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Abstract

In this work, we provide a Machine Learning
framework for augmenting the Differentiated Ser-
vices (DiffServ) protocol with fine-grained dynamic
traffic classification. The framework is called L-
DiffServ. It is composed of two classification al-
gorithms able to detect the QoS classes of incoming
packets only looking at three packet header fields;
the first algorithm, referred to as Inter-L-DiffServ,
is a semi-supervised classification procedure able to
replicate DiffServ classification; the second one, re-
ferred to as Intra-L-DiffServ, is an unsupervised
algorithm for intra-class classification, useful for
classes taking large portions of the overall traffic.
We apply the latter to the low priority best-effort
class. The performance evaluation shows that our
solution is able to dynamically classify packets
and to detect new QoS sub-classes hence adapt-
ing to traffic aggregate characteristics. We also
show that network resource management can be
improved exploiting the new generated QoS sub-
classes: two active queue management algorithms
based on WRED and CHOKe show a reduction of
the number of sessions affected by packet losses up
to 40% with respect to the legacy DiffServ proced-
ure.

1 Introduction

The use of data mining and machine learning tech-
niques for automated network control represents
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an important milestone in the technology transfer
agenda of Internet Service Providers [1]. The prom-
ise is that self-driving networks, with autonom-
ous configuration, management and planning op-
erations, could lead to a significant improvement of
network performance, both in terms of user qual-
ity of experience and ISP infrastructure efficiency.
The interest of the scientific and industrial com-
munity towards self-driving networks has lead to
developments in the area of Self-Organizing Net-
works (SON) now becoming a key background for
5G [2, 3]. More recently, the integration of Artifi-
cial Intelligence principles in programmable IP net-
works led to various frameworks sometimes referred
to as Knowledge Defined Networking (KDN) [4].

In this work we propose a machine learning based
methodology, referred to as Learning-powered Diff-
Serv classification (L-DiffServ), to augment the
efficiency of the de-facto leading legacy Quality-
of-Service (QoS) protocol for IP networks, Diff-
Serv [5]. The contribution of our work is to ex-
ploit and adapt existing machine learning mechan-
isms to improve the network management, and not
to define a novel machine learning algorithm. Our
methodology consists of performing a dynamic and
fine-grained classification of traffic classes, lever-
aging on a pre-existing DiffServ classification. Diff-
Serv allows to define up to 64 different QoS classes,
even if in practice operators merged them into
four DiffServ macro classes (also known as PHB
in DiffServ terminology). The DiffServ CodePoint
(DSCP) is used to identify the DiffServ macro class
a packet belongs. In the DiffServ architecture edge
nodes are responsible for packets classification and
DSCP marking, so that core nodes can perform
QoS procedures only looking at DSCP. Our work
is meant to dynamically classify packets and up-
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date QoS classes, defining sub-classes within ori-
ginal DiffServ macro classes, while the legacy ap-
proach is to let the classification stay static [6].

Our idea is to provide an automatic classification
procedure able to finalize a 3-step operation: i) to
dynamically identify DiffServ macro classes on the
basis of the incoming traffic; ii) to increase the gran-
ularity of DiffServ classification, detecting QoS sub-
classes; iii) to exploit the data driven classification
to improve network resources utilization. An inter-
esting outcome of our investigation is that a limited
number of header fields (the Protocol, Source Port
number and Destination Port values for the data-
set we analyzed), are sufficient to identify DiffServ
macro classes / QoS sub-classes; in this way, the
association of an incoming packet to a specific Diff-
Serv macro class / QoS sub-class can be executed
defining classical field-matching rules in edge nodes,
allowing for a line-rate classification of incoming
packets.

The framework we propose is composed of two
main phases:

• Classification phase. We provide two version
of L-DiffServ. The first one, referred to as
Inter-Class L-DiffServ classification (Inter-L-
DiffServ), allows to perform DiffServ classi-
fication after a learning procedure on past
traffic traces. Inter-L-DiffServ is based on
a semi-supervised data mining solution, ob-
tained by combining the Linear Discriminant
Analysis (LDA) dimensionality reduction al-
gorithm with the K-means clustering tech-
nique: starting from a labelled training set,
i.e. traffic traces with packets marked with a
DSCP, Inter-L-DiffServ provides an automatic
mechanism to detect Diffserv macro classes for
each incoming packet. The second one, re-
ferred to as Intra-Class L-DiffServ classifica-
tion (Intra-L-DiffServ), is based on an unsu-
pervised mechanism, obtained by replicating
Inter-L-DiffServ and replacing LDA with the
Principal Components Analysis (PCA) tech-
nique: the aim is to provide a novel classific-
ation for a specific DiffServ macro class (e.g.,
the dominant one in terms of volume) to be
exploited by network providers when perform-
ing resources management. In our case, taking
into account the features of the dataset used
for the numerical results, we provide a novel

classification of Best Effort traffic, i.e. traffic
with no QoS guarantees.

• Resource management phase. We demonstrate
that the fine grained classification of traffic ob-
tained with Intra-L-DiffServ can be used to
improve network performance. More in de-
tail we focus on Best Effort traffic, providing
a solution able to exploit Active Queue Man-
agement (AQM) strategy in network nodes to
reduce the number of flows affected by losses.
In this way, the network operator has an
autonomous solution for concentrating packet
losses, in cases of network overload, to a sub-
set of low priority traffic, i.e. a specific QoS
sub-classes. It is important to remark that the
detection of QoS sub-classes is not static, but it
is the outcome of the classification phase per-
formed in a dynamic way, i.e. traffic classes
are updated in runtime.

We open source the L-DiffServ code in [7], and we
worked on open data.

The paper is organized as follows: in Section II
the state of art is described while motivating our
dynamic QoS management idea. The two al-
gorithms proposed for the dynamic classification
are described in Sections III and IV, respectively.
In Section V the QoS aware resource management
solution is defined, while in Section VI the perform-
ance evaluation is provided. Finally, we conclude
in Section VII.

2 Background

The application of standard statistical and data-
mining methods to IP traffic classification has been
a well established research domain for the last two
decades, leading to many industrial outcomes such
as deep-packet-inspection engines and expert fire-
wall rules. The research in this area has more
recently evolved toward the adoption of machine
learning and artificial intelligence methodologies,
which become efficient enough to scale with large
traffic volumes thanks to increased software quality
and computing capacity, and hardware acceleration
solutions.

The major difficulty in this field is dealing with
the (partial) presence or the absence of prior la-
bels to traffic records. Hence a challenge of-
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ten addressed is the evaluation of the behavior
of supervised methodologies compared to unsuper-
vised techniques. Semi-supervised methods are also
making surface in the literature on traffic man-
agement; while supervised learning methods are
effective when fine granularity differentiation is
already defined, and unsupervised methods detect
unknown classes similarities, a semi-supervised ap-
proach is a combination of them offering the pos-
sibility of pursuing both objectives as in [8–14].

