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Abstract Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by 
restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other 
greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated 
Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of 
these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 
simulations spanning both initial condition and model structural uncertainty. We find model consensus 
on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in 
surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 
2020–2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer 
scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air 
quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

Plain Language Summary Many nations responded to the COVID-19 pandemic by 
restricting travel and other activities during 2020. This caused a temporary reduction in emissions of 
CO2 and other pollutants. We compare results from twelve Earth system models to see if the emissions 
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1. Introduction
1.1. Impact of COVID-19 Lockdown on Emissions

The corona virus disease-2019 (COVID-19) pandemic led to widespread measures restricting travel, in-
dustrial, and commercial activity during 2020. The effects of these changes in socioeconomic activity on 
atmospheric composition have been widely studied including estimates of emissions and concentrations of 
species that directly or indirectly affect climate.

The impacts of COVID-19 measures on long-lived greenhouse gases have been inferred from both bot-
tom-up estimates using activity data and top-down analysis of atmospheric observations. Bottom-up 
estimates using sector activity have estimated global CO2 emissions reductions of 8.8% during the first 
5 months of 2020 (Liu et al.,  2020) and annual reductions from 4% to 7% (Le Quéré et al., 2020). Top-
down assessments have found some indications of a decrease in CO2 growth rate during 2020 (Buchwitz 
et al., 2020), with examples of substantial local and regional CO2 and methane (CH4) emissions reductions 
inferred from surface observations (Tohjima et al., 2020; Turner et al., 2020). However, existing satellite 
products could not provide the required coverage to reliably detect changes in CO2 column densities at the 
magnitude expected to be occurring in 2020 (Buchwitz et al., 2020; Chevallier et al., 2020). Expected growth 
rates in atmospheric CO2 fractions vary too much from year to year due to internal climate variability (Betts 
et al., 2016; Jones and Cox, 2005) for the effects of emission reductions on the order of 8% to be clearly 
detected from observations of CO2 column densities (Sussmann & Rettinger, 2020; Tohjima et al., 2020). 
The long lifetime of CO2, and to a lesser extent CH4, means that the small impact of emissions reductions 
is likely to be long-lived, and may still exert a non-negligible climate impact on decadal timescales (Forster 
et al., 2020).

The largest changes in observed composition attributed to COVID-19 restrictions were for nitrogen dioxide 
(NO2), with concentration reductions at both national- and city-scales typically on the order of 20%–60% 
in China, India, Europe, and the United States (Goldberg et al., 2020; Keller et al., 2020; Menut et al., 2020; 
Miyazaki et al., 2020; Ordóñez et al., 2020; Venter et al., 2020; Zhao et al., 2020). The NO2 decreases have 
been attributed largely to changes in the transport sector (Bao & Zhang, 2020; Diamond & Wood, 2020; 
Lian et  al.,  2020; Venter et  al.,  2020). The rapid changes in emissions and complex dynamics of short-
lived pollutants have complex and non-uniform implications for climate. In areas where background NOx 
concentrations were high, reduced NOx emissions led to increased tropospheric ozone (O3) concentrations 
in many regions and cities (Keller et al., 2020; Le et al., 2020; Lian, Huang, Huang, et al., 2020; Ordóñez 
et al., 2020; Sicard et al., 2020; Venter et al., 2020). Elsewhere, tropospheric ozone may have decreased dur-
ing lockdowns leading to short-term estimated changes of radiative forcing by −33 to −78 m Wm-2 (Weber 
et al., 2020).

