 1 medium quality model. For interface I.5, more than 

half of the predictor groups and one server (CLUSPRO) submitted a model of acceptable 

quality (7 models) or better (5 medium quality models). Superior performance was achieved 

by scorers for this interface. The majority of the scorer groups (16/17) submitted models of 

acceptable quality or better. Ten of these groups, including 2 servers (MDOCKPP, 

PYDOCKWEB), submitted at least 1 medium quality model among their top 5 ranking ones, 

with the groups of Shen and Takeda-Shitaka as top performers (Table S2).   
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A weaker performance was observed for I.8, with only one predictor group (Venclovas) 

submitting a medium quality model, and 6 groups including 1 server (LZERD) submitting at 

least one acceptable model among their top 5 ranking ones. Scorer groups performed overall 

better, with 13 out of the 17 scorer groups (including 3 servers: LZERD, MDOCKPP, 

PYDOCKWEB) submitting acceptable quality models, of which only the Venclovas scorer 

group submitting a medium quality model. The only intra-ring interface with a very weak 

prediction performance was that between the subunit within the inner C ring (I.3), due to the 

more distant relationship of the B protein to the available template (the latter was more 

closely related to the A proteins forming the A and B rings) (see Figure 4a,b). For this 

interface only acceptable models were obtained by 4 predictor groups (Venclovas, Seok, Zou, 

Shen) and one server (MDOCKPP). Many of these models were identified by a majority of 

the scorer groups, including 2 servers (MDOCKPP, LZERD) (Table S2). 

 

For the remaining 5 unique interfaces of T170/H1060, the best prediction performance was 

obtained for I.4 and I.9. For I.4, the interface between ring B and Ci (the C inner ring), 3 

predictor groups (Venclovas, Chang, Bates) and one server (HDOCK) submitted at least 1 

acceptable model, and scorers did quite well with slightly more than half of the groups 

submitting at least 1 acceptable model.  For I.9 the interface contributing to the contacts 

between ring D and the inner ring of ring C (Figure 4 c,d), five predictor groups (Huang, 

Shen, Chang, Kihara, Seok,) and one server (HDOCK) submitted at least 1 acceptable quality 

model, whereas scorers did quite well with a majority (13 out of 17), submitting at least one 

acceptable model (Table S2). For the remaining 3 interfaces (I.2, I.6, I.7), all of which are 

inter-rings, only a single but different group each time, submitted an acceptable model for 

each of these interfaces, with a commensurate poor performance exhibited by scorer groups 

(Table S2). 
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Combining the performance across all 9 distinct interfaces of T170, using our scoring scheme 

yields the overall ranking of predictor and scorer groups for the assembly (Table S3). The 

Shen predictor group ranks 1
st
, with correct models submitted for 6 of the 9 unique interfaces 

of T170, of which 2 were of medium quality. Venclovas and Chang both correctly predicted 5 

of the unique interfaces, of which one (a different one for each group) was of medium quality. 

These are followed by the groups of Changs, Seok, Kihara, Huang and HDOCK (the best 

performing server), with acceptable models for 5 interfaces, or correct models for 4 interfaces 

including a medium quality model for one of those.  A further 6 groups (and 2 servers: 

CLUSPRO, MDOCKPP) submitted correct predictions for only 2 interfaces, including a 

medium accuracy prediction for interfaces I.1 or I.5. Of the CASP groups, only those of 

DATE, Baker and Takeda-Shitaka, submitted correct models for 2 interfaces, followed by 2 

other groups with only one correctly predicted interface. 

 

Interestingly, scorer groups overall outperformed predictors for the full assembly (Table S3). 

Two groups (Shen and Zou) correctly predicted 6 of the 9 interfaces of T170, including 2 

medium quality models for 2 of these, while the groups of Chang and Kihara, also with 6 

correctly predicted interfaces, albeit of lower accuracy. Most of the remaining scorer groups 

produced correct models of lesser accuracy for between 4-5 interfaces of T170. 

 

Performance of CAPRI predictors servers and scorers across targets 

Groups (predictors, servers and scorers) were ranked according to their prediction 

performance for the 12 assembly targets of Round 50. All the rankings presented here 

consider, as usual, the best model submitted by each group among the 5 top ranking models 

for each evaluated interface. For dimer targets or other targets where only one interfaces was 
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evaluated, this amounted to considering the best model submitted for the corresponding target. 

For higher order assemblies where more than one interface was evaluated, the group score of 

Table S3 normalized by the number of evaluated interfaces for the target was used (see 

section on CAPRI assessment and ranking protocols). To avoid bias from the poorer overall 

performance for T170, the most difficult assembly of this Round with 9 distinct interfaces, 

this target was sub-divided into 3 sub-targets:  T170.1 (assembly defined by interfaces I.1-I.4), 

T170.2 (assembly defined by interfaces I.5-I.7), and T170.2 (I.8, I.9), with each of the sub-

targets evaluated as a distinct assembly target, as outlined above. Taking into account the 

three sub-targets of T170, the total number of evaluated ‘targets’ amounts to 14.   Table 2 

presents the ranking of groups that submitted predictions for a total of 10 targets or more out 

of the 14 targets and sub-targets. The full ranked list can be found in Table S4 of the 

supplementary material. We did not generate separate ranking across easy and difficult targets 

this time, given the small number of targets overall, and the fact that they included large 

assemblies, like the T5 phase tail (T170), which features multiple different subunits and 

interaction interfaces of varying level of difficulty. Trends among predictor and scorer groups 

in their ability to tackle more difficult modelling problems, will be discussed in the 

subsequent sections describing global trends.  