Authors in [8] propose the RTC (Robust Traffic
Classification) scheme, building on the first semi-
supervised framework developed in [9, 10], with
the capability of identifying traffic of zero-day ap-
plications as well as accurately discriminating pre-
defined application classes by exploiting the prior
knowledge about the label of the traffic and detect
the unknown traffic through the K-means. As in
our work, this clustering technique is used to find
the optimal number of centroids (classes) according
to the training dataset, and the label assigned to
a cluster is the one having the greater number of
elements in it.

The use of the K-means algorithm to discrimin-
ate among well known flows and unknown ones is
also described recently in [11], with the framework
called self-adaptive semi-supervised traffic classific-
ation system (SSTCS). However, all these devel-
opments enhance clustering techniques combining
them with semi-supervised methodologies for clas-
sifying traffic and evaluating the performance ac-
cording to the accuracy; our idea is going beyond
the accuracy values and test the performance of our
QoS differentiation comparing it with the current
management of the service classes in the DiffServ
architecture.

A large number of works are completely relying
on a unsupervised methodology. In [12] authors
apply K-means in unsupervised way for the data
exploration part; in the classification part they use
k-nearest neigbours (KNN) measuring the perform-
ance with the Davies-Bouldin Index (a non normal-
ized coefficient). This is the main difference with
respect to our clustering method, as in fact we con-
sider the Silhouette Coefficient (a normalized meas-
ure) to evaluate the goodness of clustering outcome,
enabling comparison between different daily-traces
results.

In [13] the behaviour of different ML algorithms,
such as K-means, Gaussian Mixture Model and

Spectral clustering, is analyzed. The conclusion is
that it is possible to distinguish an application from
the observation of the first few packets of a TCP
connection. In [14] DBSCAN clustering is com-
pared with the K-Means: the experimental results
show that both K-means and DBSCAN work really
fast and, although DBSCAN has lower accuracy
compared to K-means, DBSCAN produces better
clusters since it is able to identify traffic “noise” by
not including it in the classification. In this work
we make a classification comparison between our
proposal and Abacus framework presented in [15].
Abacus is based on a supervised algorithm, i.e.
Support Vector Machine. Abacus is able to clas-
sify applications starting from session level data,
i.e. Netflow ones, considering as traffic features
the source and destination IP addresses, the port
numbers, and the packets/byte count. The authors
show that Abacus correctly classifies applications
with an accuracy greater than 90% when a het-
erogeneous mix of applications is considered. Our
solution highly differs from Abacus, since we are
using a semi-supervised approach and our solution
only exploits packet level features, thus allowing
for a line rate classification of packets, not possible
with the Abacus approach.

3 The network scen-
ario:DiffServ and beyond

The possibility of implementing service differenti-
ation mechanisms in IP networks is a strategic fea-
ture for network operators. In this way, the oper-
ator can stipulate Service Level Agreements (SLAs)
with customers, providing different QoS levels on
the basis of monetary revenues. The first step
of any stateless QoS differentiation mechanism is
packet classification, i.e. the identification of the
specific QoS class to be associated to any incom-
ing packet. The de-facto standard solution for QoS
support in IP networks is DiffServ [5]. In a DiffServ
network, any incoming packet is marked at an edge
router with a DiffServ CodePoint (DSCP), repres-
enting its QoS class; the DSCP is used by core
routers to identify network resources (mainly buf-
fers and bandwidth) to be provided to each crossing
packet.

The DSCP in IPv4 is a six bits string, thus it
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allows to define up to 64 different QoS classes. In
practice, four different QoS classes, referred to as
Per Hop Behavior (PHB), are recommended and
used by operators [6]: i) Best Effort (BE), providing
classical Best Effort service, ii) Expedited Forward-
ing (EF), providing guaranteed service in terms of
delay, jitter and loss, iii) Assured Forwarding (AF),
providing assurance of delivering with limitations
with respect to EF, and iv) Class Selector (CS),
providing a dedicated service for control traffic
(such as routing protocols messages) and for back-
ward compatibility. In the following we use the
term DiffServ macro class to identify the PHB used
by operators.

The DiffServ macro class association is per-
formed in a static way in today networks: the net-
work operator, on the basis of specific rules manu-
ally (by human operators) inserted in edge routers,
mark each incoming packet with the proper DSCP.
The static setting has a main drawback: packets
not belonging to manually configured high-priority
classes are always treated as low-priority ones. In
practice, any time a new traffic flow with QoS re-
quirements appears, a manual configuration in edge
routers is needed to install a new classification rule.

In this work we investigate the possibility of im-
plementing a dynamic classification of packets in a
DiffServ network. The idea is to exploit a machine
learning classification procedure able to:

• detect DiffServ macro classes of incoming
packets on the basis of past traffic traces col-
lected in a centralized manner;

• exploit only header fields as traffic features for
the learning procedure;

• detect and install classification rules in edge
routers to perform classification at line rate.

More precisely, our machine learning framework,
referred to as Learning-powered DiffServ clas-
sification (L-DiffServ), focuses on two different
aspects: i) improving the dynamicity of DiffServ
classification and ii) introducing a deeper QoS clas-
sification level for a specific DiffServ macro class.
The results of our investigation are two different
solutions. The former one, referred to as Inter-
Class L-DiffServ classification (Inter-L-DiffServ),
focuses on learning network traffic classification
rules and dynamically detect DiffServ macro classes

of new traffic flows; Inter-L-DiffServ is based on a
semi-supervised classification mechanism. The lat-
ter aspect is the definition of a higher granularity
traffic classification procedure starting from Diff-
Serv one. Our second proposal, referred to as Intra-
Class L-DiffServ classification (Intra-L-DiffServ) is
based on an unsupervised classification mechanism
and leads to the definition of novel QoS sub-classes.
The novel QoS sub-classes will be used to imple-
ment more efficient QoS strategies.

The actual goals of our framework can also go
beyond the dynamic classification of new traffic
flows without manual flow marking and the im-
provement of QoS strategies. The possibility of
dynamically classifying traffic can be exploited in
the following ways: i) L-DiffServ modules can be
used for applications to perform classification re-
finement; ii) it could also allow not using or hiding
the DSCP marking in part or the whole network
path for confidentiality or security reasons; iii) the
detection of additional QoS classes worth being dif-
ferentiated may so be spotted, as a form of anomaly
detection.

