Nathalie Grangeon
email: nathalie.grangeon@uca.fr

Raïssa G Mbiadou Saleu

Laurent Deroussi
email: laurent.deroussi@uca.fr

Dominique Feillet
email: feillet@emse.fr

Alain Quilliot
email: alain.quilliot@isima.fr

The parallel drone scheduling problem with multiple drones and vehicles

Keywords: routing, drone delivery, city logistics, m-TSP, ILS, dynamic programming

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The E-commerce boom and new urban restrictions on truck trac have led to innovative models of parcel distribution. In December 2013, the chief executive ocer of the largest online retailer Amazon Je Bezos shared with the world his vision of using ying robots to deliver products. I know this looks like science ction. It's not he assured of the service called Amazon Prime Air [3]: a drone designed to deliver packages in just 30 minutes (Figure 1). Using unmanned aerial vehicles (UAVs) for door-to-door deliveries seemed like a laughable pipe dream when Amazon tossed out that fanciful idea. Even though, some people didn't nd the concept so far-fetched, many other companies and logistics providers started getting interested in experimenting with drone delivery. In August 2014, Google revealed its drone delivery project called wing [START_REF]Wing : Transforming the way goods are transported[END_REF], with experiments run in Australia (Figure 2). In September 2014, DHL Deutsche Post, Germany's privatized postal system, launched its parcelcopter, a helicopter-style drone which could deliver medications and urgently needed goods to the remote North Sea island of Juist [13] (Figure 3). In 2016, the American courier company UPS has launched tests on the use of drones to deliver parcels to remote or hard-to-reach areas. In February 2017, they successfully tested a drone delivery method in which a drone (called HorseFly) is launched from the roof of a delivery truck [START_REF]UPS tests launching drones from trucks equipped with battery chargers[END_REF] (Figure 4). Many other companies like Alibaba [START_REF] Kelion | Alibaba begins drone delivery trials in China[END_REF], Autralia Post [START_REF] Francis | Australia Post tests drones for parcel delivery[END_REF] or DPD Group [START_REF] Dpdgroup | DPDGroup Drone Delivery[END_REF] have launched similar projects. Drones have also been deployed for humanitarian logistics [START_REF] Zipline | The future of healthcare is out for delivery[END_REF].

Dierent types of integration of drones into last-mile delivery have been investigated by companies and academics. Drones can be used alone or in combination with other means of delivery such as traditional trucks. In the combined operations of aerial drones and trucks, synchronization may or may not be required:

• Synchronization occurs when UAVs travel on trucks that not only perform their delivery tours but also serve as a mobile depot for UAVs. In this process, a UAV can be loaded with a package from a truck, deliver the package and return to a truck (potentially the same) for a next delivery. In the meanwhile, trucks continue their tours.

• Synchronization is not required when UAVs and vehicles perform independent tasks. Typically, both execute independent deliveries from a central distribution center.

Most studies have been carried out with the prospect of making drones and trucks work in tandem, drones taking o from the trucks and next landing back while those trucks are themselves involved into delivery tasks. This approach is likely to prevail when distribution centers are far from customers. But, as pointed out in [START_REF] Mathew | Planning paths for package delivery in heterogeneous multirobot teams[END_REF], if distribution centers are small, deeply embedded in a urban area and close to customers, direct deliveries with drones are possible. This process is simpler to implement by the logistics provider since it will not require any synchronization protocol. The provider will just have to split tasks between trucks and drones. In addition, having drones and trucks working in parallel will also ensure more robustness to the global delivery process.

In this paper, we are interested in the latter, that is, deliveries performed by drones and vehicles (trucks) in parallel, without synchronization. Vehicles perform classical parcel delivery tours; drones repeat singlecustomer back-and-forth trips. We propose a hybrid metaheuristic combining Iterated Local Search and Dynamic Programming. This heuristic is inspired from a heuristic that we developed previously for a simplied problem, where the eet of trucks was limited to a single vehicle [START_REF] Mbiadou Saleu | An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem[END_REF]. Note that generalizing the heuristic necessitates signicant changes, as will be seen in Section 4.

The paper is structured as follows. In Section 2, we discuss upon the most relevant related literature. Section 3 denes our problem formally and provides a Mixed Integer Linear Programming (MILP) formulation. We propose a hybrid metaheuristic to solve the problem in Section 4. Section 5 presents experimental results. Section 6 concludes the paper.