Some studies report substantial decreases in particulate matter (PM) on the order of 10%–30% (Filon-
chyk et al., 2020; Le et al., 2020; Silver et al., 2020; Venter et al., 2020; Xu et al., 2020), but analyses ac-
counting for long-term trends generally found no lockdown impacts on aerosol optical depth (AOD) or 
PM concentrations (Diamond & Wood, 2020; Field et al., 2020; Zangari et al., 2020). In some regions, PM 
concentrations increased as a result of altered dust or biomass burning emissions or as a consequence 
of changes in emissions and meteorology (Le et al., 2020; Venter et al., 2020). Notably, northern Chi-
na experienced an increase in haze during the spring lockdown due to enhanced formation of ozone, 
which, in combination with favorable meteorological conditions and changes in heterogeneous chem-
istry, contributed to enhanced secondary aerosol formation (Chang et al., 2020; Le et al., 2020; Wang 
et al., 2020b).
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reductions affected climate. These twelve models performed over 300 experiments using multiple 
initial-conditions. We find a consensus that aerosol amounts were reduced, especially over southern and 
eastern Asia, during 2020-2024. This led to increases in solar radiation reaching the surface in this region. 
However, we could not detect any associated impact on temperature or rainfall. We recommend more 
analyses on regional scales. We also suggest that analysis of extreme weather and air quality would be 
useful to test the impact on climate of emission reductions due to COVID-19.
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1.2. Impact of Emissions Reductions on Climate

The reduction in emissions is expected to have regional impacts on atmospheric composition, and therefore 
could have implications for weather and climate. Different species have very different lifetimes from hours-
to-days for aerosols, to decades or longer for long-lived greenhouse gases, and very different spatial scales, 
with some being very localized and others globally well-mixed.

For example, Yang et al. (2020) examined climate responses to aerosol emission reductions during the COV-
ID-19 lockdown, back-to-work and post-lockdown stages throughout the year 2020 based on CESM1 model 
simulations. They reported that an anomalous surface warming appeared over the Northern Hemisphere 
continents due to the fast climate response to aerosol reductions. Forster et al. (2020) developed a two-year 
COVID-19 emissions reduction scenario for long- and short-lived species based on mobility data and the 
bottom-up approach of Le Quéré et al. (2020) for some sectors and then assumed a recovery over the subse-
quent two years. Using the FaIR climate emulator, they simulated the effect of these emissions reductions 
and found a rapid short-term warming due to reduced aerosols, which was offset by a slightly slower, but 
also near-term cooling due to reduced tropospheric ozone. On longer timescales, well-mixed GHGs, espe-
cially CO2 became important, and their simulations showed that the net effect of these emissions changes 
by 2030 was negligible: a global cooling of about 0.01 ± 0.005°C.

However, because FaIR cannot capture regional climate effects, internal variability or complex interactions 
of atmospheric composition and biogeochemistry, there remain unanswered questions about the possible 
climatic impact of emissions reductions on regional air quality and climate. These are beginning to be ad-
dressed by single model studies (e.g., Yang et al., 2020 analyze an atmospheric model with prescribed sea 
surface temperature), but would benefit greatly from being analyzed across an ensemble of Earth system 
models (ESMs) run under a common protocol. Hence it was decided that this scenario would form the basis 
of a multi-Earth system model intercomparison project (MIP). This paper presents an initial analysis of the 
first results coming from this new activity, called CovidMIP. The emissions estimates and modeling proto-
col used are described in Section 2, results shown in Section 3 and discussed in Section 4 in the context of 
ongoing climate change.

2. Materials and Methods
2.1. CovidMIP Protocol

The emissions estimates assembled by Forster et al. (2020) were collated and gridded, and made available in 
Inputs4MIPs data format for use by CMIP Earth system models (Lamboll et al., 2020). A modeling protocol 
was agreed, and is incorporated into DAMIP (the Detection and Attribution MIP; Gillett et al., 2016), which 
is also described in Lamboll et al. (2020), but the main points are noted here for convenience.

Because any climate signal due to COVID-19-induced emissions reductions was considered likely to be 
small, it is advantageous to carry out large initial-condition ensembles which have been shown to enable 
detection of even small regional climate signals (e.g., Banerjee et al., 2020). But cognizant of the computa-
tional cost and time required for producing such large ensembles, a pragmatic recommendation was made 
that model groups perform at least 10 initial-condition ensemble members. This was hoped to maximize the 
number of modeling groups participating but still produce enough members to enable meaningful analysis.