From an architectural point of view, our idea is
to integrate our L-DiffServ classification procedure
into the ISP Management/Control Plane. An high
level scheme of the classification function block at
Management/Control level is reported in Figure 1:

• traffic traces (actually only few fields of layer
3 and 4 headers are needed) are collected from
edge routers, as part of classical management
procedures, and are used as training data set
for our classification algorithms, i.e. Inter-L-
DiffServ or Intra-L-DiffServ ;

• the outcome of the classification algorithm is
the set of DiffServ macro-classes/ QoS sub-
classes (clusters);

• classification rules, defined as matching con-
ditions on specific header fields, are extracted
from DiffServ macro-classes/ QoS sub-classes
and are installed in edge routers.

The classification of incoming packets becomes an
automatic function, executed in a dynamic way
by the Management/Control Plane. The training
is performed continuously offline, on the basis of
traffic traces collected by edge nodes. The QoS
packet marking is performed at line rate by edge
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Figure 1: Architectural scheme of our solution in the Management/Control plane of a DiffServ network.

nodes, using matching conditions detected by our
L-DiffServ solution analyzing past traffic traces.
The QoS matching conditions are configured and
updated by the Management/Control Plane : the
collection of traffic traces allows to feed the clas-
sification algorithm with new traffic flows. In this
way,L-DiffServ is able to adapt QoS classification
to traffic behavior, with no need of human operator
intervention.

4 Inter-Class L-DiffServ

The aim of the Inter-L-DiffServ algorithm is to
provide an autonomous traffic classification replic-
ating the standard DiffServ classification. Inter-L-
DiffServ exploits the availability of a DiffServ la-
belled training dataset to define header-based clas-
sification rules.

The Inter-L-DiffServ classification procedure is
based on a classical Machine Learning approach: i)
an initial training phase is implemented on histor-
ical data to detect traffic clusters, ii) DiffServ macro
classes are associated to the different clusters, and

iii) testing is performed on new packets, not in-
cluded in the traffic used during the training phase,
to evaluate the capability of Inter-L-DiffServ in im-
plementing a dynamic DiffServ classification.

The training process is composed of three main
phases: i) preprocessing and oversampling, ii) di-
mensionality reduction and iii) clustering and Diff-
Serv macro classes identification. After the detec-
tion of DiffServ macro classes, the testing phase can
be executed, i.e. new incoming packets are classi-
fied on the basis of obtained clusters.

4.1 Preprocessing and oversampling

The Inter-L-DiffServ training procedure is shown
in Figure 2. It takes as input a traffic trace with
labelled data, i.e. data with DiffServ codepoints
available. The traffic trace, also referred to as train-
ing dataset, is a packet level trace, i.e. a file cap-
tured on wire by a packet sniffer.

The first step of the Preprocessing phase is the
characterization of input data in terms of features
to be considered for the classification procedure.
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For each received packet, our approach performs
a multi-layer features evaluation: all the IP and
Layer 4 header fields are extracted and evaluated.
Investigating the data-set used (more details in Sec-
tion 6.1), and exploiting the availability of the Diff-
Serv codepoints, we are able to detect the correl-
ation between each header field and the DiffServ
classification. The result of this first evaluation was
quite surprising: the features really useful to per-
form a similar DiffServ classification are the Pro-
tocol Number, the Source Port and the Destination
Port. The previous result allows for a high flexibil-
ity of Inter-L-DiffServ in terms of input data to be
accepted. The possibility of focusing only on Pro-
tocol Number, Source Port and Destination Port
allows for considering also session level traces, i.e.
a Netflow trace, as input data. This aspect repres-
ents a first improvement with respect to our previ-
ous work [16], where only packet level traces were
supported as input file. The capability of working
with sessions makes our proposal more flexible, al-
lowing to highly reduce training time (a set of pack-
ets is represented as a single element of the session
trace), and also avoiding data inconsistency (pack-
ets of the same sessions with different DSCPs). It is
important to remark that our solution is still valid
in a different scenario, i.e. when more header fields
are used as data features; anyway, in the rest of the
work we consider as data features only the Protocol
Number, the Source Port and the Destination Port
1.

In the Preprocessing phase, two further opera-
tions are performed:

• transformation of categorical variables into
binary variables by means of the One-Hot En-
coding tool [17]; it transforms a variable with
n observations and d values, to d binary di-
chotomous variables with n observations, each
observation indicating the presence with 1 or
absence with 0 of the variable;

• detection of the most significant port numbers;
the port numbers taken as features are the ones
used by the 90% of the training traffic, while
the remaining ones are replaced by the cat-
egorical variable 0.

1for raw IP packets, such as routing protocols control
messages, the Source and Destination port numbers are set
equal to value −1, i.e. all raw IP packets are classified only
on the basis of the Protocol value

We applied the One-Hot Encoding to the three
categorical variables which are transformed into
about 500 binary variables (the exact number of fi-
nal variables depends on the training dataset); the
huge number of binary variables shows the great
heterogeneity of the traffic analyzed.

The successive step is the evaluation of the traffic
distribution among DiffServ macro classes for the
training dataset. This is a classical step in any
classification algorithm since it is very frequent to
have an unbalanced dataset, that could lead to
“cover” information related to classes with a lim-
ited amount of data. In our cases, as better ex-
plained in the Performance Evaluation section, the
Best Effort class represents more than the 90% of
the dataset.

To cover with traffic unbalance within DiffServ
macro classes, it is needed to adopt an Over-
sampling technique, i.e. to increase the size of un-
derrepresented classes. Two different approaches
can be used to perform oversampling: i) Random
Oversampling and ii) SMOTE [18]. In the former
case, the underrepresented class size is increased
by adding new samples obtained by randomly se-
lecting values already present in the dataset and
belonging to the same class. In the latter case,
used in [16], new samples are obtained by interpol-
ating data values belonging to the same class. Con-
sidering the packet/session level traffic data to be
processed, we decided to use Random Oversapling
technique: i) Random Oversampling maintains the
diversity of the training data, i.e. no novel values
are added to the dataset; ii) SMOTE could lead
to unfeasible data values, i.e. data having fields
not feasible in a traffic trace. In particular, this
last aspect regards Protocol and Port Number val-
ues that, as dichotomous variable, can assume only
two values, i.e. 1 (presence) or 0 (absence): with
Smote not integer values are possible.

At the end of the Random Oversampling proced-
ure, the training dataset is composed of an equal
number of data for each DiffServ macro class.

4.2 Dimensionality reduction

The outcome of the Oversampling phase is a new
dataset, where new data is added to the original
ones and variables are transformed. As a con-
sequence, the size of the new dataset is higher with
respect to the original one and this could be a prob-
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Figure 2: Description of the main steps of Inter-L-DiffServ.

lem in terms of complexity. This aspect is known
in the Machine Learning field as the “Curse of di-
mensionality”.