 

Predictor performance 

The 4 top ranking predictor groups submitted correct models or better for at least 8 out of the 

14 targets, as defined here. These include the group of Seok, with a total of 9 correctly 

predicted target, of which 4 were predicted to medium accuracy. Next in rank is the group of 

Venclovas, with 8 correctly predicted targets, including 3 predicted to medium accuracy and 1 

to high accuracy, and finally those of Chang and Zou, with 8 correctly predicted targets 

including 3 medium quality ones.  Immediately following are the MDOCKKPP server and the 
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groups of Kihara and Pierce, with 7 correctly predicted targets, including at least 3 targets of 

medium quality or better.  Of the predictor groups who submitted models only to CASP, 

Baker ranked equal to the best CAPRI predictors, with 8 correctly targets of which 4 were 

predicted at medium accuracy or higher, and CoDock ranked somewhat lower with 6 

correctly predicted targets of which 2 were predicted to medium accuracy.  

 

Server performance. 

A total of 8 automatic servers participated Round 50. The ranked performance of 6 of these 

(each submitting predictions for 14 targets and sub-targets) is listed in Table 2.  The best 

performing server is MDOCKPP, with 7 correctly predicted targets, of which 3 were 

predicted to medium accuracy or better. The LZERD server follows closely with 6 correctly 

predicted targets, of which 2 were predicted at medium accuracy. These servers outperform 

HDOCK and CLUSPRO, two servers that performed particularly well in the CASP13-CAPRI 

challenge. However, in general, the performance of servers was inferior to that of human 

predictors, as also highlighted in the individual contributions of participants (see 

Supplementary Material). 

 

Scorer performance 

The scorer performance was overall rather good, and stronger than the performance of 

predictors and prediction servers. The 7 best performing scorer groups (with score >10 in 

Table 2) include the MDOCKPP server as top performer, followed by the groups of Zou, 

Chang, Takeda-Shitalka, the LZERD server, and the groups of Shen and Huang.  These scorer 

groups submitted correct models for at least 7 (Huang) and 10 (Zou) targets, including 2-4 

targets predicted at medium accuracy, and 2 groups (the LZERD server and the groups of 

Takeda-Shitaka), with 1 target predicted at high accuracy.  
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Lastly it is noteworthy, that the data on the global group ranking of Table 2, and those of 

Tables S2 and S3, indicate that most predictor groups have improved their ability to rank 

models. The number of targets for which these groups have a model of acceptable quality or 

higher ranked on top (top1) is often only slightly lower than when their top-5 ranking models 

are considered. Prediction servers, and even more so, scorers and scoring servers, are less 

consistently successful in having their best quality models ranked on top. 

 

Prediction of binding interfaces 

Interface predictions were evaluated for 23 binary association modes in the top 5 scoring 

models submitted for the 12 targets by CAPRI predictors groups (human and servers), as well 

by CAPRI scorer groups (human and server).  The correspondence between the residues 

defining the interfaces of the individual protein components of each binary association mode 

in the predicted models and those in the target structure was evaluated using the Recall and 

Precision measures (see section on Assessment Criteria and Procedures, for further detail).   

 

Global trends 

Figure 5 presents scatter plots of the recall and precision values of predicted interfaces for 

components (receptor and ligand) of the top 5 models submitted for each of the 23 evaluated 

association modes by predictor and scorer groups. Individual points represent values averaged 

separately over interfaces of association modes in each of the four categories (incorrect, 

acceptable, medium, and high) submitted by a given group for a given target.  

 

Inspection of the scatter plots reveals that predicted interfaces in the models submitted by 

both predictors (Figure 5a) and scorers (Figure 5b) span a wide range of recall and precision 
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values. Confirming our previous reports 
36,41

 we observe that a sizable fraction of the points 

corresponding to interfaces of incorrect models cluster loosely along the diagonal at very low 

values, whereas the vast majority of acceptable and higher quality models feature interfaces 

with recall and precision values ≥ 50% (upper-right quadrant of the scatter plots in Figure 5), 

which we consider here as the threshold for correct interface predictions. At the same time, a 

sizable fraction of the points in Figure 5 is spread widely above and below the diagonal. In 

addition, we see that the fraction of models with higher Recall than Precision values 

submitted by predictors is smaller (36%) (Figure 5a) than for models submitted by scorers 

(53%) (Figure 5b). This difference is more pronounced for the incorrect models, and for a 

fraction of the acceptable models, but becomes much less pronounced for models in the upper 

right quadrants for points representing models with both Precision and Recall ≥ 50%.  Higher 

precision than recall values correspond to predicted interfaces of smaller size that capture 

only a fraction of the native interfaces, while including only a few additional residues, and 

may hence be of predictive value.  Interfaces with lower precision than recall values, 

corresponding to points located below the diagonal, and more particularly the points in the 

lower left quadrant of the plots in Figure 5 are problematic, and with a few exceptions 

correspond to incorrect models. 