The protocol uses the SSP2-4.5 scenario (O'Neill et al., 2016) as a baseline against which to apply the emis-
sions reductions. Simulations are run parallel to ssp245, but branching from that simulation on January 1, 
2020 and following the new forcing in line with emissions reductions. The results will be published on the 
CMIP6 archive (Earth System Grid Federation) under experiment name ssp245-covid. Forcing is provided 
as concentrations of greenhouse gases and emissions of aerosols and aerosol and ozone precursors. For 
models with interactive chemistry, ozone can be simulated otherwise it has been provided as concentra-
tions. Similarly, models can simulate aerosols or they can be represented with the MACv2-SP parametriza-
tion (Fiedler et al., 2020; Stevens et al., 2017).

In this manuscript we focus on the immediate term impact (from 2020 to 2024) of the “two year blip” sce-
nario under which emissions revert to the baseline levels by the end of 2022. In addition to this, Forster 
et al. (2020) created a set of scenarios spanning possible future economic recovery strategies: a reduction in 

JONES ET AL.

10.1029/2020GL091883

3 of 12



Geophysical Research Letters

anthropogenic CO2 emissions post-2020 consistent with enhanced investment in environmentally friendly 
technologies (moderate or strong “green stimulus”), no effect after 2022 (continuation of “two year blip” 
studied here with emissions reverting to ssp245) or an increase in anthropogenic CO2 emissions relative to 
ssp245 after 2020 consistent with an investment in more traditional fossil-fuel based energy production (or 
“fossil-fueled recovery”). All of these scenarios have become part of the CMIP6 set of experiments, under 
the detection and attribution activity (DAMIP: Gillett et al., 2016).

2.2. Participating Earth System Models

The protocol is open to all models participating in CMIP6 and to date 12 models have provided data for 
analysis (Table 1). A particular value of a multi-model ensemble is being able to incorporate different levels 
of process complexity, but this also brings challenges of interpreting results.

Some models prescribe aerosols and ozone, either using their own climatology or MACv2-SP and/or pre-
scribed ozone 3D concentrations taken from the OsloCTM3 chemical transport model (Lamboll et al., 2020). 
Others may simulate either aerosols or ozone interactively in response to their primary or secondary emis-
sions. The MPI -ESM1-2-LR model simulated interactive CO2 while the other models used prescribed CO2 
concentrations. Models have differing complexity and species richness of aerosols, representing both natu-
ral and anthropogenic species such as sulfates, black carbon, organic carbon, sea-salt, and mineral-dust, but 
many still lack representation of nitrate aerosols.

In terms of biogeochemistry many ESMs now represent land and marine ecosystems and the carbon cycle 
(Boysen et al., 2020; Séférian et al., 2020; Thornhill et al., 2020). On the near-term studied here, the carbon 
cycle is unlikely to have a large effect on climate but impacts of emissions reductions may show up in terms 
of changes in carbon fluxes, stores and partitioning across realms of the Earth system.

To generate initial conditions some models (ACCESS-ESM1-5, CanESM5, EC-Earth3, MIROC-ES2L, MPI-
ESM1-2-LR, UKESM1-0-LL) drew on existing ssp245 simulations which followed on from initial-condition 
ensembles of the CMIP6 historical simulations. Others perturbed conditions at the end of the historical 
period (CESM1, E3SM-1-1, GISS-E2-1-G), or mixed the two approaches by inflating existing ensembles with 
additional perturbations applied (MRI-ESM2-0, CNRM-ESM2-1, NorESM2-LM) or by running on different 
super-computers (NorESM2-LM).

Future studies will be able to take into account the model complexity and how this affects the simulated 
results. For example, are changes in atmospheric circulation or surface climate affected differently between 
models with simulated and prescribed ozone and aerosols? How does the model treatment of interactions 
between atmospheric composition (such as fraction of diffuse light or surface ozone) affect vegetation pro-
ductivity and carbon storage? In this analysis such considerations are out of scope and we give an overview 
on each model's results for the climate response for 2020–2024. The reader is referred to Table 1, which doc-
uments the spatial resolution and the process complexity of each participating model as well as the number 
of ensemble members utilized in this study.