The classical approach to overcome this limita-
tion is to extract the most informative variables
reducing the space dimensionality, applying a so
called dimensionality reduction technique. Exploit-
ing a labelled dataset, it is possible to define a new
space where the variance between different classes
is maximized: to do that we used the known Linear
Discriminant Analysis (LDA) classifier, able to per-
form space dimensionality reduction. The main ad-
vantage with respect to unsupervised approaches,
i.e. when no labelled data are available, is that
LDA maximizes the variance between different Diff-
Serv macro classes and not within them. In our
solution we fix to three the new space dimension,
since in this way more than the 90% of the total
variance is obtained. Each new axis, referred to as
Linear Discriminant (LD), leads to a new variable,
obtained as a combination of the original ones. To
have an idea about the LDA procedure, we report
in Table 1 the composition of the three LDs after
the execution of LDA on a reference training data-
set.

The final step of the dimensionality reduction
phase is to represent the training dataset in the

new space defined by LDA.

4.3 Clustering and DiffServ macro
classes identification

Starting from the new space representation, it is
possible to detect DiffServ macro classes, referred
to as clusters, applying a clustering technique. In
our solution we use the well-known K-means al-
gorithm, mainly due to its good performance and
low complexity. However, the outcome of K-means
must be characterized to evaluate its goodness. To
do that, a similarity parameter is used to charac-
terize the obtained clusters. In this work, we use
the Silhouette Coefficient, i.e. the average value of
the Silhoutte index computed for each cluster [19].
The Silhouette coefficient provides a metric evalu-
ation about the goodness in the clustering results.
It compares the cohesion and dispersion for each
element clustered respect to its own cluster and
the others. The range of this metric goes from -
1 to 1, higher values of the index suggest an higher
performance in the clustering matching.

Thus, the idea is to set the number of obtained
classes equal to the number of centroids that max-
imize the average Silhouette Coefficient. Before
proceeding with DiffServ macro classes definition,
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Table 1: The 10 most significant variables for each
Linear Discriminant (LD) after executing LDA on
a reference traffic trace

LD1
Variable Value
S Port 62208 5.80%
S Port 123 3.69%
D Port 443 3.26%
S Port 50213 2.64%
D Port 53 2.64%
S Port 45198 2.64%
S Port 52404 2.60%
S Port 57651 2.57%
D Port 80 1.58%
S Port 63914 1.27%

LD2
Variable Value
S Port 123 19.75%
D Port 443 2.79%
S Port 62208 2.28%
S Port 8080 2.15%
S Port 63685 2.15%
S Port 50213 2.13%
S Port 47125 2.13%
S Port 52404 2.13%
S Port 21 1.87%
S Port 1883 1.80%

LD3
Variable Value
S Port 123 5.79%
Protocol 47 3.58%
Protocol 97 3.58%
D Port 443 2.82%
S Port 21 2.20%
S Port 8195 2.20%
S Port 993 2.20%
Protocol 1 2.13%
S Port 1883 1.89%
S Port 22 1.80%

a refinement step must be executed. Each cluster
must be evaluated independently to detect clusters
having a low Silhouette Coefficient. These clusters
must be removed from the final result, since they
represent clusters with mixed traffic, i.e. packets
belonging to different DiffServ macro classes. In
our case, after empirically evaluating different val-
ues, we set the Silhouette Coefficient threshold to
85%: all clusters having a Silhouette Coefficient
lower than 85% are removed.

The final step is the DiffServ macro classes defin-
ition. Each cluster is marked with the DiffServ
macro class having the higher number of packets
in the cluster. The outcome of the classification
phase is the set of DiffServ macro classes.

4.4 On-line classification

The last phase of any classification procedure is the
testing phase: the clusters obtained from the train-
ing phase are used to perform classification on new
data. In our case, new incoming packets must be
classified in edge nodes, with the assignment of a
DiffServ macro class. More precisely, each pack-
ets is classified considering its “euclidean distance”
with respect to the centroids of the clusters ob-
tained from the training phase: the DiffServ macro
class having the lowest distance to the packet is
selected.

To perform the previous operation in a real
ISP network, the classification of incoming pack-
ets must be performed on-line in edge routers. In
other words, the testing phase must be implemen-
ted at line rate in router line cards. The features of
Inter-L-DiffServ allows for such an implementation
since:

• classification is performed only looking at Pro-
tocol, Source Port Number and Destination
Port Number fields; a router is able to ob-
tain such values looking at the packet header,
exploiting fast hardware level lookup mechan-
isms;

• clusters are defined in a new space where the
same three fields are used; as a consequence,
each cluster can be identified by rules based on
such fields (as a matter of example a cluster
can be described with a specific Source Port
Number and/or a specific Protocol value).
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Exploiting the previous considerations, it is pos-
sible to translate DiffServ macro classes into field-
matching classification rules to be installed in edge
nodes in an SDN-like way. Each entry is a com-
bination of Protocol, Source Port and Destination
Port fields.

5 Intra-Class L-DiffServ

The Inter-L-DiffServ algorithm is based on the
availability of a labelled training dataset and allows
to replicate the same DiffServ classification proced-
ure statically realized today by service provider.
The practical implementation of the proposed solu-
tion has two main requirements: i) the availability
of a labelled dataset, and ii) the importance of de-
livering the correct traffic classification. This last
aspect is the most problematic: if a high priority
packet is not correctly detected as such by Inter-L-
DiffServ, the SLA contracted with the customers
is not respected, with a negative consequence on
the ISP reputation. Moreover, the misclassifica-
tion cannot be considered as a rare event, since the
detection of high priority packets can be based on
rules not related to headers fields; in such cases,
Inter-L-DiffServ is not able to detect high priority
packets.

For this reason, we define here a novel applic-
ation of the L-DiffServ logic, focusing on a given
DiffServ macro class. Exploiting the idea of the
Inter-L-DiffServ algorithm, we propose to detect
QoS sub-classes inside a DiffServ macro class, per-
forming an unsupervised classification. We refer
to this L-DiffServ variant as Intra-Class L-DiffServ
classification (Intra-L-DiffServ). In other words,
we are providing a new tool for network operat-
ors to enhance the classification granularity for a
given DiffServ macro-class, a class that may deserve
finer classification because of high volume or traffic
heterogeneity within its aggregate. Therefore the
choice about the DiffServ macro class/classes to be
splitted into QoS classes, is a network provider de-
cision: it depends on the provider policies and on
the traffic type. In this work, as better explained in
Section VII, we focus on BE traffic since the dataset
we used is mainly composed of BE traffic.

Intra-L-DiffServ is composed of the same steps
of Inter-L-DiffServ, with two significant differences.
The first one regards the training dataset: it is com-

posed only of low priority packets. The second one
regards the Dimensionality Reduction phase; con-
sidering that there is no difference among packets in
terms of DSCP, it is completely unsupervised: the
algorithm used is the Principal Component Ana-
lysis (PCA) one. The new variables computed by
PCA, referred to as Principal Components, are lin-
ear combinations of the initial variables; PC com-
putation is based on the Covariance matrix, com-
posed of the correlations between all the possible
variables pairs. The new space is obtained from
the eigenvalues and eigenvectors of the Covariance
matrix, ordering the eigenvectors in a decreasing
order with respect to the eigenvalues.

