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50 affected by various factors other than vegetation diversity, which need to be taken into 
 

51 account in such studies. The use of fossil-taxa will potentially inflate perceived plant 
 

52 diversities, requiring taxonomic lists to be normalised. Autochthonous floras provide the 
 

53 most direct evidence of vegetation diversity but these are rare; most plant beds are 
 

54 allochthonous with plant remains that have been subjected to varying levels of fragmentation, 
 

55 transportation and time averaging. Local-scale vegetation diversity is especially difficult to 
 

56 determine from the fossil record, even with rigorous sampling protocols and detailed 
 

57 sedimentological analysis. Landscape-scale and regional-scale vegetation diversities are more 
 

58 reliably determined but usually at the rank of family. Macrofossil and palynological data tend 
 

59 to reveal evidence of different aspects of plant diversity, and the best results are obtained if 
 

60 the two diversity signals are integrated. Despite the inherent difficulties, the plant fossil 
 

61 record provides clear evidence of the dynamic history of vegetation through geological times, 
 

62 including the effects of major processes such as climate changes and mass extinctions. 

 

63 
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66 1 Introduction 
 

67 Vegetation has played a central role in the evolution of the Earth’s biosphere, atmosphere 
 

68 and landscape (Beerling 2007; Davies and Gibling 2010; Wellman 2010; Willis and 
 

69 McElwain 2013); whilst it is possible to envisage a world having evolved with plants but no 
 

70 animals, a world of animals without plants could not function. The raised public awareness of 
 

71 the important ecosystem services provided by vegetation, including carbon capture to help 
 

72 mitigate climate change, providing the foundations of all terrestrial trophic systems, and the 
 

73 psychological benefits it brings to humanity, has resulted in a global research programme on 
 

74 today’s plant diversity and ecology (Antonelli et al. 2020). However, this only provides a 
 

75 snapshot of a continuous ecological and evolutionary play that has taken place through some 
 

76 500 million years of “Deep Time”. To appreciate properly the significance of events such as 

 

77 the current biodiversity crisis (“the 6th mass extinction”) and to anticipate potential outcomes, 
 

78 it is vital that we understand this history of vegetation evolution. 
 

79 Research into vegetation history started over two centuries ago (for summary see 
 

80 Andrews 1980) but with the primary focus on plant phylogeny (Taylor et al. 2009; Cleal and 
 

81 Thomas 2019). In recent years, interest in the study of plant fossil diversity has grown (as 
 

82 summarised by Wing and DiMichele 1992; Willis and McElwain 2013) but investigating it 
 

83 remains challenging (Wing and DiMichele 1995). 
 

84 This is one of two papers arising from a workshop on past plant diversity entitled 
 

85 Tracking changes in plant diversity over the last 400 million years, which brought together 
 

86 specialists on diversity studies in fossil floras ranging in age from Devonian to Quaternary. 
 

87 The aim was to explore the different analytical methodologies and interpretative approaches 
 

88 used to investigate Phanerozoic plant diversity dynamics. The present contribution addresses 
 

89 what exactly we mean by biodiversity and to what extent can we extract biodiversity patterns 
 

90 from the plant fossil record. We will attempt to look at the relevant issues surrounding both 
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91 plant macrofossils (i.e. fossils that can normally be seen with the naked eye, including 
 

92 compressions / impressions / adpressions, casts / moulds and anatomically preserved fossils – 
 

93 see Cleal and Thomas 2019) and microfossils (pollen, spores and phytoliths). The issues 
 

94 surrounding sampling and analytical methods used will be discussed in our second paper (in 
 

95 preparation). 
 

 
 

96 2 What is biodiversity? 
 

97 In biology, biodiversity is sometimes used to refer to functional diversity (the range of 
 

98 traits in an assemblage) or phylogenetic diversity (the evolutionary breadth of an assemblage) 
 

99 (Dornelas et al. 2012; Vellend et al. 2011, 2017). Palaeobotanists also sometimes investigate 
 

100 trait diversity, such as the use of leaf physiognomy for estimating past climatic temperatures 
 

101 (Wolfe 1993; Glasspool et al 2004). But diversity analyses of the plant fossil record tend to 
 

102 be overwhelmingly of taxonomic diversity, and it is on this that we will focus here. 
 

103 Taxonomic diversity in ecological studies consists of two factors: taxonomic richness 
 

104 and taxonomic evenness (Tuomisto 2012). Taxonomic richness (the number of taxa present) 
 

105 might be expected to be relatively easy to measure in both modern-day habitats and the fossil 
 

106 record; Magurran (2004) has suggested that this alone can be a sensitive indicator of 
 

107 ecological change. However, total richness can be difficult to determine if there are rare 
 

108 species present, as these may be missed in surveys. A far more nuanced understanding of the 
 

109 functioning of a flora will be obtained by determining its taxonomic evenness using 
 

110 measurements such as Simpson’s Index (e.g. Lande 1996; Veech et al. 2002) but this is only 
 

111 really meaningful if it is reflecting the relative numbers of organisms present. Variations in 
 

112 the productivity of pollen, foliage and seeds between different plant parts (Fig. 1) mean that 
 

113 taxonomic evenness of fossil-taxa in a fossil flora will bear little or no relationship to the 
 

114 taxonomic evenness of the original vegetation. The situation is particularly complex with 
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115 foliage, especially in pre-Cenozoic floras where the leaves are often compound structures that 
 

116 fragmented in different ways during abscission, transportation and preservation. Taxonomic 
 

117 evenness of a fossil flora may therefore be strongly influenced by taphonomy and how the 
 

118 plants fragmented post-mortem; although such data may provide some evidence as to relative 
 

119 biomass allocation within the vegetation (e.g. Baker and DiMichele 1997), its value for 
 

120 determining taxonomic evenness is limited. 
 

121 Scale will clearly be critical in any diversity study, whether palaeontological or 
 

122 biological (Bennington et al. 2009). R.H. Whittaker (1960) developed the most frequently 
 

123 used concepts of taxonomic diversity for extant biotas, broadly recognised as α-diversity 
 

124 (diversity in particular habitats) and β-diversity (diversity between habitats within a 
 

125 landscape); these were then integrated to provide a γ-diversity (overall diversity within the 
 

126 landscape). R.H. Whittaker (1977) later extended this scheme to include δ-diversity (diversity 
 

127 between landscapes in a biogeographical province) and ε-diversity (overall diversity within 
 

128 that province). However, R.H. Whittaker’s (1960) terms were intentionally rather vague and 
 

129 as a consequence have been used by different scientists in different ways (see Swingland 
 

130 2001; Magurran 2004; Hamilton 2005 for reviews). 
 

131 In an attempt to introduce taxonomic diversity concepts that more realistically reflect the 
 

132 plant fossil record, Cleal et al. (2012) adopted a more flexible approach similar to those used 
 

133 by R.J. Whittaker et al. (2001); see also Birks et al. (2016a,b) (Fig. 2): 
 

134 (1) Local-scale diversity: the diversity of plant fossils observed in a single locality and 

 

135 which probably reflects plant diversity within c. 1000 m2 (c. 30 m x 30 m). In a palynological 

 

136 context, it might more realistically refer to vegetation within up to 1 km2. This will broadly 
 

137 equate to the α-diversity of the parent vegetation. 
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138 (2) Landscape-scale diversity: the diversity of plant fossils observed within a typical 

 

139 depositional basin and which probably reflects plant diversity within up to c. 105 km2 (c. 300 
 

140 km x 300 km) This will broadly equate to the γ-diversity of the parent vegetation. 
 

141 (3) Regional-scale diversity: the diversity of plant fossils observed within a 

 

142 palaeofloristic province and probably reflects plant diversity within more than 105 km2. This 
 

143 will broadly equate to the ε-diversity of the parent vegetation. 
 

144 It is important to remember that the diversities observed in the fossil record (both 
 

145 macrofloral and palynological) represent the diversities of the fossils, and only partially 
 

146 reflect the diversities of the parent vegetation (Gastaldo 1992; Birks et al. 2016). Some of the 
 

147 resulting issues will be discussed later in this paper (Section 4). 
 