3. Results
3.1. Indicators of Global Change

Our analysis draws on different sized ensembles from 12 ESMs. Throughout, we base analysis on ensemble 
mean anomalies from each model, calculated from a pair-wise difference between simulations with COV-
ID-19-related emissions reductions (“ssp245-covid”) and simulations using the standard, baseline SSP2-4.5 
scenario (“ssp245”).

Globally, for 2020, all models show a reduction in aerosol optical depth (at 550 nm) in their ensemble mean 
with seven out of 11 models which reported this variable having a reduction greater than one standard devi-
ation (Figure 1). In 2021, the AOD anomalies of 10 out of 11 models remain negative with ACCESS-ESM1-5 
showing near-zero deviation. From 2022 onwards there is no robust global signal in AOD as emissions 
reductions in this simulation recover to levels in the baseline scenario and aerosol amounts quickly recover 
too.
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This behavior is reflected in the amount of solar radiation reaching the surface, which is generally simu-
lated to have increased, with all models (of the 11 for whom this variable was available for this analysis) 
having a positive anomaly in downwards shortwave (SW) radiation for both 2020 and 2021 (Figure 1, panel 
b). Although only MRI-ESM2-0 simulated an ensemble mean global increase greater than 1 standard de-
viation. As for AOD, the anomaly quickly recovers and becomes very small from 2022 onwards. We have 
not yet investigated the extent to which surface shortwave is directly affected by aerosol absorption or by 
aerosol-induced changes in cloud cover. Future studies will also assess impacts and implications of aero-
sol-cloud interactions in driving the changes seen here.
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Model name Reference
Atmosphere 
resolution a

Ocean 
resolution a

ssp245-
covid 

ensemble 
members

Aerosol 
processes b Ozone forcing

Aerosol 
forcing

ACCESS-ESM1-5 Ziehn et al. (2020) 250 km (N96), 
L38

100 km, L50 30 5; CLASSIC interactive

CanESM5 Swart et al. (2019) 500 km (T63), 
L49

100 km, L45 50 5; Parameterized 
using a prognostic 
scheme for bulk 
concentrations

interactive

CESM1 Hurrell et al. (2013) 250 km 
(1.9 × 2.5), 
L30

100 km (gx1v6), 
L60

10 6; MAM4 interactive

CNRM-ESM2-1 Séférian et al. (2019) 250 km 
(TL127,1.4°), 
L91

100 km 
(eORCA1), 
L75

100 5; TACTIC (Michou 
et al., 2020)

interactive

E3SM-1-1 Burrows et al. (2020) 100 km (NE30), 
L72

60–30 km, L100 10 7; MAM4 (Wang 
et al., 2020a)

interactive

EC-Earth3 (Döscher, R. 
et al., 2021)

100 km (T255), 
L91

100 km 
(eORCA1), 
L75

30 n/a MACv2-SP 
(Fiedler 
et al., 2020)

MIROC-ES2L Hajima et al. (2020); 
Kawamiya 
et al. (2020)

500 km (T42), 
L40

100 km 
(360 × 256), 
L63

30 5; SPRINTARS interactive

MPI-ESM1-2-LR Mauritsen 
et al. (2019)

250 km (T63), 
L47

150 km, L40 10 n/a MACv2-SP 
(Fiedler 
et al., 2020)

MRI-ESM2-0 Yukimoto 
et al. (2019); 
Oshima 
et al. (2020)

100 km (TL159, 
1.125°), L80

100 km (tripolar 
1° x 0.3° 
−0.5°), L61

10 5; MASINGAR mk-2r4c interactive

GISS-E2-1-G Kelley et al., 2020; 
Ito et al., 2020; 
Bauer et al., 2020

250 km 
(2 × 2.5°), 
L40

100 km 
(1 × 1.25°), 
L40

10 8; MATRIX interactive

NorESM2-LM Seland et al. (2020); 
Tjiputra 
et al. (2020)