The outcome of Intra-L-DiffServ is the set of sub-
classes related to the initial DiffServ macro class X
(where X can be BE, EF, AF, etc..), simply QoS
sub-classes in the following. In the next section
we provide a resource management solution that
allows to exploit the QoS sub-classes availability to
improve the efficiency of resources utilization.

6 QoS-aware Resource Man-
agement

The resources management in a QoS aware net-
work is based on the differentiation of resources
assignment/access between QoS classes. The re-
sources to be managed are the links bandwidth
and the routers buffers. More in detail, the out-
put links of routers represent the core elements of
the QoS differentiation strategies: the availability
of multiple output buffers, i.e. a queue for each
QoS class, and the definition of a proper schedul-
ing algorithm allow to differentiate the network ser-
vices in terms of bandwidth assignment, end-to-end
delay and packet loss probability.

In this work, we provide a simple yet efficient
mechanism to manage routers buffers so that to
exploit the dynamic Intra-L-DiffServ classification
defined in previous Section. We use the Weighted
Random Early Detection (WRED) solution [20] for
the management of the buffer assigned to the Diff-
Serv macro class “partitioned” by Intra-L-DiffServ.
We implement WRED so that each QoS sub-class
i can be associated to a specific threshold value,
referred to as τi. Considering that the QoS sub-
classes are dynamically computed, the association
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between a QoS sub-class and its threshold varies in
time.

WRED functioning depends on the buffer occu-
pancy, referred to as B0. The queue of BE sub-class
i starts the dropping procedure when the buffer oc-
cupancy reaches threshold τi; more precisely, the
probability of dropping a packet of BE sub-class i
increases linearly from 0, for BO = τi, to 1, for BO

equal to the buffer size.
The outcome of the proposed solution is a ser-

vice differentiation among QoS sub-classes in terms
of packet loss. The QoS sub-classes having lower
thresholds experience a higher packet loss with re-
spect to QoS sub-classes with higher thresholds. In
our case, we propose to implement WRED mech-
anism on a single QoS sub-class; in this way the
losses are concentrated on a limited amount of ses-
sions, i.e. the ones belonging to the selected QoS
sub-class. This idea can be exploited by service
providers to differentiate sessions belonging to the
same DiffServ macroclass: the lower priority ses-
sions of the selected DiffServ macroclass can be
dynamically detected and an improved service, in
terms packet losses, can be provided to higher pri-
ority sessions of the same DiffServ macroclass. The
selection of the QoS sub-class to be marked as low
priority one between the ones detected by Intra-L-
DiffServ remains an operator choice.

Moreover, we consider different threshold values
τi. It is clear that decreasing the threshold value
can lead to a better service differentiation; on the
other side, a low threshold value increases the over-
all packet loss, since BE packets are to be discarded
next, i.e. when the buffer still have available space.
Moving to high values of the threshold reduces the
overall packet loss but it does also reduce the ser-
vice differentiation among BE sub-classes.

It is important to remark that our WRED based
proposal represent one of many possible solutions
to exploit L-DiffServ classification. Different ap-
proaches, considering more complex buffer man-
agement strategies and advanced scheduling al-
gorithms, can be considered as future directions of
our research work.

7 Numerical results

We numerically evaluate our proposal as follows.
After describing the real dataset we used, we eval-

uate the performance of Inter-L-DiffServ, show-
ing the capability of our solution in detecting the
proper QoS class when new traffic flows are man-
aged by the network. Finally, we evaluate Intra-
L-DiffServ showing how our unsupervised solution
is able to define new QoS sub-classes to improve
network performance. Our code is available at [7].

7.1 Dataset description

The dataset, referred to as MAWI archive [21],
is an ongoing collection of daily Internet traffic
traces captured within the WIDE backbone net-
work (identified by AS 2500). WIDE interconnects
universities and research institutes in Japan to the
Internet, and peers with major Autonomous Sys-
tems. The analysis provided in [22], showed that
traffic crossing WIDE includes both academic and
commercial traffic. Each IP trace is a pcap file
containing 15 minutes of traffic and its size is 20
GB, corresponding to about 200 millions packets.
Traffic traces are anonymized to hide any personal
information, removing application data and scram-
bling IP addresses with the Crypto-PAn Algorithm
[23].

In our analysis, we consider traces of multiple
days across multiple weeks. The traffic traces
are captured at samplepoint-G, that monitors a
10 Gbps link connecting WIDE network with a peer
AS. We work on the period from Apr. 10, 2019 to
May 10, 2019; for that period MAWI provides file
traces for a single day of the week.

In the traffic analysis, we handle only IPv4 pack-
ets. For each trace we consider as training dataset
the inial part of the trace, corresponding to 10 Mil-
lion Packets 2; then, the classification is performed
on the last 200,000 packets of the daily-trace.

Observing the DSCP of packets in our dataset,
we decided to modify the recommended DiffServ
macro classes [6] in the following way:

• adding a new DiffServ macro class, i.e. the
Scavanger one, used to mark a not negligible
number of packets in our trace; Scavanger class
is used by network provider to identify services
with a lower priority than BE class (in some
enterprises, applications such as music down-
load are marked with Scavanger label);

2This is essentially a computing resource constraint
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• renaming the CS macro class as Network and
Internetwork Control (NIC) class, since no
other CS classes are present in our dataset.

7.2 Inter-L-DiffServ results

We compare the Inter-L-DiffServ classification out-
come to the DiffServ classification one. The Diff-
Serv classification is available in the dataset since
each packet is marked with its DSCP. As already
described before, the training dataset is composed
of an initial part of the trace, while the last 200
thousand packets represent the testing dataset. To
provide a meaningful evaluation, we only focus on
new sessions in the training part, i.e. packets be-
longing to sessions not already present in the train-
ing dataset: in this way, the capability of Inter-L-
DiffServ to apply learned rules to new traffic ses-
sions is really investigated.

In Figure 3 we report the confusion matrices
for four different days, focusing on DiffServ macro
classes (we group our QoS sub-classes in the related
DiffServ macro class). The confusion matrix asso-
ciates to each DiffServ macro class (True label in
the figure) the true positive rate, i.e. the percent-
age of packets assigned to a specific QoS class by
our algorithm (Predicted label). A first important
observable outcome is that Inter-L-DiffServ is able
to properly detect BE traffic: the true positive rate
is always higher than 80%; moreover, this value in-
creases to 94% if we also considered the Scavanger
class, i.e. traffic with lower priority than BE. An-
other aspect regards the low performance related to
high priority traffic. Looking at AF and EF QoS
classes, our solution has high true positive rate in
some days (Figure 3(a)), while it has low ones in
different days (AF for Figure 3(c)).