 
 

148 3 Taxonomic problems 
 
 

149 3.1 Macrofossil taxonomy 
 

150 The concept of biodiversity is inevitably tied to taxonomy (Khuroo et al. 2007). In 
 

151 neobotany this is relatively straightforward as the taxonomy is based on whole-organism taxa 
 

152 in which their lifecycles and development can be observed. There will always be 
 

153 disagreements among botanists as to whether a particular genus of plants contains one or 
 

154 more species, or a group of species belong to one or more genera, but at least botanists have 
 

155 whole organisms against which to test their taxonomies. 
 

156 With Cenozoic macrofloras (including Quaternary) it is often still possible to work with 
 

157 whole-plant taxa (e.g. Huang et al. 2016) but the situation is more difficult with older floras 
 

158 where palaeobotanists are dealing with extinct groups. Only rarely are completely 
 

159 reconstructed organisms available to work with; even if a whole, articulated plant is 
 

160 preserved (e.g. the early seed plant Elkinsia – Fig. 3) anatomical details are never completely 
 

161 present. Palaeobotanists working on these stratigraphically older floras therefore use a 
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162 different taxonomic approach. Although this has changed in detail over the years (Cleal and 
 

163 Thomas 2010), the underlying principle has in effect remained the same since the time of 
 

164 Sternberg (1820) and Brongniart (1822): different parts of the plant are classified and named 
 

165 separately as fossil-taxa (Turland et al. 2018, Art. 1.2). Mostly these are fossil-species and 
 

166 fossil-genera, although in principle they can be of any rank (see Cleal and Shute 2012 for an 
 

167 example of using fossil-families). 
 

168 Exactly how a fossil-taxon is defined is a subjective matter and is not covered by the 
 

169 regulations in the International Code of Nomenclature (Turland et al. 2018), but then this is 
 

170 no different from neobotany. Because of the constraints of the fossil record (e.g. the inability 
 

171 to test hypotheses relating to reproductive isolation or molecular phylogenetics) fossil-taxa 
 

172 have to be defined largely on morphological and/or anatomical criteria (Bateman and Hilton 
 

173 2009). As with neobotanical systematics (Williams and Ebach 2020, p. 354), however, 
 

174 distributional discontinuities can be helpful guides as to the best morphological and/or 
 

175 anatomical criteria for circumscribing natural taxa of fossils; for instance, it makes little sense 
 

176 to regard fronds of Carboniferous and Triassic ferns with morphologically similar pinnae as 
 

177 conspecific or even cogeneric. However, since most diversity studies at the rank of species or 
 

178 genus tend not to be making comparisons over such long time-scales, this is probably not a 
 

179 significant problem here. 
 

180 The problem with using fossil-taxa for diversity studies is that a simple summation of the 
 

181 names listed in published taxonomic lists will both significantly overestimate the number of 
 

182 biological taxa represented, and distort the relative representation of the different plant 
 

183 groups present (Cleal et al. 2012). For instance, in Carboniferous arborescent lycopsids, a 
 

184 single biological species may be represented by up to six separate compression fossil-species, 
 

185 whereas sphenopsids in the same flora may only have four fossil-species (Fig. 4; Table 1). An 
 

186 added complication is that the fossil-taxa of the different plant parts are probably indicative 
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187 of different taxonomic ranks of the original organism: for instance, Stigmaria ficoides 
 

188 (Sternberg) Brongniart is a fossil-species of phylogenetically conservative lycopsid rootstock 
 

189 that effectively cannot be distinguished across many members of the order, whereas the stems 
 

190 and cones have more sophisticated combinations of derived evolutionary characters and so 
 

191 their fossil-species probably correlate better with the biological species of the organisms. 
 

192 One solution would be only to study whole reconstructed plants (DiMichele and 
 

193 Gastaldo 2008). This is feasible when dealing with higher-ranked taxa such as families (e.g. 
 

194 Anderson et al. 2007) but at the present time there are too few reconstructions to provide 
 

195 meaningful diversity data at the rank of species or genus. A solution is to normalise the 
 

196 dataset by identifying, for each plant group, the plant part whose fossil-taxonomy is most 
 

197 likely to reflect the original, whole-organism taxonomy (e.g. Hilton and Cleal 2007; Cleal et 
 

198 al. 2012). For instance, the study of the late Carboniferous tropical swamps focussed mainly 
 

199 on foliage taxa, except with the arborescent lycophytes for which the outer periderm layer 
 

200 (“bark”) of their trunks was used (Table 1; Cleal 2005, 2007, 2008a). Leaf morphotypes have 
 

201 also been successfully used in this way with Cretaceous and Palaeogene angiosperms (e.g. 
 

202 Johnson 2002). Although these vegetative fossil-taxa may not provide the best evidence of 
 

203 phylogenetic relationships (reproductive structures would probably be better for this – e.g. 
 

204 Meyen 1984), they are probably providing a robust reflection of the plant species diversity 
 

205 (Cleal et al. 2012). This will inevitably be imperfect; for instance, cuticle studies of 
 

206 Carboniferous Cordaites and Selaginella foliage have shown that diversities will be 
 

207 significantly underestimated if the identifications are based purely on morphological data 
 

208 (e.g. Thomas 2005; Šimůnek 2007). There is no easy solution to this issue and simply has to 
 

209 be accepted in such diversity studies. 
 

210 The situation is further complicated in that the same plant preserved in different ways 
 

211 (e.g. petrifactions and compressions) will be recorded as different fossil-taxa (Galtier 1986; 
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212 Bateman and DiMichele 1992; Bateman et al. 1992; Bateman and Hilton 2009; Thomas and 
 

213 Cleal 2020). It is critical, therefore, to ensure that assessments of diversity do not duplicate 
 

214 fossil-taxa in the same assemblage or locality that are preserved in different ways; for 
 

215 instance, if an assemblage should include lycopsid cones as both compressions and 
 

216 permineralisations, the taxonomic list should be normalized so that diversity is not artificially 
 

217 inflated by “double counting”. 
 
 

218 3.2 Palynotaxa 
 

219 Palynological studies on Quaternary floras tend to use whole-plant taxa, based on 
 

220 morphological comparisons with pollen that have been extracted from living plants. It is 
 

221 sometimes possible to distinguish pollen from closely related plant species based purely on 
 

222 morphology but often palynological studies tend to focus mainly on differentiating plants at 
 

223 the generic rank. Attempts have been made to use DNA barcoding to improve the taxonomic 
 

224 resolution in Quaternary studies (e.g. Seppä and Bennett 2003); for instance, Petit et al. 
 

225 (2002) demonstrated that the modern genetic diversity of oak is consistent with the pollen 
 

226 evidence in a study of post-glacial oak migration. However, most Quaternary palynological 
 

227 studies remain essentially morphology-based. 
 

228 With older floras, the known relationship between the pollen / spores and their parent 
 

229 plants is less certain and so palynologists have developed separate taxonomic schemes 
 

230 (Chaloner 1999). Some proposed taxonomies are completely artificial with the taxa defined 
 

231 purely on morphological criteria with a non-Linnaean nomenclature, such as used in many 
 

232 oil-company palynological databases and in the Biorecords methodology of Hughes (1963) 
 

233 (see Traverse, 2007 for a review). Other taxonomies use a Linnaean-style nomenclature but 
 

234 with taxa that were still essentially morphological (e.g. Potonié 1956, 1958, 1960) and it is 
 

235 this approach which is most usually widely used today in pre-Neogene studies (e.g. Jasper et 
 

236 al. 2010; Stolle 2007, 2012, 2016; Hochuli et al. 2016). 
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237 Because the botanical affinities of many pre-Neogene palynotaxa are uncertain, it can be 
 

238 difficult to translate observed palynodiversity trends into floristic trends. Thomas (1987) and 
 

239 Mander and Punyasena (2014) suggested that the situation could be improved by revising the 
 

240 diagnoses of palynotaxa based on evidence from in situ palynomorphs in fructifications, data 
 

241 which is now being increasingly collated (e.g. Balme 1995; Bek 2017). Experience with 
 

242 Palaeogene and Neogene pollen and spores has also shown that a combination of light 
 

243 microscopy and scanning electron microscopy based on individual grains (Ferguson et al. 
 