 

We confirm previous findings that, a) a fraction of incorrect models features in fact correctly 

predicted interfaces and b) a fraction of correctly predicted interfaces corresponds to incorrect 

models 
36,41

. We find indeed that in Round 50, 15.25% the incorrect models submitted by 

predictors and servers have recall and precision values above 0.5, hence representing correctly 

predicted interfaces as defined here. For models submitted by scorers this fraction is nearly 

twice as high (26.35%).  Both values are roughly in the range observed earlier: in the 

CASP13-CAPRI challenge the values ranged between ~11-12% for models of predictors and 
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scorers
38

, they were 16% in the CASP12-CAPRI challenges 
34

 and 24% in the initial CAPRI 

evaluation in 2010 
39

. At the same time, the fraction of incorrect assembly models in the 

submissions with correctly predicted interfaces is 29 %, compared to 19%, and ~27% in the 

CASP13-CAPRI and CASP12-CAPRI challenges, respectively.  

 

The fractions of acceptable and higher quality models featuring correctly predicted interfaces 

are now 68% and 87%, respectively (reaching 100% for only high-quality models), 

essentially the same as in the CASP13-CAPRI challenge, and lower than earlier values: 87% 

and 98% (CASP12) 
34

, and 92% and 100% respectively, in 2010 
39

. We also see that medium 

quality models tend to have higher recall than precision values (although both values are 

mostly above 0.5), whereas the opposite trend is displayed by acceptable models which are of 

lower accuracy. 

 

Performance of predictor server and scorer groups 

The ranking of groups by their interface prediction performance is listed in the supplementary 

Table S5.  Group performance was ranked on the basis of the fraction of correctly predicted 

interfaces (interfaces with both recall and precision ≥ 0.5), in the top 5 submitted models for 

each target.  

 

Nine CAPRI human predictors (Huang, Liwo, Czaplewski, Venclovas, Kozakov/Vajda, 

Shen,Zou, Bates Grudinin), 7 CASP ones (Risoluto, Elofsson, Seok-assembly, UNRES, 

Kihara-assembly, Ornate-select, Lamoureux), and 4 prediction servers (MULTICOM- 

CLUSTER, HDOCK, GALAXYPPDOCK, LZERD) submitted correct predictions for at least 

20% of the interfaces. The best performing CAPRI predictor groups were Huang, Liwo and 

Czaplewski with correct predictions for 27% of the evaluate interfaces, followed by 
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Venclovas who correctly predicted 24% of the interfaces but to a higher accuracy as judged 

by the corresponding average recall and precision values (Table S5), which remained 

unmatched by the top 7 CASP predictors, or the 4 CAPRI prediction servers.   Like in the 

CASP13-CAPRI evaluation, some of the human scorers and scoring servers outperformed 

human predictors and servers, albeit to a more limited extent.  Eight human scorer groups had 

correct prediction for at least 20% of the interfaces, with Bonvin (30% of correct interfaces), 

followed by Zou (24%), whose models achieved higher average recall and precision values. 

Only 2 scoring servers (MDOCKPP and HDOCK) submitted correct predictions for at least 

20% of the interfaces, achieving average recall and precision values of 50-57%.  

 

The last 4 columns of Table S5 list the average recall and precision values for interfaces of 

individual models (top 5) submitted by each group, as well as the corresponding standard 

deviations. It is noteworthy that the average recall and precision values achieved by the best 

performing groups or servers rarely exceed 50%, compared to 60% in the CASP12-CAPRI 

challenge 
36

. With a few exceptions, higher values obtained by some groups correspond to a 

lower fraction of correctly predicted interfaces overall.  The standard deviations are also 

larger, routinely between 25-30%, and only somewhat lower than in the CASP13-CAPRI 

challenge. These results indicate that models for individual targets (even those by the best 

performing groups) tend to vary substantially in terms of the interface prediction accuracy, 

and that the interface prediction accuracy has in general declined, relative to achievements in 

previous CAPRI Rounds. 

 

Lastly, we note that most published interface prediction methods reach average recall and 

precision levels of ~50% and ~25%, respectively, when applied to transient complexes (see 

reference 
46

 for review). The best-performing groups of Round 50 achieve somewhat lower 
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recall levels (33-52%) but higher precision (30-56 %) (Supplementary Table S5), for what is 

most likely a mixture of transient and obligate interfaces of the evaluated targets (especially in 

the large assemblies with significant multi-valency involving weaker individual association 

modes). These results support the conclusions that interface prediction methods which model 

the association modes with the cognate binding partner retain an advantage over interface 

prediction methods, which do not use such information. 