To better understand the low accuracy in classi-
fying high priority traffic, we performed a detailed
characterization of AF and EF traffic in our data-
set. This outcome of this evaluation was unex-
pected: in some cases, AF/EF packets belonging
to the same session (same IP source/destination
addresses, source/destination ports and protocol)
have a different QoS classification. The observed
behavior can be the consequence of extra traffic
generated by a specific high priority customer/ser-
vice, that overcomes the allowable AF/EF traffic
agreed and then receives a lower priority treatment.
The previous outcome suggests that the network

operator performs high priority traffic classification
following commercial rules that cannot be inferred
from packet header fields. As a consequence, in
many cases Inter-L-DiffServ fails in detecting the
classification rules behind the DSCP assignment for
high priority traffic.

The results obtained with Inter-L-DiffServ are
compared with a different traffic classification al-
gorithm, referred to as Abacus [15]. With respect
to our solution, Abacus acts on session level inform-
ation, i.e. Netflow data, and it also considers IP
addresses and packets/bytes number as classifica-
tion features. In other words, Abacus has a greater
action space, taking into account additional fea-
tures with respect to Inter-L-DiffServ, and cannot
be implemented online at edge routers, since ses-
sion related features (packets/byte count) must be
computed on the overall set of packets of the same
session. For this reason, we considered Abacus as
a benchmark for Inter-L-DiffServ. The results of
Abacus for the same traces of Inter-L-DiffServ are
reported in Figure 4. Besides the higher number of
features evaluated and the possibility of classifying
considering the flow level information, the results
obtained by Abacus are in line with the ones ob-
tained by Inter-L-DiffServ : i) best effort traffic is
detected with a good accuracy, even if it is lower
with respect to Inter-L-DiffServ , while ii) high pri-
ority traffic shows a different classification accur-
acy according to the PHB: for the AF traffic, we
can observe a very poor performance, while for the
EF traffic Abacus is able to obtain an accuracy
greater than or equal to 95%. The difference in
EF accuracy between Abacus and Inter-L-DiffServ
is due to two main reasons. Firstly, performing a
deeper investigation on EF traffic, we found that it
is characterized by flows generating a limited num-
ber of packets. Abacus is able to better classify
EF traffic since it exploits the amount of packet-
s/bytes generated by the flow as classification fea-
ture. A second aspect is a consequence of data pre-
processing for Abacus: the different DiffServ clas-
sification of AF/EF packets of the same session,
discussed previously. Considering that Abacus is
a session-based classification, we removed from the
input data all sessions having packets with more
than a unique DSCP: in this way the Abacus per-
formance reported in Figure 4 is not affected by the
”unusual” multiple classification of a session per-
formed by network operators, that degrades Inter-
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(a) 10 April 2020. (b) 17 April 2020.

(c) 1 May 2020. (d) 8 May 2020.

Figure 3: Confusion Matrices related to Inter-L-DiffServ are reported for four different days. The
obtained QoS class (Predicted label) is compared with DiffServ class (True label)
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Figure 4: Confusion Matrices related to Abacus [15] are reported for four different days. The obtained
QoS class (Predicted label) is compared with DiffServ class (True label).
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L-DiffServ performance. Anyway, the results ob-
tained confirm that such dynamic classification pro-
cedures have poor performance in detecting high
priority traffic due to the intrinsic nature of the
classification strategy performed by network oper-
ators.

A second analysis regards the capability of
Inter-L-DiffServ to dynamically adapt to network
changes. In Figure 5 we report the number of QoS
sub-classes computed by Inter-L-DiffServ in five
different days. We show both the total number
of QoS sub-classes and the number of sub-classes
for each DiffServ macro class. Figure 5 shows that
Inter-L-DiffServ is able to dynamically change the
classification outcome following the traffic features:
the number of total sub-classes vary from 5 to 25,
while the number of BE sub-classes varies from 1
to 7 in five different days. This result represents
also a confirmation of our intuition that analyzing
a “few header values” it is possible to adapt QoS
classification to traffic features.

The final outcome of the Inter-L-DiffServ per-
formance evaluation is that our solution has the
capability of characterizing low priority packets fea-
tures in a dynamic way. For this reason we decided
to focus our attention only on BE traffic, which
represents also the great part of ISP traffic.

7.3 Intra-L-DiffServ results

The characterization of Intra-L-DiffServ perform-
ance is based on two different aspects: i) the eval-
uation of the classification outcome, i.e. the QoS
sub-classes detected, and ii) the use of WRED buf-
fer management mechanism to reduce the number
of traffic sessions affected by packet losses. Con-
sidering that the traffic traces analyzed are mainly
composed by BE traffic (more than 90% of packets),
we decided to implement Intra-L-DiffServ on BE
class: in this way, we are splitting the BE macro-
class in BE sub-classes.

7.3.1 BE sub-classes evaluation

It is important to remark that Intra-L-DiffServ
is based on a different Dimensionality Reduction
algorithm (PCA), with respect to the Inter-L-
DiffServ one (LDA). For this reason, the outcome
of Intra-L-DiffServ differs than the one of Inter-
L-DiffServ in terms of BE sub-classes detected.

In Table 2, we report the number of BE sub-
classes computed by Intra-L-DiffServ and Inter-
L-DiffServ, respectively. It is clear that Intra-L-
DiffServ provides a more granular classification,
detecting always more BE sub-classes than Inter-
L-DiffServ. The reason is that Intra-L-DiffServ
works only with BE traffic with no need of detect-
ing high priority clusters, and then the BE classi-
fication procedure is more accurate. A further out-
come is that the classification outcome of Intra-L-
DiffServ changes over time: once again we proved
that traffic QoS features are not static and that our
solution is able to adapt to their variability.

Table 2: Number of BE sub-classes for Intra-L-
DiffServ and Inter-L-DiffServ.

# BE sub-classes
Day Intra-L-DiffServ Inter-L-DiffServ
10-th April 4 1
17-th April 8 4
24-th April 9 4
1-th May 10 6
8-th May 10 7

To provide a more accurate evaluation, we fo-
cus on the obtained BE sub-classes, showing their
distinctive features. In Tables 3 and 4 the BE sub-
classes defined for the 10th April and 17th April are
reported, respectively. Looking at the features de-
scription, it is clear that some BE sub-classes are
present in both days: for instance, BE 0 sub-class
characterized by packets having protocol number
equal to 1 or to 50. At the same time, the clas-
sification outcome related to the 17th April trace
highlights the presence of new BE sub-classes, such
as BE 3 characterized by source port 53 and pro-
tocol 17.