Related work

The problem of parcel delivery with drones has received increasing attention these last years. Proposals for drone delivery vary widely, with drones being used independently or in conjunction with deliveries by trucks. This review focuses on routing problems involving truck-drone combination for parcel delivery. However, we note that works on drone-only delivery systems can be found in [START_REF] Dorling | Vehicle routing problems for drone delivery[END_REF][START_REF] San | The delivery assignment solution for swarms of UAVs dealing with multi-dimensional chromosome representation of genetic algorithm[END_REF][START_REF] Sundar | Algorithms for routing an unmanned aerial vehicle in the presence of refueling depots[END_REF][START_REF] Choi | Optimization of multi-package drone deliveries considering battery capacity[END_REF][START_REF] Troudi | Sizing of the drone delivery eet considering energy autonomy[END_REF][START_REF] Cheng | Formulations and exact algorithms for drone routing problem[END_REF][START_REF] Song | Persistent UAV delivery logistics: MILP formulation and ecient heuristic[END_REF]. Most of these studies assume that a drone can lift multiple packages within its maximum payload and serve customers in a service area of given radius. The main constraints are on weight, battery energy and customers time windows. Additionally, apart from package delivery applications, many works investigate the potential of UAVs in other non-military applications like disaster management, rescue operations, agriculture or healthcare. A survey about the use of UAVs for civil applications is provided by Otto et al. [START_REF] Otto | Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey[END_REF].

The problem of combining a drone with a traditional delivery truck for parcel delivery was rst formally dened by Murray and Chu [START_REF] Murray | The ying sidekick traveling salesman problem: Optimization of droneassisted parcel delivery[END_REF]. They introduced two dierent problems: the Flying Sidekick Traveling Salesman Problem (FSTSP), where deliveries are performed by a single vehicle and a single drone working in tandem (the drone travels on the truck and can temporarily y to make a delivery on its own) and the Parallel Drone Scheduling Traveling Salesman Problem (PDSTSP), where a vehicle and a eet of drones operate separately from the depot. Figure 5 illustrates a standard delivery system with a truck and the two proposed delivery systems with drones. MILP formulations and greedy construction heuristics for both problems were provided. Since then, many studies have explored dierent variants of truck-drone combination for parcel delivery. Considering works related to the FSTSP, the single-truck single-drone variant (also called TSP with drone, TSP-D) is addressed in many papers. Agatz et al. [START_REF] Agatz | Optimization approaches for the traveling salesman problem with drone[END_REF] provided a MILP formulation and a route rstcluster second heuristic. Ponza [START_REF] Ponza | Optimization of drone-assisted parcel delivery[END_REF], Daknama and Kraus [START_REF] Daknama | Vehicle routing with drones[END_REF], Marinelli et al. [START_REF] Marinelli | En route truckdrone parcel delivery for optimal vehicle routing strategies[END_REF], Ha et al. [START_REF] Ha | On the min-cost traveling salesman problem with drone[END_REF], Yurek and Ozmutlu [START_REF] Yurek | A decomposition-based iterative optimization algorithm for traveling salesman problem with drone[END_REF], freitas et al. [START_REF] De Freitas | A variable neighborhood search for ying sidekick traveling salesman problem[END_REF], and Schermer et al. [START_REF] Schermer | Algorithms for solving the vehicle routing problem with drones[END_REF] proposed neighborhood-search based heuristics. Bouman et al. [START_REF] Bouman | Dynamic programming approaches for the traveling salesman problem with drone[END_REF] provide exact solution approaches based on dynamic programming.

Other works consider a single-truck and multiple UAV's. Problems in this class assume that from each truck stop one or several drones can be launched. Chang et al. [START_REF] Chang | Optimal delivery routing with wider drone-delivery areas along a shorter truck-route[END_REF] and Ferrandez et al. [START_REF] Mourelo Ferrandez | Optimization of a truckdrone in tandem delivery network using k-means and genetic algorithm[END_REF] proposed clustering based heuristics to nd truck stops from where drones are launched. Tu et al. [START_REF] Tu | Traveling salesman problem with multiple drones[END_REF] called this problem TSP-mD and they proposed an adaptive large neighborhood search (ALNS) heuristic. In [START_REF] Murray | The multiple ying sidekicks traveling salesman problem: Parcel delivery with multiple drones[END_REF], the same problem is called mFSTSP and the authors provided a MILP formulation and a three-phases heuristic solution approach.