 

Global overview of the quality of predicted models 

A global overview of the quality of models submitted by predictor (and server) groups for the 

two targets categories is presented in Figure 6. Figure 6a displays the DockQ model scores, 

color-coded by the CAPRI model quality categories for all the interfaces in individual models 

submitted by predictors (left column) and scorers (right column) for each of the 23 binary 

interfaces of the 12 evaluated targets of Round 50. The predictor and scorer DockQ values are 

compared with those obtained for the best models submitted by respectively, the predictor and 

scorer versions of the MDOCKPP server (Zou group), the top performing automatic server in 

this evaluation. Models produced by these servers are used to gauge the baseline performance, 

analogous to that by the ‘naïve’ predictions 
36

, or by the best performing HDOCK server
38

,  

used in previous evaluations. Figure 6b presents the same data using box plots, illustrating 

the DockQ score distributions per model quality and target interface. 

Not too surprisingly, the models produced by predictors and servers for the 2 easy dimer 

targets (T164, T166) were overall superior to those for the 4 more difficult ones (T169, T176, 

T178, T179). A good number of medium quality models and 2 high-quality ones were 

submitted for the heterodimer of T166, but mostly acceptable quality models and only a few 

medium quality ones were obtained for the T164 homodimer. On the other hand, only 
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incorrect models were obtained for the more difficult T169 dimer, while a small number of 

acceptable models was generated for T176.  For the 2 helical dimers of T178/T179, 

acceptable quality models were submitted by a good fraction of the groups, whereas a much 

smaller fraction submitted only medium quality models.   

The performance for the 3 trimer targets was mixed. It was poor overall (no correct model) 

for the 2 difficult targets: for T165, where only the interface with the monoclonal antibody 

was evaluated, and for T174, the phage tail attachment region protein. But the performance 

for the easy trimer of T168 was much better, with a majority of the groups (including servers) 

submitting models of acceptable or medium, although none were of high quality.  

The performance across the 14 single interfaces of the large assembly targets was overall 

above those for the dimer and trimer targets, most likely because adequate templates were 

available for several of the subcomplexes of these assemblies (e.g. for the ring structures in 

T170, and T177). A rather good performance was achieved for T177, the arginine 

decarboxylase, where the main challenge was to correctly predict the inter-ring interface (I.3 

or T177/3 in Figure 6), since an excellent template was available for the individual decamer. 

As expected therefore, the 2 intra-ring interfaces were well predicted by a majority of the 

groups and servers, with a high fraction of the groups submitting models of medium accuracy 

or better. The performance was in general lower for the inter-ring interface (I.3, T177/3), with 

only a single high-quality model submitted by the MDOCKPP server.  The global prediction 

performance for T180, the viral capsid, was disappointing, mainly due to the poor overall 

performance for interface I.1. The insertion in the target protein was lacking in the available 

template, resulting in incorrect models being submitted by most groups, except the group of 

Seok, who submitted the only acceptable quality model for this interface. A much better 

overall performance was achieved for I.2, for which a large fraction of groups submitted 
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correct models of acceptable quality or better, including the submission of at least 1 high-

quality model each, by the groups of Venclovas and Kihara (See Table S2 for detail).  

Last but not least, a lower overall performance is observed for T170, the component of the T5 

phage tail distal complex, which comprised a total of 9 interfaces. Not unexpectedly, better 

performance was obtained for the interfaces I.1, I.5, and I.8, all of which are intra-ring (See 

Figure 4 b,c). These were the only interfaces of T170 for which a fraction of the predictor 

groups managed to produce medium accuracy models. For 5 of the remaining 6 interfaces, 

often a smaller fraction of the groups managed to submit at best acceptable models, whereas 

only incorrect models were submitted for I.2, the interface between the A and B rings (Figure 

4 b,c). 

We also observe that human predictors produced in general higher quality models than the 

best performing automatic server (MDOCKPP). This was most prominently the case for 

interfaces of the large assemblies (interfaces T170/3-9 and T180/1,2), where the server mainly 

produced incorrect models (Figure 6a). On the other hand, the baseline models produced by 

the MDOCKPP automatic server were in general on par with those of the best performing 

manual predictors for the easier-to-model interfaces. 

Comparing the quality of models produced by predictors and scorers for the 23 analyzed 

interfaces, confirms that the best performing scorer groups produce models of similar and 

sometimes superior quality to those submitted by predictors. This suggests in turn that these 

scorer groups successfully identify the best models in the shuffled set and often improve their 

quality through refinement. For about a third of the interfaces, corresponding mainly to the 

easy-to-model ones, the models of the baseline MDOCKPP scoring server were of similar 

quality, or better, than those of human scorers (Figure 6a). In addition, the box plots of 

Figure 6b, which illustrate the DockQ distributions for models in the different CAPRI quality 
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categories, indicate that the distributions for individual categories (incorrect, acceptable, 

medium and high) tend to be narrower and better separated for the models produced by 

scorers than those of predictors.  