Table 3: BE sub-classes for the 10-th April trace

BE sub-class Feature Description

BE 0 Protocol 1, Protocol 50

BE 1 Src Port 443 , Src Port 80

BE 2 Dst Port 443 , Dst Port 80

BE 3 Src Port 22 , Dst Port 22
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Figure 5: Number of QoS sub-classes computed by Inter-L-DiffServ in five different days.

Table 4: BE sub-classes for the 17.th April trace

BE sub-class Feature Description

BE 0 Protocol 1, Protocol 50

BE 1 Src Port 53 , Protocol 6

BE 2 Src Port 80

BE 3 Src Port 53 , Protocol 17

BE 4 Dst Port 443 , Protocol 6

BE 5 Src Port 443, Dst Port 443 , Protocol 17

BE 6 Src Port 443, Protocol 6

BE 7 Dst Port 80

7.3.2 AQM solutions based on Intra-L-
DiffServ

The second Intra-L-DiffServ evaluation aspect re-
gards the possibility of improving network perform-
ance exploiting BE sub-classes differentiation. The
aim of our WRED modified solution is to exploit
the BE sub-classification to reduce the number of
session affected by packet losses due to buffer over-
flow. In particular, as described in previous Sec-

tion, a specific BE sub-class is selected and a spe-
cific WRED threshold τ is associated to it; for all
the remaining BE sub-classes, the buffer is man-
aged using a DropTail approach. The criterion to
select the BE sub-class with WRED management
can be considered as a service provider strategic
decision. Looking at the different BE sub-classes,
the one having “lower importance” can be detec-
ted by applying a customized policy: it could be
the BE sub-class where applications with very low
priority are present, or the BE sub-class with a lim-
ited amount of traffic. In our case we select as BE
sub-class with WRED management the one having
the lower number of sessions: in this way, we try
to minimize the number of sessions impacted by
packet losses.

To evaluate packet losses, we simulate the net-
work scenario using an events-based simulator we
have developed; we made the code available at [7].
The simulator implements the WRED mechanism
and allows to simulate the traffic on the basis of the
MAWI traces. The aim of the simulation is to char-
acterize network performance in terms of packet
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losses. More precisely, we evaluate the number of
traffic sessions affected by packet losses (a session
is affected by packet losses if at least one packets
is lost). Our solution is compared with the Diff-
Serv one, where the BE traffic buffer is managed
with a classical DropTail mechanism with no BE
sub-classes. To take into account also high prior-
ity packets, we assign network resources to AF, EF
and NIC traffic on the basis of traffic trace values
(using a Linear Regression model), while the re-
maining resources are available for BE traffic.

To highlight the improvements of Intra-L-
DiffServ with respect to standard DiffServ, we
defined a generic parameter ∆x as follows:

∆x =
n′x − nx
nx

(1)

where n′x and nx represent a specific perform-
ance parameter of Intra-L-DiffServ and DiffServ
respectively.

Session-level evaluation. The first evaluation
reported in Figure 6 regards the number of ses-
sions affected by losses for DiffServ and Intra-L-
DiffServ when different WRED thresholds (τ) are
used for the selected low priority BE sub-class.
Starting from Eq. (1), we define ∆1, where n′1 and
n1 are the number of sessions affected by packet
losses with Intra-L-DiffServ and DiffServ, respect-
ively. ∆1 is reported as a percentage value in Fig-
ure 6. Given the previous definition, negative val-
ues for ∆1 represent an improvement for Intra-L-
DiffServ, i.e. our solution reduces the number of
traffic sessions affected by packet losses. Figure 6
shows that Intra-L-DiffServ outperforms DiffServ
in almost all cases: the number of affected sessions
decrease up to 40%. Only for two days, when the
τ is equal to 0.8, Intra-L-DiffServ experiences an
increase in the number of sessions affected. This
behavior is due to an early dropping of packets
in unnecessary cases: packets of the selected BE
sub-class are discarded when the buffer exceed the
0.8 threshold even if the buffer occupancy does not
reach the buffer size value; in other words, when fix-
ing the WRED threshold to a low value, given the
traffic behavior, unnecessary drops could be exper-
ienced. A similar situation can be seen looking at
∆1 behavior with respect to τ in the different days:
i) in three days, increasing τ leads to a perform-
ance improvement reduction (i.e. ∆1 increases),

while in the remaining ones, increasing τ leads to
a performance improvement increase. When traffic
is high, i.e. the buffer occupancy does reach the
buffer size, having a low WRED threshold allows
to improve service differentiation with no perform-
ance losses, i.e. unnecessary dropping is not exper-
ienced; on the other side, when buffer occupancy
is not reaching the buffer size, performing packet
dropping with a lower buffer occupancy leads to
unnecessary losses. Anyway, when τ ≥ 0.9 a per-
formance improvement with respect to DiffServ is
always obtained.

BE sub-classes level evaluation. A more de-
tailed evaluation of packet loss distribution among
BE sub-classes is reported in Figure 7, where the
percentage of BE sub-classes sessions affected by
packet losses is reported for DiffServ and for Intra-
L-DiffServ with different τ values. As expected,
Intra-L-DiffServ is able to concentrate losses on
a lower number of BE-subclasses with respect to
DiffServ. More precisely, Intra-L-DiffServ results
show two different outcomes: i) in Figures 7(a) and
7(b) the losses are concentrated on a single BE-
subclass, the one managed with WRED; in ii) Fig-
ures 7(c) and 7(d) losses are experienced in three
BE-subclasses. Anyway, also in the last case, the
BE sub-class implementing the WRED mechanism
is the one having the highest packet loss, and the
remaining BE sub-classes affected by packet loss
have better performance with respect to the clas-
sical DiffServ approach. Thus, we can conclude
that Intra-L-DiffServ allows to focus the losses on
a restricted number of BE sub-classes. Moreover,
the use of lower τ values improves the service dif-
ferentiation, i.e. losses are mainly experienced in
the selected BE sub-class with low priority.

Comparing the results of Figure 7 with the ones
reported in Figure 6 about the number of af-
fected sessions, it is clear that a balance must be
chosen between lower threshold values, allowing
for a greater service differentiation but leading to
higher losses, and higher ones, reducing the service
differentiation but improving network performance
in terms of packet losses. In our case case, choos-
ing a threshold value equal to 95% seems a good
compromise, even if it cannot be considered as a
general rule: the threshold value setting is strictly
related to the traffic features and to the network
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Figure 6: Comparison between the number of sessions affected by packet losses in Intra-L-DiffServ and
in DiffServ with RED.

operator policies.