250 km (1.9° x 
2.5°), L32

100 km, L53 10 5; OsloAero6 interactive

UKESM1-0-LL Sellar et al. (2019) 250 km (N96), 
L85

100 km 
(eORCA1), 
L75

16 5; UKCA MODE interactive

ashown as CMIP “nominal resolution” in km, “L” denotes number of vertical levels. Grid name or information provided if available. bnumber of aerosol species, 
and name/description of aerosol sub-model. cThese models used the first version of the ozone fields that had a small bug in the vertical interpolation of the 
ozone perturbation, stretching the ozone perturbation to too high altitudes. The models weres not able to re-run the model simulations with the corrected 
ozone fields. Radiative kernel calculations following Skeie et al. (2020) gave 0.6 mWm-2 stronger total ozone radiative forcing in 2020 for the corrected fields 
compared to the incorrect ozone fields, that are small compared to the total ozone radiative forcing of −37 m Wm-2 for ssp245-covid relative to ssp245 in 2020.

Table 1 
List of Participating Models, Their Main Properties and Number of Ensemble Members Used in This Study
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The impact of this, however, on surface climate at a global scale is very small. Figures 1c and 1d show glob-
ally averaged surface air temperature and precipitation respectively. No model shows any significant change 
in either of these quantities at a global level for any year.

3.2. Patterns of Regional Changes

Figure 2 shows the regional patterns of the changes in aerosol optical depth for each model. It is apparent 
that models agree that the largest response is in Asia, predominantly over India and China where almost 
all models show a marked decrease in aerosols as an average over the 5-year period 2020–2024. Some mod-
els also show some patches of aerosol increases, for example CanESM and E3SM-1-1 over the Himalayan 
region, and MIROC-ES2L over regions of North Africa. Reasons for these changes are not explored further 
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Figure 1. Annual mean, ensemble average output from ESMs. Each panel shows anomalies from the simulations with COVID-19-related emissions reductions 
compared to the baseline SSP2-4.5 simulations (“ssp245-covid” minus “ssp245”). (a) Global aerosol optical depth at 550 nm; (b) downwards SW radiation at 
the surface; (c) Global surface air temperature; (d) Global precipitation. Colored lines show ensemble average results from each model, and paler plumes show 
ensemble spread for each model calculated here as ±1 standard deviation across each model's ensemble. Vertical bars to the left of each panel show each model 
spread (mean ± 1 standard deviation) for the first year, 2020. Each model has performed a different number of ensemble members as listed in Table 1 and 
shown in square brackets in the caption.
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here and we do not yet know if they are caused by changes in anthropogenic or natural sources, such as 
dust, which can be very sensitive to variations in windspeed.

To see if these regional changes in aerosol loading affect regional climate properties, we define a region 
bounded by 60–160° E and 0–50° N which has been chosen subjectively after considering all models to cover 
the main AOD anomalies across models (marked as black boxes in Figure 2). We assess annual changes in 
surface SW radiation, temperature and precipitation in this region. Figure 3 shows a similar response to the 
global metrics shown in Figure 1 but with greater magnitudes of average response. Again, there is a strong 
model agreement of reduced aerosols, with all models agreeing on this in their ensemble mean for 2020 
and seven out of 11 having reductions greater than 1 standard deviation. Averaged across models, global 
AOD reduction in 2020 is −0.0027 ± 0.0012, while in southern and eastern Asia it is −0.0097 ± 0.0034. The 
associated increase in downwards SW radiation is also apparent, and stronger here: globally models show 
an increase of 0.21 ± 0.10 Wm-2 while in southern and eastern Asia it is 0.69 ± 0.31 Wm-2.

Although most models simulate a slight warming signal in this region in their ensemble mean (Figure 3c), 
the magnitude is very small, less than 0.1 C, and in all models smaller than the standard deviation across 
ensemble members (typically of the order 0.2 C).

Outside of this region, models show patchy temperature changes, indicative of random changes, and inter-
nal variability of modes such as NAO or ENSO. This residual signal of internal variability is not eliminated 

JONES ET AL.