An alternative overview of the quality of the best models submitted by predictors and servers 

is afforded by plotting the f1 score of the submitted models (a function of the recall, and 

precision in modeling the residue-residue contact at the binding interface), as a function of the 

root mean square deviation of the sidechain atoms (S-rms) of interface residues in the model 

versus the target (see Figure 7 and legend). This plot clearly illustrates that the bulk of the 

CAPRI ‘acceptable’ models are in fact of rather low quality. Many display low f1 values due 

mainly to their generously low recall threshold (f(nat) ≥ 0.1) 
39

 , and rather high S-rms values, 

indicating an overall poor correspondence between the models and target sidechain 

conformations at the binding interface.  A better correspondence with the target interface is 

displayed by the medium quality models, with most of these models displaying f1 values of 

0.4 or higher, and S-rms values < 3.0Å.  Nearly all the high-quality models correspond to f1 

value > 0.7 with some ranging between 0.8 and 2.5 Å, confirming their high accuracy status. 

Figure 7 also illustrates the important contribution made by the 3 best human predictors 

(Seok, Venclovas, Baker), and 2 best servers (MDOCKPP and LZERD), to the more accurate 

models, and more particularly to the high-quality ones, and that these more accurate models 

also feature higher residue contact precision and more accurate interface sidechain 

conformations.  

 

Gauging progress 

An important goal of community-wide challenges such as CAPRI and CASP, which are 

repeated over time, is to gauge the progress that is being achieved by the community as a 
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whole in the prediction task that is being evaluated. Assessing progress in predicting the 

structure of protein-protein complexes and large protein assemblies from blind prediction 

challenges such as this one is however not straightforward. The problem lies with the small 

number of targets, in comparison, for example, to the number of targets offered in CASP for 

the prediction of individual protein chains. This problem is further exacerbated by the 

substantial variability in the degree of modeling difficulty that these targets represent, leading 

to significant fluctuations when differences in performance between successive challenges are 

considered. 

Plots quantifying the performance of the 29 top-ranking groups participating in this assembly 

prediction Round (CASP14-CAPRI) and in the CASP13-CAPRI Round 2-years earlier 

respectively (Figure 8), illustrate these problems, while at the same time providing useful 

insights. A clear difference between the 2 challenges is the total number of assembly targets, 

which as 20 in CASP13 and 12 in this Round. Another is the much larger number of high-

quality models (red bars in Figure 8) submitted by the listed groups for many more targets in 

CASP13, than in CASP14, indicating in turn that most of the targets in the present Round 

represented more difficult modeling problems.  

 

Interestingly however, despite the increased target difficulty, the best performing group(s) in 

the present Round produced acceptable or better models for a higher fraction of the targets 

(70-75%), than the top performers in CASP13 (65%). Seeing this difference roughly 

maintained across the ranked predictor groups in both challenges, suggests that the lower 

overall quality of the models submitted in this Round was counter balanced by more targets 

being predicted less accurately.  

The data in Figure 8 also confirm the consistently high relative performance in both CASP13   
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and CASP14 of several veteran CAPRI predictor groups, such as those of Seok, Venclovas, 

Zou, and Kihara. It also indicates the progress achieved by servers such as LZERD and 

MDOCKPP, developed respectively, by the group of Kihara and Zou. It suggests progress in 

performance by groups such Chang, and Pierce, and reveals new high ranking CASP groups, 

such as Baker and CoDock, which were not included in the published evaluation of the 

CASP13-CAPRI challenge. Lastly, some high-ranking servers in CASP13, such as HDOCK, 

CLUSPRO and SWARMDOCK, or predictor groups such as Kozakov/Vajda and Bates do 

not maintain their rank in this Round, which probably illustrates the fluctuations associated 

with this type of limited analyses, and the particular challenges posed by the targets in this 

Round. 

 

Factors influencing the prediction performance 

Round 50 comprised 12 targets that spanned a range of modeling difficulties. These targets 

included 3 large multiprotein assemblies involving a total of 14 binary protein-protein 

interfaces.  By choice, the majority of the targets had some templates available in the PDB.  

The majority of the evaluated interfaces were between homomers, or paralogs. For the ‘easy’ 

targets, for which templates were available for the entire complex (e.g. the dimers of T164, 

T166; the T168 trimer, or the decameric ring of T177), the prediction task boiled down to 

template-based modeling of the entire complex and model refinement. For the more difficult 

targets, where templates, often more distantly related ones, were available only for the 

individual subunits, the prediction of the complex required modeling the structures of 

individual subunits, followed by docking calculations and usually some form of model 

refinement. 
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Critical factors influencing the prediction performance were therefore 1) the ability to identify 

templates whose 3D structure and association modes were similar enough to those of the 

target, to enable building an accurate model of the target assembly, and 2) the extent to which 

these models were adequately optimized.   

 

Figure 9 displays the backbone rms values of the individual subunits (M-rms) of the 

submitted models versus those of the experimental structures for all targets of Round 50. 

Confronting these values with the DockQ scores of models submitted for the corresponding 

targets (Figure 6), confirms once more the critical impact that model accuracy of the 

individual subunits has on the prediction performance. For the easy targets such as, T164, 

T166, T168, or T177, the majority of the M-rms values do not exceed 2.3-3Å. On the other 

hand, the subunits of poorly predicted complexes such as the T169 dimer, the T174 trimer, or 

the T180 viral capsid protein, are much less accurately modelled, with M-rms values 

commonly reaching 10-15Å, because only poor templates (T169, T180), or no templates 

(T174) could be identified even for the individual subunits. 