244 2007), although very time consuming, can also help to improve their assignment to a 
 

245 particular plant genus or family, or perhaps even to map it into an established framework 
 

246 represented by one or more phylogenetic trees. (e.g. Grímsson et al. 2011a,b, 2015a,b). 
 

247 Chemical analysis such as using FTIR (Fourier Transform Intra-Red) and fluorescence 
 

248 spectroscopy can also be helpful in determining affinities of particular palynormophs (e.g. 
 

249 Mitsumoto et al. 2009; Steemans et al. 2010; Urban et al. 2010). This approach has shown 
 

250 that more traditional approaches utilizing only light microscopy tend to underestimate the 
 

251 number of taxa present in a palynoflora (Hofmann and Gregor 2018). 
 

252 An added complication is the variation in morphology of pollen and spores during 
 

253 maturation, as shown for instance in the fern Weichselia reticulata (Stokes and Webb) 
 

254 Fontaine (Fig. 5). This is not an issue in most diversity studies on dispersed palynofloras, as 
 

255 plants do not normally release their pollen or spores before they are fully mature. However, if 
 

256 a plant has been subjected to trauma such as a storm, immature pollen and spores may be 
 

257 prematurely released and preserved, and this could inflate the diversity of a palynofloras. 
 

258 Although labour intensive, it is possible to determine whether different morphologies 
 

259 represent different states of maturity or just variability of miospore forms within a species 
 

260 using sporoderm ultrastructure analysis (e.g. Zavialova et al. 2010). 
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261 Because of the problems of classifying stratigraphically older palynotaxa a number of 
 

262 purely morphological suprageneric classifications have been developed (see Traverse 2007 
 

263 for a review). Especially in Palaeozoic palynofloras, a nested hierarchy of morphological 
 

264 groups (anteturma, turma, subturma, etc.) developed by Potonié (1934) is still widely used, 
 

265 and provides a useful framework for descriptive studies. However, as these groups are strictly 
 

266 morphological, they rarely relate to botanical suprageneric groups and so are of limited use in 
 

267 diversity studies. 
 
 

268 3.3 Taxonomic rank 
 

269 Because of the problem of relating pollen and spores to particular plant species, using 
 

270 palynology for species diversity studies can be difficult (Mander and Punyasena 2014); even 
 

271 in the Quaternary where the relationship between pollen and parent plants is better-known, 
 

272 most palynological diversity studies tend to be at the rank of genus or even family (Giesecke 
 

273 et al. 2014). Such studies have nevertheless provided valuable evidence of vegetation 
 

274 dynamics especially at the landscape-scale (Section 5.2). 
 

275 Local- and landscape-scale plant macrofossil diversity studies tend to be based on 
 

276 normalised inventories of fossil-species or possibly fossil-genera (Section 3.1). However, 
 

277 species are currently impractical when dealing with diversity changes at regional- or global- 
 

278 scales, and over longer time-scales, as the datasets become too large to collate and check 
 

279 objectively by any individual scientist or team. Even where a large amount of species data 
 

280 has been historically accumulated, such as for the Pennsylvanian Subsystem (see comments 
 

281 by Pfefferkorn et al. 2017), there have been few attempts to collate them coherently and 
 

282 critically. Where such collations have been attempted (e.g. Niklas et al. 1980; Lidgard and 
 

283 Crane 1990), methodological and sampling issues occurred (see comments by Niklas and 
 

284 Tiffney 2010; Cascales-Miñana et al. 2013). Moreover, these early collations were not 
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285 published and so cannot be subjected to subsequent critical taxonomic re-assessment, making 
 

286 the robustness of the resulting analyses difficult to judge. 
 

287 The situation may potentially improve with the development of large-scale computer 
 

288 databases of fossil occurrences, such as those for Cenozoic angiosperms (Xing et al. 2016; 
 

289 Williams et al. 2018). Palaeobotanical data have also been included in the Paleobiology 
 

290 Database (Alroy 2003) although its coverage for plant fossils remains uneven, and is far 
 

291 below that in other groups such as fossil vertebrates. Various numerical approaches have 
 

292 been investigated that aim to overcome the issues of incomplete sampling of such databases 
 

293 (e.g. Silvestro et al. 2015; Beri et al. 2020) but the intractable problem remains of verifying 
 

294 the taxonomic robustness of the data; if the data cannot be trusted, how can the results of any 
 

295 analysis? This is an area where palaeobotany needs to improve in order to catch up with other 
 

296 fossil groups and make sustained impact in analytical methodologies. 
 

297 In the absence of usable databases, the solution adopted in many regional- and global- 
 

298 scale macrofloral diversity studies is to analyse changes at the rank of family. Family is the 
 

299 lowest rank of fossil-taxa based almost exclusively on whole organisms and so potentially the 
 

300 dynamics of the fossil-families should be comparable with those of the original parent 
 

301 families. A number of global collations of plant fossil-family distributions through geological 
 

302 time are available (e.g. Harland 1967; Benton 1993; Collinson 1996; Anderson et al. 2007) 
 

303 and they include the evidence on which the records were based and so can be subjected to 
 

304 later critical assessment and potential revision (Cascales-Miñana and Cleal 2014). 
 

305 But how closely do family dynamics mirror diversity dynamics at lower taxonomic 
 

306 ranks? Analyses on modern-day tropical forests suggest that family and species diversity 
 

307 patterns are broadly similar (e.g. Enquist et al. 2002; Jantz et al. 2014) especially if the data 
 

308 are log transformed to reduce the effect of dominant families (La Torre et al. 2007); see also 
 

309 comments by Giesecke et al. (2019) and Reitalu et al. (2019) on Holocene data from Europe. 
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310 However, this does not take into account the taphonomic filter that fossil floras have been 
 

311 subjected to; many Palaeozoic and Mesozoic plant fossils cannot be assigned to families due 
 

312 to missing, or difficult to deduce, features of reproductive organs or cauline anatomy, 
 

313 suggesting the fossil record of families is incomplete. On the other hand, regional- and 
 

314 global-scale vegetation analyses (e.g. Cascales-Minana et al. 2013) may benefit from using 
 

315 family data because they may help smooth out some of the sampling problems encountered in 
 

316 such large-scale analyses. This is clearly a subject that needs further investigation. 
 

 

 
317 4 Representativeness of data 

318 
 

There have been many studies looking at the effects of representativeness on diversity 
 

319 studies in the macrofossil record, such as the effects of sampling and taphonomy, but mainly 
 

320 dealing with faunas, notably marine invertebrates (e.g. Kowalewski et al. 2006). However, 
 

321 the issues surrounding such faunal studies are fundamentally different from those facing 
 

322 palaeobotanists and palynologists, as most palaeozoologists have the luxury of dealing with 
 

323 the remains of whole organisms (or at least their hard-parts, such as shells or exoskeletons); 
 

324 even vertebrate palaeozoologists tend to deal with whole-organism taxa. Palaeobotanists and 
 

325 palynologists, in contrast, deal almost exclusively with allochthonous and fragmentary 
 

326 remains; there are exceptions, as we will discuss, but these tend to be rare and scattered, and 
 

327 difficult to use in diversity studies. This means that diversity studies on the plant fossil record 
 

328 are addressing quite different questions to those being usually asked by palaeozoologists: 
 

329 palaeobotanists and palynologists tend to be looking at the broad composition of vegetation 
 

330 either in terms of taxa or biomass rather than looking at changing community structure in 
 

331 terms of individual organisms (e.g. Bambach 1977). 
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332 4.1 Macrofloral data 
 

333 Autochthonous floras (sometimes misleadingly referred to as “Lagerstätten”) provide the 
 

334 most reliable data on original plant diversity, especially at a local-scale, but these are rare. 
 