10.1029/2020GL091883

7 of 12

Figure 2. Model by model simulated changes in aerosol optical depth (at a wavelength of 550 nm). For each model we plot the ensemble mean response from 
2020–2024 inclusive. Blue colors denote a decrease in AOD. Each model has performed a different number of ensemble members as listed in Table 1 and shown 
in square brackets in the caption. The black box shows the region analyzed in Figure 3.
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in limited ensemble size and demonstrates the weak signal-to-noise ratio (see Figure S1 in Supplementary 
Info). These changes do not appear to be systematic, with some regions exhibiting both apparently strong 
warming and cooling signals in different models. The region of northern East Asia often displays a strong 
temperature signal in the model results, with CESM1 displaying a warming as reported in Yang et al. (2020), 
although that study performed simulations with fixed sea-surface temperatures. GISS-E2-1-G and E3SM-1-
1 also show strong warming patterns here and UKESM1-0-LL, MPI-ESM1-2-LR and CanESM5 some warm-
ing too. But NorESM2-LM shows a strong cooling and ACCESS-ESM1-5, MIROC-ES2L and MRI-ESM2-0 
having mixed signals. Models show marked differences elsewhere e.g. MPI-ESM1-2-LR and MRI-ESM2-0 
have opposite patterns of warming over North America while in South America CanESM5 and UKESM1-0-
LL show a cooling but GISS-E2-1-G and NorESM2-LM show a warming.

When looking at regional patterns of precipitation and surface SW radiation (S.I. Figures S2 and S3) there 
are no robust signals or consistent patterns of change across models. Even the increase in surface SW radi-
ation shown in Figure 3 is very hard to see by eye in the patterns of change, due to the influence of clouds 
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Figure 3. Indicators of change in southern and eastern Asia (defined here as 60–160° E and 0–50°N). As for Figure 1 results are plotted as annual mean 
anomalies, with colored lines denoting ensemble means from each model and gray shading 1-standard deviation for each model. (a) Aerosol optical depth; (b) 
surface downwards shortwave radiation; (c) surface air temperature; (d) precipitation.
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which can easily mask any signal from changes in aerosols. This, and similar incoherent patterns of rainfall 
change, indicate the substantial variability in these quantities and the challenges in detecting robust signals 
of change under conditions of relatively small forcing. Despite a large number of ensembles, it is evident 
that at these smaller regional scales, variability in meteorology prevents robust detection of signals in clouds 
and rainfall.

4. Discussion and Conclusions
Here we have only begun to scratch the surface of the results becoming available from the CovidMIP simu-
lations. We stress that this work has been the result of a very rapid response of the Earth system modeling 
community. It often takes several years to design and perform coordinated MIP experiments, and process 
the data for publication in a community archive. This activity has taken place in only a matter of months. 
This paper is just the very first analysis of initial results and therefore serves only as a first indication of how 
the climate system has responded to the perturbations to emissions in response to the COVID-19 pandemic. 
It is not possible at this stage to analyze all of the responses, nor the processes responsible for changes across 
the whole system. But this study sets the scene and informs priorities for future analysis.

We have shown that the imprint of COVID-19-related changes in societal activity is visible in atmospheric 
composition, notably aerosol optical depth over southern and eastern Asia, and in the amount of solar radi-
ation reaching the planet's surface. Over this most affected region, the 2-years average effect was more than 
0.5 Wm-2. More locally and on shorter timescales it could be substantially higher. However, despite these 
changes in the make-up of the atmosphere, no detectable change in surface temperatures or rainfall could 
be found. We conclude that the emissions reductions were too small in magnitude and time to have a signif-
icant effect on global climate, and that larger, sustained changes on a much longer timescale are required 
in order to have observable effects (Samset et al., 2020; Tebaldi et al, 2020). The CovidMIP protocol will 
be extended to include an additional “four-year blip” simulation so that future work can also consider the 
impact if lockdown restrictions were prolonged or recovery delayed due to new strains of the Coronavirus.

Based on what we have found we recommend further analysis would be fruitful in the following areas:

•  Effective radiative forcing (ERF) response to the emissions perturbations: The global patterns of down-
wards SW radiation anomalies are very noisy in these simulations but the radiation signal would be 
improved in simulations with fixed-SSTs which reduce interannual variability in the climate system and 
allow quantification of the ERF due to the emission changes (Fiedler et al., 2020; Pincus et al., 2016). The 
CovidMIP protocol (Lamboll et al., 2020) defines additional fixed-SST simulations to isolate the effects 
of ozone, aerosols and even separate black carbon, organic carbon and sulfate aerosols. We recommend 
model groups perform these complementary simulations to allow the radiative effects of emissions re-
ductions to be assessed more reliably.