 

Evidently, identifying the most adequate template is often not straightforward, as multiple 

templates are often available either for the full complex or for the independent subunits, 

requiring strategies for optimally exploiting these data.  As described in the summaries by the 

individual CAPRI groups co-authors of this paper (see Supplementary Material), a variety 

of approaches were used to tackle this crucial step.  A number or groups successfully 

exploited homology models generated by the best performing CASP14 servers, made 

available during the prediction Rounds, or used publicly available tools such as Modeller 
47

.  

Successful approaches involved searching a database of known structures, clustered on the 

basis of sequence and structure similarity, and relying on various scoring schemes to select 
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the most suitable templates, or a reduced set of templates, for further refinement. Querying 

the PPI3D web server 
48

 (by Venclovas),  consulting an in-house database of heterodimers (by 

Seok) for suitable subsets of templates, or running HHblits 
42

 against a sequence profile 

database of known structures clustered at 70% sequence identity, as done by many groups, are 

good examples of such approaches. When no templates could be found for individual subunits, 

some CAPRI predictors performed structure-based searches against the PDB by submitting 

CASP server models to the DALI server 
49

 (by Venclovas), or used 3
rd

 party servers, such as 

the MULTICOM-CLUSTER, recently updated to include Deep Learning approaches to 

predict the 3D structure of individual subunits (see Zou- Supplementary Material). New in 

this Round, some CAPRI groups such as the one of Kihara, used their own recently developed 

deep learning algorithm to predict ab-initio the structure of individual subunits
50

. 

 

Further filtering and refining models built from identified templates is likewise important, and 

here too, different approaches were rather successful (see Individual Group Summaries). The 

Venclovas group ranked models based on the combination of the VoroMQA scores for the 

full structure and for the interaction interface 
51

 whereas the consensus values of several 

scoring functions were employed by the group of Zou to select top scoring templates. For 

some targets, close integration of classical template-based modeling with docking calculation 

(the so-called hybrid docking strategy), carried out by groups like those of Chang, Venclovas, 

and Seok, was likewise quite effective.   

 

For the more difficult targets (Table 1), the full assembly was predicted using models of the 

individual subunits, often built on the basis of more distantly related templates and 

performing ab-initio docking calculations. Interestingly, a number of groups relied on 

reputable CAPRI docking servers such as CLUSPRO 
52

,  HEX 
53

,HADDOCK 
54

  or ZDOCK 
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55
 developed by other CAPRI groups, to generate their docking poses.  Some teams like those 

of Grudinin, and Venclovas exploited the fast-sampling speed of the HEX and SAM 
56

 

docking programs, to perform cross-docking calculations, whereby sets of models are docked 

to one another, yielding a large set of assembly models that are then scored and optimized. 

Increasing use was also made of docking algorithms that incorporate symmetry operations 

(e.g. HSYMDOCK-lite 
57

, SymDock2 
58

), or of algorithms that handle multiple chains (e.g. 

Multi-LZerD 
59,60

). Promising new developments were also reported on incorporating protein 

conformational flexibility, by capturing backbone motions of putative interface residues on-

the-fly, using replica exchange methods (Gray)
61

 or normal mode analysis (Shen)
62

 , a 

lingering challenge that still needs to be effectively addressed 

Several of the best-performing CAPRI groups underscored the importance of specialized 

functions for scoring and ranking protein-protein interfaces for the entire modeled assembly. 

But the type of functions differed substantially between participants. Examples are the 

VoroMQA score developed by the Venclovas group
63

, the combined use of three scoring 

functions, GOAP
64

, Dfire
65

, and ITScore
66

 by the Kihara group, or the multi-term scoring 

function of the Vakser group, additionally complemented with sequence-based measures for 

individual subunits
67

 and with functional annotations. The quite successful scoring 

performance  

of the groups of Chang and Zou/ MDOCKPP relied on an older knowledge-based scoring 

function for protein-protein recognition
68

,  which the latter group recently augmented by a 

deep learning model.  In addition, several groups (Cheng, Huang), made good use of deep 

learning methods for predicting inter-subunit residue-residue contacts from multiple sequence 

alignments. 

For further information on factors potentially influencing the performance of individual 

groups see Supplementary Material (Individual Group Summaries).   
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As noted in previous assessments 
38

  the difficult targets, which involved ab-initio docking of 

homology-built models, gave an advantage to groups with expertise in ab-initio docking and 

those with more powerful specialized scoring functions. The latter groups clearly had an 

advantage in the scoring challenge. We also note that the performance of predictors and 

scorer groups on the set of difficult interfaces weighed more heavily on their ranking for the 

full set of targets in Round 50, since about 40% of the 23 unique interfaces across the 

different targets (~9/23) correspond to difficult modeling problems. The impact on the 

ranking of groups from their performance on the difficult interfaces in the larger assemblies 

such as that of T170, was however mitigated by applying the normalized weighted scoring 

scheme of Eq. (1).  