335 One of the best documented is the Devonian Rhynie Chert (e.g. Edwards et al. 2018; 
 

336 Garwood et al. 2019; Strullu-Derrien et al. 2019) where an in situ and almost complete 
 

337 terrestrial biota is preserved including relatively small, herbaceous plants. Autochthonous 
 

338 fossil floras with larger, woody plants are much rarer. There are exceptions, such as the 
 

339 Palaeozoic swamp forests that were rapidly covered by volcanic ash (see Sections 5.1, 5.2); 

 

340 but more usually, the so-called T0 fossil or submerged forests (DiMichele and Falcon-Lang 
 

341 2011) are only partly autochthonous. They form where an area of forests has been engulfed 
 

342 by a flood of sediment and casts of the stumps have been preserved in situ (e.g. Fig. 6; for 
 

343 other examples see Heyworth and Kidson 1982; Francis 1983; Gastaldo 1985; Pole 2001; 
 

344 Calder et al. 2006; Wagner and Diez 2007; Moir et al. 2010; Stein et al. 2012; Berry and 
 

345 Marshall 2015; Thomas and Seyfullah 2015; Falcon-Lang et al. 2016), but most of the 
 

346 herbaceous ground-cover and liana species have been winnowed-out (Thomas 2014). Other 
 

347 types of “fossil forests” consist of petrified logs preserved as log-jams that have been subject 
 

348 to varying degrees of transportation (e.g. Falcon-Lang and Bashforth 2005) and thus also 
 

349 difficult to use for diversity studies. 
 

350 More typically, plant beds occur in fluvio-lacustrine deposits, where disarticulated plant 
 

351 remains have accumulated after varying degrees of transportation either by wind or water 
 

352 (Burnham 1989; Gastaldo et al. 1995, Kędzior and Popa 2013, 2018; Thomas and Cleal 
 

353 2015). This is in marked contrast to many fossil faunal communities, which tend to be much 
 

354 less prone to transportation (Kidwell and Holland 2002). Many attempts at palaeoecological 
 

355 studies on such plant beds have documented in great detail the sedimentological context 
 

356 where the fossils occur (e.g. Scott 1978, 1989; Gomez et al. 2012; Kędzior and Popa 2013, 
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357 2018). Detailed, three-dimensional sampling such as in underground coal mines along 
 

358 directional and transversal galleries and in coal extraction chambers in particular can provide 
 

359 valuable data (e.g. Gastaldo 1985; DiMichele and Nelson 1989; Popa 1998, 2011, 2014; 
 

360 DiMichele et al. 2007, 2017; Barbacka et al. 2016). 
 

361 However, the plant remains will have been transported over varying distances, making it 
 

362 difficult to translate the observed distribution of the fossils into original plant diversity 
 

363 (Gastaldo 1992). In a few cases, the fossils in such plant beds seem to have been subjected to 
 

364 only limited transport, such as where a river-bank bank has collapsed and the plant remains 
 

365 have become entombed in a crevasse-splay (e.g. Cleal and Thomas 1988; Laveine and Belhis 
 

366 2007). More usually, however, the plant remains are at least partly allochthonous. Actualistic 
 

367 studies suggest they will include only a variable representation of the immediately local 
 

368 vegetation (e.g. Burnham 1989, 1994) mixed with remains derived from riparian vegetation 
 

369 growing some distance upstream (Spicer 1980, 1981; Scheihing and Pfefferkorn 1984; 
 

370 Ferguson 1985; Gastaldo et al. 1987; Gastaldo and Huc 1992). 
 

371 By carefully documenting the co-occurrence of species within individual beds, the 
 

372 composition of individual plant communities can be estimated (e.g. Procter 1994; Bashforth 
 

373 et al. 2010, 2011; Barbacka 2012; Barbacka et al. 2016; Thomas et al. 2020). However, 
 

374 locating those communities in the original vegetation / habitat matrix requires a detailed 
 

375 understanding of the sedimentology of the deposits (DiMichele and Gastaldo 2008; Reitalu et 
 

376 al. 2014) and is at best difficult. Moreover, taphonomic factors may distort the observed 
 

377 diversities. Variations in edaphic conditions can cause variable post-mortem decay of the 
 

378 plant tissue (Gastaldo 1992; Gastaldo and Demko 2011). It has been suggested that 
 

379 differential decay of plant groups may distort the species composition (Scott 1979; Wing and 
 

380 DiMichele 1995) although the effect of this may have been exaggerated (Locatelli et al. 2016; 
 

381 Tomescu et al. 2018). More significant may be differential sorting of the plant remains during 
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382 transportation: smaller plant fragments will tend to travel further and softer, heavier plant 
 

383 fragments sink more quickly (e.g. Steart et al. 2002). Some element of time-averaging may 
 

384 even occur within a single plant bed depending on depositional rates of the sediment. 
 

385 Plant remains preserved in shallow marine deposits are usually fragmentary and not 
 

386 concentrated into distinct plant beds, although there can be exceptions caused by storm surges 
 

387 (e.g. Kustatscher et al. 2010). Fossil floras preserved in marine deposits can include the 
 

388 remains of coastal vegetation such as mangroves (e.g. Collinson 1993). During late Permian 
 

389 times, climatic conditions were unfavourable for plant growth in continental Europe and so 
 

390 vegetation tended to be concentrated in coastal areas; remains of this vegetation has been 
 

391 found in shallow marine deposits, preserved particularly during transgression phases 
 

392 (Kustatscher et al. 2017). 
 

393 Some plant macrofossils preserved in marine strata have been interpreted as plant 
 

394 remains washed down from hinterland vegetation (e.g. Rothwell et al. 1996; Rice et al. 1996; 
 

395 Cleal and Rees 2003) and are notably different from what is seen in fluvio-lacustrine plant 
 

396 beds. “Exotic”, extra-basinal plant remains have also sometimes been reported from fluvio- 
 

397 lacustrine plant beds (e.g. Cleal and Thomas 2004; Uhl 2006; Opluštil et al. 2007). Generally, 
 

398 however, plants growing in places away from rivers or lakes are poorly represented as 
 

399 macrofossils. For instance, grasses, which are obviously major components of terrestrial 
 

400 vegetation today, have a very poor macrofossil record and much of what we know of their 
 

401 evolution is based on palynology (Section 4.2) or dispersed phytoliths derived from their 
 

402 leaves (e.g. Piperno and Pearsall 1998; Strömberg 2004, 2011). 
 

403 Fossil floras can also occur in maar lake deposits (e.g. the Messel World Heritage Site – 
 

404 Collinson et al. 2012). Such lakes are caused by phreatomagmatic explosions resulting from 
 

405 the interaction of erupting magma and water, and can occur almost anywhere within a 
 

406 landscape and thus may be surrounded by a different type of vegetation to that growing 
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407 adjacent to lakes formed in fluvio-lacustrine settings. For instance, the late Oligocene Norken 
 

408 fluvio-lacustrine deposits contain predominantly remains of riparian and swamp vegetation 
 

409 (Uhl et al. 2018) but these are almost totally absent from the nearby, almost contemporary 
 

410 Enspel maar lake deposits (Köhler and Uhl 2014). Plant remains in such lakes also 
 

411 experience less hydro-mechanical stress due to water transport and so can preserve delicate 
 

412 plant structure such as flowers (e.g. Uhl 2015). 
 
 

413 4.2 Palynological data 
 

414 Palynology has been widely used for Quaternary landscape-scale diversity studies 
 

415 (Giesecke et al. 2014); but translating the data into vegetation patterns can be problematic 
 

416 because of significant variation in pollen productivity from year to year (Andersen 1970; 
 

417 Sugita 1993; Hicks 1985; Barnekow et al. 2007; Pidek et al. 2010; Giesecke et al. 2014). 
 

418 However, this is partly mitigated by most sediment samples representing several years; for 
 

419 example, in the Lake Sapanca sequence (N-W Turkey) sub-annual samples taken at a 5 mm 
 

420 resolution revealed no seasonality in the palynology signal, probably due to bioturbation of 
 

421 the lake sediment (Leroy et al. 2009). On the other hand, in the alternating black and white 
 

422 sediment layers of the Dead Sea (López-Merino et al. 2016), the seasonality of the pollen 
 

423 production was used to determine if the lamina couplets were varves or a laminated sediment. 
 

424 Another problem is the great variation in pollen productivity between different plant 
 

425 species. Current evidence for northern and temperate latitudes suggests that Quaternary 
 

426 palynological data are particularly robust for most trees (with a few notable exceptions such 
 

427 as Larix) and wind-pollinated taxa, and provide a good measure of broad-scale plant richness 
 

428 over several thousands of kilometres (Reitalu et al. 2019); this is less so for tropical 
 

429 environments due to the higher number of insect-pollinated plants. Among herbs, the Poaceae 
 

430 are the most abundant wind-pollinated plants, and their pollen can be widely dispersed. 
 