•  Attribution of drivers of climate signals: As part of DAMIP, this activity has a strong interest in performing 
single-forcing simulations to enable understanding of different drivers and causes of the climate chang-
es seen. Large ensembles have been shown to be successful in detecting and attributing changes, for 
example, in recent southern hemisphere circulation changes to stratospheric ozone recovery (Banerjee 
et al., 2020). Similar techniques could be used here to separate the impacts of emissions reductions of 
GHGs and aerosols.

•  Longer term implications of emissions reductions and options for economic recovery: Forster et al. (2020) 
compiled a set of hypothetical recovery scenarios based on moderate or strong green stimulus packages 
or a fossil-fuel stimulus rebound. The climate impacts by 2050 showed that how the world's economy re-
covers after 2020 can have profound impacts on our ability to meet long-term climate goals. Multi-model 
analysis of these simulations will enable clearer understanding of the threats and opportunities arising 
from the current situation.

•  Quantifying changes in extremes: In addition to annual mean changes, the climate response in terms of 
extremes, such as daily maximum or minimum temperatures or daily precipitation rates, may also show 
important signals (Seneviratne & Hauser, 2020).

•  Influence on atmospheric circulation: Studies have found a sensitivity of monsoons to changes in emis-
sions of aerosols (Lau et al., 2017; Li et al., 2016; Meehl et al., 2008; Zhao et al., 2019). Analysis of these 
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changes in a multi-model study may be able to detect if COVID-19-related emissions reductions have 
had a detectable impact on monsoon circulations, especially over Asia.

•  Response and impacts of atmospheric composition: The response of aerosols is detectable in this ensem-
ble, but we have not yet explored the role of other chemically active components of the atmospheric 
composition. Especially, the role of ozone and its response to changes in emissions of precursors, is a key 
components of changes in air quality. Multiple studies have found increases in ozone in populated urban 
areas during lockdown (e.g., Keller et al., 2020), in contrast to a global decrease in tropospheric ozone 
(Weber et al., 2020). This MIP provides an opportunity to shed process-level understanding on these 
changes in a range of models of varying degrees of complexity with regards to atmospheric chemistry.

•  Impact on the global carbon cycle: There is increasing interest in the ability to make predictions from 
one year to the next of changes in atmospheric CO2 (Betts et al., 2016; Fransner et al., 2020; Loven-
duski et al., 2019; Séférian et al., 2018; Spring & Ilyina, 2020). These studies require knowledge of nat-
ural causes of interannual variability, notable from ENSO (Watanabe et al., 2020), but they also require 
knowledge of up to date estimates of anthropogenic CO2 emissions. These are normally expected to vary 
relatively little from year to year (Le Quéré et al., 2018) but expected impacts from COVID-19-related 
emissions reductions allow us to test out ability to forecast this most important metric of climate change, 
and whether external forcing can affect its variability (McKinley et al., 2020).

The SARS-Cov-2 pandemic of 2020 has created one of the biggest health and economic crises of recent 
history, but it also presents a remarkable opportunity to study how the climate system responds to chang-
es in emissions of radiatively active species. From regional air quality to global climate this database of 
ESM outputs will enable advances in our understanding of how the climate system responds to short-term 
perturbations.

Data Availability Statement
This work used JASMIN, the UK's collaborative data analysis environment (http://jasmin.ac.uk, Lawrence 
et al., 2013). The authors are extremely grateful to the help and support of Martin Juckes, Alan Iwi, Ruth 
Petrie, Ag Stephens, Charlotte Pascoe at the Center for Environmental Data Analysis, Science and Tech-
nology Facilities Council, UK who facilitated the data sharing on JASMIN. CESM1 data can be accessed at 
https://zenodo.org/record/4521767. All other model data is published on the CMIP6 archive available via 
the Earth System Grid Federation. https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/
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