 

CONCLUDING REMARKS 

The assessment of the results presented here for the 12 targets of Round 50, the 4
th

 CASP-

CAPRI challenge, provides an informative snapshot of the performance of current methods 

for the prediction of the 3D structure of protein complexes and larger protein assemblies.  It 

shows that a good number of these methods are capable of producing correct to medium 

accuracy models for homo-oligomers, ranging from dimers to larger assemblies when 

templates for the full assembly are available. But generating models that accurately reproduce 

the native interface is still more an exception than the rule, indicating that further efforts are 

needed to improve model refinement.   

Prediction methods are also increasingly successful when closely related templates for 

individual subunits are available, thanks to better exploitation of data on templates, more 

efficient integration of docking procedures, and more powerful scoring functions, although, 

here too, model refinement remains suboptimal.  
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On the other hand, producing an accurate 3D structure of protein assemblies, for which only 

distantly related templates are available for the individual components, or where no templates 

can be found, remains out of reach for modeling tools such as those currently available to the 

CAPRI community. To tackle the very challenging problem of predicting protein assemblies 

from sequence information and limited prior information on the structures of the individual 

subunits, novel approaches are needed. These approaches must integrate more closely the 

prediction of the 3D structure of individual protein chains with that of their association modes. 

That this might be within reach in the near future at least for homomeric assemblies, is 

suggested by the observation that the novel Deep Learning-based approach by AlphaFold2 

appears to accurately predict the bound structure of the individual subunits of these 

assemblies from their amino acid sequences, at least in cases where residue-residue contacts 

can be predicted from the amino acid sequence data available in public databases.  Very 

preliminary tests performed by the CAPRI predictor groups of Kozakov/Vajda and Seok (see 

Supplementary Material) suggest that using subunit models produced by AlphaFold2 as 

input to ab-initio docking calculations, may indeed increase the number of interfaces 

predicted to acceptable or medium accuracy levels. Additional tests on a larger and more 

diverse set of targets and, most likely, significant further efforts will be needed to develop 

Deep Learning methods capable of predicting the structure of protein complexes, including 

heterocomplexes, to high accuracy. Several CAPRI groups have already started to address the 

challenge by developing their own Deep-Learning-based methods to directly tackle key 

bottleneck in the assembly prediction pipeline
62,69-71

. As the revision of this manuscript was 

being completed, DeepMind released an open-source version of their successful AlphaFold2 

software
72

 and the teams of Baker & coll. released RoseTTAFold, a new protein structure 

prediction tool inspired by AlphaFold 2, that also seems to be able to handle the prediction of 

protein complexes 
73

. Future CAPRI and CASP prediction Rounds will monitor the impact of 
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these developments. 
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TABLE LEGENDS 

Table 1: CASP14-CAPRI assembly targets. The columns present respectively the CAPRI 

and CASP target ID, stoichiometry of the assembly, the number of interfaces, the surface area 

(or range) of the interfaces, the number of residues per monomer, the PDB code (if available) 

and a textual description of the target. For target structures not yet deposited in the PDB (N/A 

in column 7) structural details could not be revealed here. Dimeric and trimeric easy targets 

are listed before more difficult targets. Difficulty of all targets is indicated by superscript ‘e’ 

(Easy) or ‘d’ (Difficult) in the CAPRI target ID column. (*) Target T170/H1060 comprises a 

total of 9 interfaces, with buried surface areas of 1800/1650/1650/950/680/680/550/1200/750, 

for interfaces 1-9, respectively. (*) T165 shows the area for the A/HL interface. 

 

Table 2: Overall group performance. Ranking is determined on the combined score (ScoreG 

of Eq (2)) of the top-5 submission, but performance for top-1 is also listed. The number of 
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targets that a particular group participated in is listed in the column Participation. Ranking is 

divided between CAPRI predictors, servers, and scorers and scoring servers. The performance 

of CASP-only predictors is listed but they are not ranked. Their score can however be directly 

compared to those of the CAPRI predictor groups. Only groups participating in 10 targets or 

more are shown; the full Table is given as Supplementary Table S4. 

 

FIGURE CAPTIONS 

Figure 1: The Targets of Round 50.  

(a) Dimeric targets, (b) trimeric targets, (c) large assemblies. The dimeric targets are divided 

into Easy (T164/T1032, T166/H1045) and Difficult (T169/T1054, T176/T1078, T178/T1083, 

T179/T1087) targets. The trimeric targets T165/H1036 and T174/T1070 were Difficult, 

whereas T168/T1052 was easy. The large assembly target T177/T1081 was an easy target. 

The remaining targets T170/H1060 and T180/T0199 featured both Easy and Difficult to 

predict interfaces. 

 

Figure 2: Evaluated interfaces of the bacterial Arginine decarboxylate (T177/T1081). 

The two primary interfaces are within each decameric ring, the third interface lies between the 

two rings. Individual subunits illustrating the intra- and inter-decamer interfaces are colored.       

 

Figure 3: Subunit arrangement and interfaces of the T5 phage tail distal complex 

(T170/H1060). 