431 However, the source of Poaceae and Cyperaceae pollen can be difficult to elucidate because 
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432 these species occur in a wide range of plant communities. It can also be impossible to identify 
 

433 their pollen to species level other than in cultivated cereals (Pardoe 2001; Sjögren et al. 
 

434 2015), although phytoliths can be of help here (see below). Most other herbs tend to be under 
 

435 represented in pollen spectra (Leroy and Roiron 1996) as the pollen are dispersed by other 
 

436 vectors and so are not so abundantly produced; they also often have a lower preservation 
 

437 potential. There have been relatively few studies of the representation of herbs in pollen 
 

438 assemblages (Pardoe 2001; Bunting et al. 2016) but the presence of so called “indicator taxa” 
 

439 in pollen samples can give strong evidence that such plants were growing locally (Pardoe 
 

440 1996, 2001, 2006). Data can also be supplemented by evidence from in situ pollen from 
 

441 flowers (e.g. Herendeen et al. 1994) and in exceptional cases from fossils of pollinating 
 

442 animals (e.g. Grímsson et al. 2017). 
 

443 Recent initiatives such as the Pollen Monitoring Programme (PMP) are now helping us 
 

444 gain a greater understanding of the relationship between pollen, vegetation and environmental 
 

445 variables. The PMP has been instrumental in the publication of several decades-long records 
 

446 from across Europe (Hicks et al. 1996; Giesecke et al. 2010). The PMP has addressed a 
 

447 variety of problems including the representation of individual taxa (Hicks et al. 1994; Hicks, 
 

448 2001, Ertl et al 2012; Pidek et al. 2010), the representation of plant communities (van der 
 

449 Knaap et al. 2001; Pidek 2004; Gerasimidis et al. 2006), and the influence of sampling 
 

450 medium on palynological diversity (Pardoe et al. 2010; Litsitsyna et al. 2012). 
 

451 Although not strictly palynological, phytoliths are another type of plant microfossils that 
 

452 provide valuable evidence of terrestrial vegetation (Strömberg et al. 2018). There can be 
 

453 taphonomic issues due to silica dissolution (Cabanes and Shahack-Gross 2015) but they are 
 

454 nevertheless essential indicators of grass diversity in Cenozoic vegetation, which are usually 
 

455 poorly represented as pollen and macrofossils (Piperno and Pearsall 1998; Piperno 2002; 
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456 Strömberg 2004, 2011; Rashid et al. 2019). There are also records of pre-Cenozoic phytoliths 
 

457 (e.g. Carter 1999) but their affinities remain uncertain. 
 

458 In principle, palynodata can be corrected using R-coefficients (sensu Davis 1963) 
 

459 representing the ratio between the observed pollen abundances and the abundance of plants in 
 

460 the parent vegetation. R-coefficients can be estimated for Quaternary data based on 
 

461 actualistic comparisons between surface pollen data and field vegetation surveys (although 
 

462 even here problems may occur because of some of the mathematical assumption involved ‒ 
 

463 Parsons and Prentice 1981). Such an approach is more difficult with tests on the robustness of 
 

464 pre-Quaternary palynodata as often no independent measure of vegetation composition can 
 

465 be used to calculate the R-coefficients. Nevertheless, it has been attempted with the late 
 

466 Carboniferous swamps where available autochthonous macrofloras allow the coefficients to 
 

467 be estimated (Willard 1993; Opluštil et al. 2009). Palynofacies signals can also help in 
 

468 determining the robustness of palynological data by indicating the depositional and 
 

469 palaeoenvironmental situation of the studied strata (e.g. Stolle et al. 2012, pl. 1, fig. 2). 
 
 

470 4.3 Pollen and macrofossil data compared 
 

471 When diversity data from the macrofloral and palynological records are compared (e.g. 
 

472 Leroy and Roiron 1996; Dimitrova et al. 2005; Birks and Bjune 2010; Xiong et al. 2013; 
 

473 Bjune 2014; Looy et al. 2014; DiMichele et al. 2018) rather different signals are often 
 

474 revealed both in the plant groups represented and the relative proportions of those plant 
 

475 groups (Fig. 7). The macrofloral record is regarded as giving a more detailed picture of plant 
 

476 species richness, especially at a local-scale (Birks and Birks 1980). However, this tends to 
 

477 represent only a fairly narrow band of habitats, and the much smaller sample sizes usually 
 

478 available compared with palynology will often be insufficient to capture diversity patterns. 
 

479 Palynology, in contrast, will give a better understanding of vegetation patterns across a wider 
 

480 range of habitats and at a landscape-scale (Dimitrova et al. 2010; Costamagna et al. 2018). 
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481 Because palynological samples may contain palynomorphs from different habitats, it can be 
 

482 difficult to determine the local-scale vegetation patterns within individual habitats; it may 
 

483 also help explain why palynospectra tend to be more diverse than the macrofloras found in 
 

484 the same bed (e.g. Dimitrova et al. 2005). However, as our understanding of the natural 
 

485 affinities of many palynotaxa is improving, palynology is providing increasingly refined 
 

486 evidence of landscape-scale vegetation diversities (Section 5.2). 
 

487 It is evident that one data source is not better than the other for diversity studies: rather, 
 

488 that palaeobotany and palynology are complementary, and are best investigated in tandem 
 

489 (Birks 2000; Kustatscher et al. 2010; Reitalu et al. 2014; Costamagna et al. 2018). 
 

 

 
490 5 Diversity studies 

491 
 

It is beyond the scope of this paper to review all examples of palaeobotanical and 
 

492 palynological diversity studies; the following discussion aims merely to illustrate some of the 
 

493 types of analyses that have been attempted. 
 
 

494 5.1 Local-scale diversity 
 

495 Most allochthonous fossil macrofloras tend to reflect local-scale plant diversity (Cleal et 
 

496 al. 2012). However, the complexity of the sedimentary systems in which they usually occur 
 

497 (Section 3.1) means that the diversity of each individual bed needs to be analysed separately 
 

498 as each flush of sediment is likely to have remains from a different set of plant communities. 
 

499 Even if the plant beds are rigorously sampled (e.g. Scott 1978, 1979), a detailed 
 

500 understanding of the sedimentology is required before it is possible to unscramble the local- 
 

501 scale plant diversity patterns from the mosaic of habitats represented in most allochthonous 
 

502 plant bed (Kędzior and Popa 2013, 2018). 
 

503 Palynological data tend to be even more problematic for local-scale diversity studies due 
 

504 to variations in how far the palynomorphs have been transported. For instance, pollen of 
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505 modern-day Picea has been found in the Canadian Arctic, 3000 km from its source 
 

506 (Campbell et al. 1999); in the Palaeozoic, conifer pollen appears to have been blown in from 
 

507 a considerable distance (e.g. Bless et al. 1977); some pollen in Carboniferous tropical 
 

508 palynofloras even appear to have originated from high-latitude, Gondwana vegetation 
 

509 (Dimitrova et al. 2011). Even long-distance water transportation of pollen has been reported; 
 

510 for example, Holocene Podocarpus pollen that have been found in Nile delta deposits may 
 

511 have been transported > 2,000 km along the river from their source in the Ethiopian 
 

512 Highlands (Leroy 1992). Although such exotics will normally be rare in palynofloras, they 
 

513 represent the end-members of a gradational spectrum of palynomorph abundances reflecting 
 

514 differences in transportation distances, making it difficult to extract local-scale diversity 
 

515 patterns, especially in fluvial and delta settings (Weng et al. 2006). 
 