Focusing on the 1-st May trace (similar results
are obtained for different days), we report in Fig-
ure 8 the evaluation of session-level losses of se-
lected BE sub-classes. More precisely, Figure 8
shows for sub-classes BE 8 (Figure 8(a)), BE 0
(Figure 8(b)), BE 4 (Figure 8(c)) and BE 1 (Fig-
ure 8(d)), the distribution of losses among sessions
(in percentage): the losses for each sessions are
computed as the ratio among the number of pack-
ets lost and the overall number of packets gener-
ated by the session. The results are reported for
two WRED threshold values, i.e. τ = 80% and
τ = 90%, and for standard DiffServ. Figure 8(a)
shows the packet loss distribution for the low pri-
ority sub-class BE 8. The obtained results show a
similar behavior for the three cases: there is a neg-
ligible higher number of session with lower packet
loss for DiffServ with respect to Intra-L-DiffServ ;
the number of sessions with higher losses increases
moving from τ = 90% to τ = 80%. This result
is a consequence of the Intra-L-DiffServ behavior,
that tries to focus losses in BE 8 sub-class and
is able to increase QoS differentiation with lower

WRED threshold values. Looking at different BE
sub-classes, in Figures 8(b), 8(c) and 8(d), the dif-
ference between Intra-L-DiffServ and DiffServ is
considerable. Intra-L-DiffServ is able to reduce the
number of sessions experiencing a significant packet
loss, i.e. more than 20% of packet loss, with respect
to DiffServ: the percentage reduction is about 40%,
85% and 95% for sub-classes BE 0 (8(b)), BE 4
(Figure 8(c)) and BE 1 (Figure 8(d)), respectively.
Regarding the impact of the WRED threshold, de-
creasing τ allows for better performance in all BE
sub-classes except for the low priority one, as ex-
pected.

Packet loss and WRED threshold. As a final
aspect, we also show in Figure 9 the overall packet
loss in DiffServ and in Intra-L-DiffServ with dif-
ferent WRED threshold values. Starting from Eq.
(1), we define the parameter ∆2, where n′2 and n2
are the number of packets lost when using Intra-L-
DiffServ and DiffServ, respectively. Figure 9 high-
lights that the difference in terms of packets lost
is negligible for τ = 95% and τ = 99%. On the
other side, ∆2 can increase from 3% to 11% when
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(a) Trace 10 April 2019. (b) Trace 17 April 2019.

(c) Trace 1 May 2019. (d) Trace 8 May 2019.

Figure 7: Distribution of losses between BE sub-classes in four different days.
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(a) Sub-class BE 8 - 1 May 2019.
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(b) Sub-class BE 0 - 1 May 2019.
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(c) Sub-class BE 4 - 1 May 2019.
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(d) Sub-class BE 1 - 1 May 2019.

Figure 8: Distribution of packet losses at session level for BE-L-DiffServ and Diffserv.
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τ = 90% and from 12% to 30% when τ = 80%.
This is a consequence, as explained above, of an
early packets drop in WRED queue: a trade-off
between service differentiation and packet losses
must be carefully evaluated considering the traffic
behavior. We can conclude that the service differ-
entiation provided by Intra-L-DiffServ with respect
to the number of sessions affected by packet losses is
not leading to an overall performance degradation
if WRED threshold is properly set. As a general
consideration, the network operator should set the
WRED threshold to a value not lower than 90%,
avoiding a significant packet loss increase, choosing
low values (close to 90%) or higher ones (close to
99%) if service differentiation should be enforced or
not, respectively.

Comparison with CHOKe mechanism. To
show the flexibility of our Intra-L-DiffServ solution
in providing an efficient sub-classification of BE
traffic, we consider an additional active queue man-
agement mechanism, i.e. CHOKe [24]. CHOKe im-
proves WRED mechanism by differently penalizing
unresponsive sessions, i.e. sessions not modifying
their rate when packet losses occur. The penalty
consists in the increase of the dropping rate for
these sessions. More in detail, when the buffer oc-
cupancy is greater than a pre-fixed threshold, an
arriving packet and a queued packet randomly se-
lected are both discarded if they belong to the same
session. We propose to use CHOKe only for the BE
sub-class with lower priority.

The comparison between DiffServ and Intra-L-
DiffServ with CHOKe is reported in Figures 10 and
11. In Figure 10 the number of sessions affected
by packet losses with Intra-L-DiffServ and basic
DiffServ is shown for different traces. Comparing
the results with the ones obtained when WRED is
used (Figure 6), it is clear that a similar behavior
is present. Intra-L-DiffServ allows for a reduction
of sessions affected by packet loss in quite all cases:
only for two traces, when the CHOKe threshold is
equal to 0.8, a slight performance degradation is
visible. In all other cases, the number of affected
sessions is decreased up to 45%, showing that Intra-
L-DiffServ classification can be efficiently exploited
by CHOKe to provide service differentiation.

In Figure 11 the overall number of packets lost
in Intra-L-DiffServ with CHOKe with respect to

DiffServ is shown. The obtained results are in line
with the same ones obtained with WRED (Fig-
ure 9). The previous analysis highlights the cap-
ability of Intra-L-DiffServ in detecting a dynamic
sub-classification of BE traffic to be exploited by
a general active queue management strategy to
provide an effective traffic differentiation in Diff-
Serv networks.

8 Conclusions

In this work, we provide a Machine Learning based
solution for the classification of incoming traffic in
a service provider network supporting QoS differ-
entiation. We defined the L-DiffServ framework
composed of two engines: i) Inter-L-DiffServ, an
algorithm able to learn an existing DiffServ classi-
fication and replicate it properly, and ii) Intra-L-
DiffServ, providing a novel classification of a selec-
ted DiffServ macro class. In both cases, we show
that the use of only three header fields (Protocol,
Source Port, Destination port) as features is suffi-
cient for the classification. We combine two prepro-
cessing steps before feeding data into our Machine
Learning solution: i) an oversampling strategy, to
balance the training dataset, and ii) a dimension-
ality reduction algorithm, to reduce the problem
complexity. Once obtained the new dataset, we
evaluate the clustering solution to detect QoS sub-
classes. An outcome of our work is that using our
framework it is possible to provide a dynamic and
thinner classification of best effort traffic following
traffic changes. Moreover, we show how hard it is
to classify high priority packets, mainly due to the
limitation of header fields as algorithm features.

We show that the method we propose to enhance
the QoS classification can be exploited to improve
network resource utilization. We defined two QoS
aware active queue management solutions: the first
one is based on WRED, the second one on CHOKe;
in both cases, we show that it is possible to reduce
the number of sessions affected by packet losses
with respect to classical DiffServ classification. The
definition of novel resource management strategies
based on L-DiffServ represents the next step of
our research activity.
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Figure 9: Comparison between Intra-L-DiffServ and DiffServ with WRED in terms of overall packets
lost.
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Figure 10: Comparison between the number of sessions affected by packet losses in Intra-L-DiffServ and
in DiffServ with CHOKe.
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Figure 11: Comparison between Intra-L-DiffServ and DiffServ with CHOKe in terms of overall packets
lost.
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