(a) The rings A and B (rings are underlined) consist of 3 identical copies of protein A 

(proteins are not underlined); ring C contains an inner Ci (3 copies of B) and outer Co (12 

copies of C) ring; ring D contains 6 copies of protein D. The best templates for each protein 

are shown in the image. (b) Shows the organization of the 5 rings in the larger assembly as it 
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was resolved by cryo-EM. To the right of the rings are listed the chain identifiers, with the 

number of residues in each chain in parentheses. (c) Shows the 9 different interfaces, the rings 

in or between which they occur, two exemplary chains of the interface and the buried area 

between the two chains. 

 

Figure 4: Subunit interactions and quasi symmetry of the duck hepatitis B virus capsid 

(T180/T1099) 

(a) shows the entire capsid, highlighting the five-fold and three-fold symmetry also shown in 

(b) that is exhibited by the assembly. The capsid contains 60 copies of the four-chain 

asymmetric unit shown in (c), in which the chain pairs A:B and C:D form the tight, primary 

interface. The secondary interface, shown in (b), is formed by interactions between chains A 

(green, forming the pentagon) and chains C (magenta, forming the triangle) of neighboring 

units. (d) A difference in backbone conformation of chains A/C vs B/D (backbone rmsd 0.6 Å) 

results in a quasi-identical interface connecting the pentagon and triangle together through 

interface [2’] of (b). (e) shows the overlap of chain A of the target to its analogue in the 

template 3j2v, highlighting the regions that needed to be modeled correctly for an accurate 

prediction of both interfaces.  

 

Figure 5: Global landscape of the interface prediction performance. 

Scatter plot showing the average Recall and Precision values (see main text for definition) of 

the interfaces in models submitted by all predictors (a) and scorers (b) for the 12 targets of 

Round 50. Each point represents the average Recall and Precision values for the interfaces of 

the individual protein components (i.e. the receptor and ligand proteins, respectively) in the 5 

models submitted by each participant for one binary association mode. Averaging was 

performed separately over models in the 4 CAPRI accuracy categories (incorrect, acceptable, 
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medium, and high). For example, for a participant submitting 5 models or which 2 were 

incorrect, 2 of medium quality and 1 of high quality, average Recall and Precision values 

were computed for the 2 incorrect models, and the 2 medium-quality ones, respectively, 

whereas those for the single high-quality models were used as such. Individual points are 

color-coded by the CAPRI model quality category (as indicated in the legend displayed in the 

upper left corner of each graph). The upper right-hand quadrant of the graph, with Recall and 

Precision values above 0.5, contains all points corresponding to “correct” interface 

predictions. 

The 2 salient outlier green points in (a) correspond to the medium accuracy models with high 

f(non-nat) values submitted by Kozakov/CLUSPRO for the T170.5 interface. The 2 salient 

outlier red points in (b), correspond to the high accuracy models with however high f(non-nat) 

values submitted by the group of Zou for the T177.2 interface. 

 

 

Figure 6: Global overview of the prediction performance for targets of Round 50. 

Shown are the distributions of the DockQ values computed for the top-five models submitted 

by all predictor and scorer groups for individual targets of Round 50. (a) Scatter plots of 

DockQ values for individual models submitted by predictors (left column) and scorers (right 

column) for individual targets. The targets are labeled by their CAPRI target number and 

interface rank. Individual points are color-coded according to the CAPRI model quality 

category; yellow: incorrect; blue: acceptable; green: medium; red: high. For each target, a 

baseline-level prediction, represented by the best model of the top-performing automatic 

server (MDOCKPP; see Table 2), is represented by black triangles. (b) The same information 

presented as boxplot distributions (whiskers at 9
th

 and 91
st
 percentiles) of models submitted 

for each target and prediction category; color coding is as for the upper panel, but with a 

lighter shade of blue for better visibility. 
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Figure 7:  f1 as a function of S-rms. 

Each point in the figure represents the best model of a predictor group for each of the 23 

interfaces. Individual points are color-coded following the CAPRI model quality as in Figure 

6. The results for the best predictors (Baker, Seok, Venclovas) and servers (LZERD, 

MDOCKPP) are highlighted. See main text for definition of f1 and S-rms. The upper left 

quadrant features the best models, with S-rms values below 3.5 Å and f1 values above 0.3, 

corresponding to mostly medium and high-quality models. 

 

Figure 8: Gauging progress. 

Panel (a) shows the performance score of the top 29 ranking predictor and server groups (both 

CAPRI and CASP-only groups; server groups are listed in capital letters). The height of the 

bar is the ScoreG value of Eq. (2), with individual contributions from high, medium, or 

acceptable-quality models indicated. The total number of targets for which at least an 

acceptable quality model was produced is indicated in the graph by a diamond. Panel (b) 

shows the same data from the previous CASP13-CAPRI Round. 

 

Figure 9: Model quality of individual protein subunits in assembly models of the 12 targets 

of Round 50. 

Shown are whisker plots (displaying the median, 1st and 3
rd

 quartile, and 9th and 91st 

percentile) representing the distributions of M-rms values of individual protein subunits in 

models submitted for each of the targets of Round 50. Targets are labeled by their CAPRI 

target number; chain identifiers (A, B, etc) are used for the different proteins in the hetero-

complexes.  
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