516 Local-scale past plant diversity is best determined in the rare autochthonous fossil floras 
 

517 although even here the data are often incomplete (Section 4.1). Some of the best examples of 
 

518 autochthonous floras preserving forest vegetation including both the trees and herbaceous 
 

519 plants are in Palaeozoic volcanic ash-fall deposits (e.g. Wagner 1989; Rössler and Barthel 
 

520 1998; Wang et al. 2012; Luthardt et al. 2016). Examples studied in great detail are in an ash 
 

521 band in the early Moscovian Radnice Coal in the Czech Republic, where about 0.5 m of 
 

522 volcanic ash engulfed an area of swamp vegetation. The lower part of the deposit contains in 
 

523 situ stumps and the groundcover vegetation, which, because the ash fell almost vertically, 
 

524 was mostly not winnowed out. The upper parts of the ash band, in contrast, includes remains 
 

525 of the upper parts of the trees, together with epiphytes and lianas, brought down by the 
 

526 weight of the ash sometime after the deposit had fallen (Pšenička and Opluštil 2013). A 
 

527 careful survey of the plant remains in different levels of the ash deposit (Fig. 8) not only 
 

528 allowed the reconstruction of the taxonomic composition, spatial distribution and density of 
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529 vegetation cover, but also revealed evidence of plant to plant interactions and living strategies 
 

530 in extraordinary detail (Opluštil et al. 2007, 2009a,b, 2014; Libertín et al. 2009a). 
 

531 Many coals (but not all – Glasspool 2003) are the remains of parautochthonous peat and 
 

532 so, as with modern-day peat deposits (e.g. Mauquoy et al. 2010), have the potential to reveal 
 

533 local-scale plant diversity. When the peat has changed into coal through compaction and 
 

534 diagenesis, however, the plant remains become homogenised and so difficult to identify. 
 

535 Notable exceptions are when the peat has been subjected to early mineralisation that 
 

536 preserves the anatomy of the plant remains in often exquisite detail. Sometimes most or all 
 

537 the peat deposit has been mineralised (e.g. Galtier 2008; Slater et al. 2015) but more 
 

538 commonly the mineralisation is localised, such as in the coal balls (mainly calcitic nodules) 
 

539 found in some Palaeozoic coal seams. There have been several local-scale diversity studies 
 

540 on coal balls (e.g. DiMichele and Phillips 1988; DiMichele et al. 1991; Willard 1993; Baker 
 

541 and DiMichele 1997; DiMichele et al. 2002; Willard et al. 2007), which produced evidence 
 

542 of biomass allocation within the peat, which in turn gave some localised evidence of species 
 

543 diversity. 
 

544 Coal deposits often yield well-preserved palynomorphs, which have been extensively 
 

545 used for biostratigraphical studies revealing evidence of the temporal changes in vegetation 
 

546 (e.g. Smith and Butterworth 1967). If intercalated fine-siliciclastic (shaley) coal-bearing 
 

547 samples are also included, palynological assemblages can be particularly species rich. As 
 

548 with the macrofloras, regional to exotic palynomorphs derived from extra-basinal vegetation 
 

549 (Fig. 9) may also be present, which can be ideal for palynological correlation purposes (e.g. 
 

550 Stolle 2007, 2010), but can confuse local-scale micro-macro diversity analyses and the 
 

551 interpretation of vegetational distribution patterns (e.g. Dimitrova et al. 2005). Palynology 
 

552 has also been used to investigate the ecological development of the swamps (e.g. Smith 1962, 
 

553 1968; Habib and Groth 1967; Jasper et al. 2010; Johnston et al. 2017; Eble et al. 2019) and to 
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554 look at plant diversity at the rank of genus and higher (e.g. Dimitrova and Cleal 2007; 
 

555 Libertín et al. 2009b; Thomas and Dimitrova 2017), but direct translation of the resulting 
 

556 palynological spectra into plant species diversity is difficult. 
 

557 Another distinctive parautochthonous source of plant remains is amber, mainly of 
 

558 Cretaceous to Neogene age. Amber can be produced by both conifer (Sadowski et al. 2017) 
 

559 and angiosperm trees (Rust et al. 2010), and can result in exquisite preservation, especially of 
 

560 delicate structures such as flowers (Poinar 2002; Gandolfo et al. 2018), fern sori (Sadowski et 
 

561 al. 2019) and even microscopic algae (Schmidt et al. 2006). Some of these deposits have been 

 

562 studied since the middle 19th century, but amber can be a very selective fossil trap (e.g. 
 

563 Solórzano Kraemer et al. 2018) and so our understanding of the plant diversity of these 
 

564 forests is still incomplete. 
 
 

565 5.2 Landscape-scale diversity 
 

566 Studies on adpression fossil diversities across depositional basins (e.g. Cleal 2005, 2007, 
 

567 2008a; Goswami and Singh 2013; Huang et al. 2016; Opluštil et al. 2017; Goswami et al. 
 

568 2018; Roopnarine et al. 2018; Saxena et al. 2020) tend to be based on plant remains from a 
 

569 narrow band of habitats. For instance, adpressions from the Pennsylvanian swamps of 
 

570 Euramerica appear to have been dominated by remains of the vegetation growing on clastic 
 

571 substrates such as flood-plains, levees and sand banks, whereas the peat-substrate vegetation, 
 

572 which in fact dominated these swamps, is often poorly represented (Cleal et al. 2012); the 
 

573 peat-substrate vegetation is, in contrast, better represented in the coal ball floras and 
 

574 palynospectra. This is not a problem if the main aim is to document extrinsic effects such as 
 

575 climate or landscape changes, particularly if the sampled habitats are tightly constrained 
 

576 ecologically, but care must be taken not to over-generalise the results in terms of overall 
 

577 vegetation patterns. 
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578 One of the best sources of detailed data on Palaeozoic landscape-scale diversity are the 
 

579 ash deposits in the Czech Radnice Coal (mentioned in Section 5.1), which have been 
 

580 recorded from numerous localities in both historical collections and several recent 
 

581 excavations. These have allowed lateral variation in the swamp vegetation at one 
 

582 stratigraphical level to be investigated; for instance, studies at the Štilec and Ovčín localities, 
 

583 about 20 km apart, yielded two contrasting assemblages, representing different stages of 
 

584 vegetation succession (Opluštil et al. 2007, 2009a,b, 2014; Libertín et al. 2009a). A similar 
 

585 situation is present in the earliest Permian Wuda ash bed that occurs over an area of more 

 

586 than 60 km2, enabling distinct assemblages to be recognised both vertically and laterally 
 

587 (Wang et al. 2012; Opluštil et al. 2020). 
 

588 Floras with anatomically preserved petrifactions and permineralisations are more 
 

589 difficult to use for landscape-scale diversity studies. Most such floras tend to be isolated 
 

590 localities reflecting the exceptional conditions that caused the preservation, and so usually 
 

591 only reflect local-scale diversity. The most notable exceptions are the Pennsylvanian-age coal 
 

592 balls floras that occur extensively across the Late Palaeozoic tropical belt but, although they 
 

593 have been the subject of a number of taxonomic collations (e.g. Phillips 1980; Galtier 1997), 
 

594 no detailed landscape-scale diversity studies have been attempted. In palaeozoological 
 

595 studies, such preservational “hot-spots” have proved a problem by suggesting abnormally 
 

596 high diversities at particular stratigraphical levels, often referred to as the “Lagerstätte effect” 
 

597 (e.g. Benton 1995; Butler et al. 2013), but evidence of this distorting effect on plant fossil 

 

598 diversities is less clear (see comments by Cascales‐ Miñana and Gerrienne 2017). 
 

599 Palynology can provide a more representative picture of landscape-scale diversity as the 
 

600 sediment will contain the pollen from plants growing across the area (Weng et al. 2006). This 
 

601 has proved particularly useful in Quaternary studies where the botanical affinities of the 
 

602 various pollen types are well known (Section 4.2). For instance, palynology has been used to 
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603 map distribution changes across Europe during the Holocene by Huntley and Birks (1983), 
 

604 and there have been numerous species-specific studies (Hicks 2001; Brewer et al. 2002; 
 

605 Giesecke and Bennett 2004; van der Knaap 2004; Latałowa and van der Knaap 2006; Tinner 
 

606 and Lotter 2006; Giesecke et al. 2007; Pidek et al. 2010; Poska and Pidek 2010). Reitalu et al. 
 

607 (2019) have demonstrated in their study of modern pollen and plant richness across northern 
 

608 Europe that the highest correlations were for trees and shrubs and of wind-pollinated taxa, 
 

609 suggesting that these are the best measures of broad-scale plant richness over several 
 

610 thousands of kilometres. 
 

611 Improvements in our knowledge of the general affinities of many pre-Neogene 
 

612 palynotaxa (Section 3.2) now allow palynology to identify broad patterns of landscape-scale 
 

613 plant diversity (Abbink et al. 2004; Dimitrova et al. 2005, 2010; Dimitrova and Cleal 2007; 
 

614 Kustatscher et al. 2010; Beri et al. 2018; Franz et al. 2019). However, remaining uncertainties 
 

615 about variations in palynomorph productivity and dispersal between species, and the 
 

616 morphological variation of palynomorphs within plant species, make it difficult to use some 
 

617 taxa for detailed landscape-scale plant diversity studies (Section 4.2). 
 
 

618 5.3 Regional-scale and global-scale diversities (Evolutionary floras) 
 

619 Studies on global-scale faunal diversity (e.g. Sepkoski 1978, 1979, 1984, 1988; Bambach 
 

620 1977; Powell and Kowalewski 2002) have shown a progressive increase in species diversity 
 

621 through the Phanerozoic due to an increase in the spatial density of organisms, especially in 
 

622 shallow marine environments (Holland and Sclafani 2015). Similar global and regional 
 

623 studies at the species rank have been attempted in palaeobotany (e.g. Knoll et al. 1979; Niklas 
 

624 et al. 1980) but were hindered by the lack of suitable, taxonomically robust data sets (Section 
 

625 3.3); also by the failure to take into account geographical (especially latitudinal) variations in 
 

626 taxonomic diversity, as has been shown to be an issue with marine invertebrate diversity 
 

627 dynamics (Close et al. 2020). Analogous palaeobotanical studies would, moreover, be 

https://www.researchgate.net/researcher/2004192818_van_der_Knaap_WO
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628 unlikely to answer the same sorts of questions of changes in community structure that were 
 

629 being investigated in the faunal record (Section 4). 
 

630 Analyses within narrow taxonomic (e.g. Cleal 2008b,c) or stratigraphical (e.g. Cleal et al. 
 

631 2010; Barbacka et al. 2014) limits have been attempted at the regional-scale, which make it 
 

632 practical for the taxonomic robustness of the data to be critically assessed. However, most 
 

633 larger-scale studies have tended to be based at supra-generic ranks, usually family. For 
 

634 instance, global Phanerozoic plant diversity dynamics were interpreted using Evolutionary 
 

635 Floras (Fig. 10), identified from a factor analysis of a plant family dataset (Cleal and 
 

636 Cascales-Miñana 2014), and these have been used to describe the broad trajectory of 
 

637 vegetation history (Cleal and Thomas 2019; Cleal 2019). More recently, a similar study on 
 

638 pre-Carboniferous floras at the rank of genus is revealing further details of the early phases of 
 

639 plant terrestrialisation (Capel et al., this volume). 
 

640 There are a number of problems with such large-scale plant diversity studies. The 
 

641 taxonomic robustness of the data used is often uncertain, although for plants this is partly 
 

642 avoided by using family-rank data sets (Section 3.3). More difficult is the robustness of the 
 

643 stratigraphical correlations between widely separated floras. Most fossil floras occur in 
 

644 predominantly terrestrial sequences that lack absolute dating or independent 
 

645 biostratigraphical control (e.g. by marine faunas). In local-scale and landscape-scale studies 
 

646 this is less of a problem as lithostratigraphical correlations are often sufficient to provide a 
 

647 temporal framework for comparisons, but these are inadequate for regional-scale and global- 
 

648 scale studies. The palaeobotanical and palynological evidence is itself sometimes used to 
 

649 provide the correlations, but when this is used as the temporal context for the vegetation 
 

650 changes, the arguments become circular. A classic example is the Panchet Formation in India, 
 

651 which is often quoted as justifying the persistence of glossopterids into the Triassic Period, 
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652 but for which there is in fact no evidence that it is Triassic other than some debatable facies 
 

653 changes and the floras themselves (Saxena et al. 2018). 
 

 

 
654 6 Why study plant diversity in deep time? 

655 
 

Studies of past plant diversity dynamics are particularly important for providing a 
 

656 comparison with models used to describe the response of vegetation to recent climate change 
 

657 (Willis et al. 2010; Reitalu et al. 2014). For instance, the Quaternary record has indicated that 
 

658 glacial-interglacial changes have induced large-scale shifts in plant distributions (Willis and 
 

659 Bhagwat 2009; Giesecke et al. 2017), although there was sometimes a lag between climatic 
 

660 change and vegetation change (Leroy et al. 2011). Some warm-loving and cold-loving 
 

661 deciduous tree species became extinct in Europe during glacial phases (Willis and Niklas 
 

662 2004; Bertini 2010), due not only to climate change, but also to disease, competition and 
 

663 extreme conditions in refugia (Leroy 2007). For those species that survived the glacial 
 

664 phases, refugia such as in southern Europe were essential (Bennett et al. 1991; Leroy and 
 

665 Arpe 2007). In contrast, conifers and some climatically less sensitive angiosperm trees found 
 

666 refugia further north in Europe during glacial phases (crypto-refugia; Willis et al. 2000; 
 

667 Bhagwat and Willis 2008) whereas herbaceous species typical of tundra and steppe 
 

668 vegetation have been forced into upland refugia during the forest dominated phase of the 
 

669 Holocene (Bennett and Provan 2008). It is evident that these refugia have been vital for the 
 

670 shaping of present-day biogeographical patterns and the assemblage of extant communities 
 

671 (Willis and Bhagwat 2009). Refugia have also been used to explain the responses of 
 

672 vegetation to climate changes in Carboniferous tropical swamps (e.g. Falcon-Lang and 
 

673 DiMichele 2010; Looy et al. 2014). 
 

674 Palynological research has revealed anthropogenic effects on Holocene plant diversity 
 

675 (Giesecke et al. 2012, 2019). For example, Filipova-Marinova et al. (2014) described an 
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676 8,000-year long record of vegetation change at Varna Lake (Bulgaria) and showed how the 
 

677 vegetation was strongly influenced by human activity, both through woodland clearance and 
 

678 the establishment of agriculture. 
 

679 Rull (2011, 2013) has explored the drivers of neotropical diversity since early Neogene 
 

680 times, and concluded that it is the result of complex ecological and evolutionary trends 
 

681 initiated by tectonic events and palaeogeographical reorganisations, and was maintained by 
 

682 Pleistocene climatic changes. The palynological record during the Palaeocene – Eocene 
 

683 Thermal Maximum indicated an increase in diversity in tropical (Jaramillo et al. 2010) and 
 

684 polar vegetation (Willard et al. 2019), whereas in temperate latitudes the effects were less 
 

685 marked (e.g. Wing et al. 2003) except sometimes for a change to more fire-prone vegetation 
 

686 (Collinson et al. 2009). 
 

687 Further back in geological time, the analyses are more difficult because we are looking at 
 

688 plants that are only distantly related to modern-day vegetation, but the comparisons can 
 

689 nevertheless be insightful. Many Mesozoic studies have focussed on how vegetation 
 

690 recovered from the Permian – Triassic and Triassic ‒ Jurassic biotic crises (e.g. Grauvogel- 
 

691 Stamm and Ash 2005; Yu et al. 2015). For instance, Hochuli et al. (2016) showed the 
 

692 complex pattern of recovery of the post-extinction, Early Triassic vegetation. Various other 
 

693 floral changes were recorded at the Triassic – Jurassic boundary in Greenland (McElwain et 
 

694 al. 2007) and at the Hettangian-Sinemurian boundary in the South Carpathians (Popa 2000). 
 

695 In the Palaeozoic, most attention has been directed to the effect of the Late Palaeozoic 
 

696 Ice Age on plant diversity: did the observed Pennsylvanian – Cisuralian diversity changes in 
 

697 the tropical vegetation cause climate change (e.g. Cleal and Thomas 1999, 2005), or did the 
 

698 climate change cause the vegetation changes (e.g. Pfefferkorn et al. 2008, 2017), or were the 
 

699 two interlocked through feedback loops (Cleal et al. 2010)? Other links that have also been 
 

700 explored are between the diversification of the first woody forests in Late Devonian times 
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701 and a significant change in ocean water chemistry that caused major reduction in marine 
 

702 faunal diversity (Algeo and Scheckler 1998); and between the very early development of 
 

703 plant diversity during Ordovician times and global cooling and glaciation (Servais et al. 
 

704 2019). 
 

705 Another major theme of research has been the effect of mass extinctions on vegetation 
 

706 (McElwain and Punyasena 2007; Cascales-Miñana et al. 2013). Clearly extensive destruction 
 

707 of vegetation occurred during three of the five classic “mass extinctions” of Sepkoski (1978, 
 

708 1979, 1984): at the boundaries between the Permian – Triassic (e.g. Looy et al. 1999; Hochuli 
 

709 et al. 2016, 2017), Triassic – Jurassic (e.g. McElwain et al 2007; Mander et al. 2013; 
 

710 McElwain 2018) and Cretaceous – Palaeogene (e.g. Vajda and Bercovici 2014). However, a 
 

711 key criterion for recognising a true mass extinction (Raup and Sepkoski 1982) is that it 
 

712 should significantly disrupt the overall trajectory of evolution and this did not occur with 
 

713 plants at most of these biotic crises (McElwain and Punyasena 2007; Cascales-Miñana 2011, 
 

714 2012; Cascales-Miñana and Cleal 2011; Cascales-Miñana and Diez 2012; Cascales-Miñana et 
 

715 al. 2013). Only at the Permian – Triassic boundary does there seem to have been any 
 

716 significant clade disruption (Cascales-Miñana and Cleal 2014; Cascales-Miñana et al. 2016), 
 

717 and even here the pattern of extinction was more complex than with the marine faunas 
 

718 (Hochuli et al. 2016; Nowak et al. 2019). The fossil record seems to suggest that plants were 
 

719 much less vulnerable to biotic crises compared with faunas (Traverse 1988; McElwain and 

720 Punyasena 2007; McElwain et al. 2007; Cascales‐ Miñana et al. 2018). 

721 Identifying vegetation diversity patterns at all scales from the plant fossil record is 
 

722 clearly not easy; whatever the sampling protocol and analytical methods used, the fact will 
 

723 remain that the observed diversity patterns are of the fossils rather than purely of the original 
 

724 vegetation. Nevertheless, the fossil record is the only direct evidence we have of how 
 

725 vegetation has changed through time. By bringing together data from the palaeobotanical and 
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726 palynological records and interpreting it within the context of the taphonomic filter through 
 

727 which the fossils have passed (Fig. 11) will allow us to understand better how plant-life has 
 

728 responded to changes in climate, landscape and continental configurations, and to the 
 

729 dramatic ecological crises often referred to as mass extinctions. 
 

 

 
730 7 Conclusions 

731 
 

A deeper appreciation of the history of vegetation dynamics can inform present-day 
 

732 landscape management and predictions of future biodiversity and climate. For example, the 
 

733 plant fossil record can provide evidence of the speed at which plants can track climate change 
 

734 and this may prove valuable to predict the response of today’s plant vegetation to global 
 

735 warming. It can also provide empirical data to help support and improve models of the 
 

736 dynamic interactions of modern-day vegetation, atmosphere and climate. Evidence from the 
 

737 fossil record clearly has the potential for making a significant contribution to understanding 
 

738 the world today, and emphasises the importance of close co-operation between 
 

739 palaeoecologists and ecologists (Reitalu et al. 2014). Provided that the context of the data is 
 

740 properly understood, including the taxonomy of the fossils (not just the taxonomic names 
 

741 used but what the fossil-taxa mean), the taphonomic processes that caused the fossil to be 
 

742 preserved, and the detailed temporal (stratigraphical) correlations, an underlying signal of 
 

743 vegetation diversity remains waiting to be discovered. 
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1690 Figure captions 

1691 Fig. 1. Variation in productivity of different organs of a plant as illustrated by the pollen, 

1692 flowers, leaves, shoots, stem and roots of a hypothetical modern-day angiosperm tree. 

1693 Redrawn and adapted from Hughes (1976, fig. 3.6) and Cleal and Thomas (2019, fig. 10.4). 

1694 Fig. 2. Three types of diversity that can be recognised in the plant fossil record, using the 

1695 Middle Pennsylvanian (c. 310 Ma) swamp vegetation of Variscan Euramerica, based on Cleal 

1696 et al. (2012). 

1697 Fig. 3. Partial reconstruction of the Late Devonian seed plant Elkinsia based on associated 

1698 fronds, ovulate structures and anatomically preserved stems. Drawn from by Annette 

1699 Townsend (based on Serbet and Rothwell 1992). 

1700 Fig. 4. Examples of the differences in the fossil-genera represented by Carboniferous 

1701 arborescent lycopsids and sphenopsids. Adapted from Cleal and Thomas (2019). 

1702 Fig. 5. Spores of fern Weichselia reticulata (Stokes and Webb) Fontaine showing different 

1703 maturation stages; Escucha Formation (Albian), Escucha, northern Teruel Province, Spain. A, 

1704 General view of a soral cluster up to 2 mm in diameter showing tightly packed peltate 

1705 indusia. B, Tightly-packed spores grouped inside a receptaculum. C, Inaperturate, discoidal 

1706 spores with smooth exine and lacking trilete mark. D, Packed spores showing different 

1707 ontogenetic stages. D, E, Fully-developed tetragonal spores with well-rounded corners and 

1708 clear trilete scar. Original unpublished material from the study in Diez et al (2005) with 

1709 permission of the authors. 

1710 Fig. 6. T0 fossil or submerged forests of arborescent lycopsids in the Carboniferous of the 

1711 UK. A, Fossil trees rooted in a coal seam being exposed at Brymbo, north Wales (Appleton et 

1712 al. 2010). B, Excavated trees in the Victoria Park, Glasgow (Thomas and Seyfullah 2015). 
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1713 Fig. 7. Comparison of palynological and macrofloral spectra obtained from roof-shales 

1714 overlying four Moscovian-age coal seams in South Wales, UK, between the Daren Ddu Seam 

1715 at the base and the Llantwit No. 1 Seam at the top. Palynomorphs not represented are extra- 

1716 basinal, mainly pollen (e.g. conifers). Macrofossils not represented are indeterminate 

1717 remains. Redrawn from Dimitrova et al. (2005, fig. 4). 

1718 Fig. 8. Palaeozoic wetland vegetation preserved in the lower unit of the early Moscovian 

1719 Whetstone Horizon (Bělka tuff), Ovčin, Central Bohemia, Czech Republic. A, Remains of 

1720 cordaites and arborescent lycopsids plotted out on an exposed area of the tuff divided into 1 

1721 m2 quadrats; the small number against each specimen represents the height above the base of 

1722 the tuff that the fossil occurred. B, Reconstruction of forest based on the type of plots shown 

1723 in Fig. 7A. From Opluštil et al. (2014), reproduced with permission from Bulletin of 

1724 Geosciences. 

1725 Fig. 9. Range of basinal and extra-basinal vegetation represented in Moscovian (late 

1726 Carboniferous) palynospectra from the Sydney Coalfield, Cape Breton, Canada (Dimitrova et 

1727 al. 2011). 

1728 Fig. 10. The Evolutionary Floras model of vegetation evolution based on a factor analysis of 

1729 global plant-family distribution through the Phanerozoic (Cleal and Cascales-Miñana 2014). 

1730 Fig. 11. Factors that affect how we interpret past vegetation diversity from the macrofloral 

1731 and palynological records, demonstrating the importance of integrating the two sets of data. 
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Table 1. Fossil-genera assigned to different parts of six representative plants from the main groups in the late Carboniferous tropical coal 

swamps. The fossil-genera selected to represent each plant group in taxonomic diversity studies (e.g. Cleal et al. 2012) designated by an asterisk 

(*). This does not include the pollen/spores produced by these plants. 

 Lycospids Calamites Sphenophylls Marattialeans Medullosaleans Cordaites 

Stems Lepidophloios* Calamites  Caulopteris - Artisia 
   Sphenophyllum*      
Foliage Cyperites Annularia* 

Lepidocarpon 

Alethopteris* Cordaites* 
 

Reproductive Female 
Lepidostrobophyllum Calamostachys Bowmanites 

Cyathocarpus* Trigonocarpus Cardiocarpus 

structures    
Male Lepidostrobus Whittleseya Cordaitanthus 

 

Rooting structures Stigmaria Pinnularia - - - - 

Total fossil-genera 6 4 2 2 3 4 
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