The case involving both multiple trucks and multiple UAVs is considered in [START_REF] Kitjacharoenchai | Multiple traveling salesman problem with drones: Mathematical model and heuristic approach[END_REF] where autonomous drones are allowed to y from a delivery truck, make deliveries, and y to any available truck nearby. A MILP formulation and an algorithm based on insertion heuristics are provided. Wang et al. [START_REF] Wang | The vehicle routing problem with drones: several worst-case results[END_REF] studied the so-called Vehicle Routing Problem with Drones (VRPD) in which a drone launched from a truck must be picked up by the same truck at the same or at a dierent location. A worst-case analysis on the benets achieved using drones is provided. This line of research is pursued by the same authors in [START_REF] Poikonen | The vehicle routing problem with drones: Extended models and connections[END_REF]. Pugliese and Guerriero [START_REF] Pugliese | Last-mile deliveries by using drones and classical vehicles[END_REF] extended the VRPD by considering time window constraints. The problem is modeled as a variant of the vehicle routing problem with time windows (VRPTW) where each vehicle is equipped with drones (VDRPTW). A MILP formulation is proposed.

Literature related to the PDSTSP is more limited. In our previous work [START_REF] Mbiadou Saleu | An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem[END_REF], we proposed an iterative twostep heuristic, composed of: a coding step that transforms a solution into a customer sequence, and a decoding step that decomposes the customer sequence into a tour for the vehicle and series of trips for the drone(s). Decoding was expressed as a bicriteria shortest path problem and carried out by dynamic programming. Dell'Amico et al. [START_REF] Dell'amico | Matheuristic algorithms for the parallel drone scheduling traveling salesman problem[END_REF] presented a set of matheuristic methods. Kim and Moon [START_REF] Kim | Traveling salesman problem with a drone station[END_REF] considered a variant of the PDSTSP in which UAVs can not only be deployed from the depot but also from dedicated drone stations.

Ham [START_REF] Ham | Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming[END_REF] studied a multi-truck multi-depot variant of the PDSTSP considering two dierent types of drone tasks: drop-o and pickup. After a drone nishes a delivery task, it can either y back to the depot to deliver the next parcels or y directly to another customer to pick up a returned parcel. The problem is solved with a constraint programming approach.

Ulmer and Thomas [START_REF] Ulmer | Same-day delivery with heterogeneous eets of drones and vehicles[END_REF] studied a dynamic version of the PDSTSP. They called their problem Same-Day Delivery Routing Problem with Heterogeneous Fleets (SDDPHF). The SDDPHF considers two eets of vehicles and drones that deliver goods from the depot to customers who dynamically request services. When a new customer request arrives, a dispatcher has to decide whether or not to accept the customer for the same-day delivery and determine the according assignment and routing decisions. The SDDPHF takes into account a time window for each request, the loading time for both vehicles and drones, the time to drop o a package from a vehicle or a drone as well as the recharging or battery swap time for drones. The objective is to maximize the expected number of customers served the same day. To solve the problem, the authors proposed an adaptive dynamic programming approach called parametric policy function approximation (PFA).

In another class of truck-drone combination problems, all deliveries are assigned to UAVs: trucks are only used to carry the UAVs. Mathew et al. [START_REF] Mathew | Planning paths for package delivery in heterogeneous multirobot teams[END_REF] called this problem Heterogeneous Delivery Problem (HDP). They proved that the HDP is NP-hard and proposed an ecient reduction to the Generalized Traveling Salesman Problem. In [START_REF] Poikonen | Multi-visit drone routing problem[END_REF], Poikonen introduced the multi-visit drone routing problem (MVDRP) which considers a tandem between a truck and a drone. The drone can take o from the truck with one or more packages to deliver to customers. The drone may return to the truck to swap/recharge batteries, pick up a new set of packages, and launch again to customer locations. The goal of the MVDRP is to minimize completion time. To solve the problem, the author proposed a exible heuristic. The solution method is extended to a truck and multi-drones model, named k-MVDRP. In [START_REF] Bin Othman | Routing of carrier-vehicle systems with dedicated last-stretch delivery vehicle and xed carrier route[END_REF], Othman et al. introduced two settings of the problem. In the rst setting, while the drone is making a delivery, the truck is not allowed to wait at the last rendez-vous point nor to intercept the drone at any rendez-vous point more than once. Conversely, in the second setting, the truck is allowed to wait for the drone at the last rendez-vous point or to re-visit a rendez-vous point multiple times. They modeled this problem as a problem of nding a special type of path in a graph with a special structure, and proposed a polynomial-time approximation algorithm for each of the problem settings. Luo et al. [START_REF] Luo | A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle[END_REF] studied the two-echelon cooperated ground vehicle and its carried UAV routing problem (2E-GU-RP) which considers a set of targets, each of whom must be served exactly once by the UAV. They provided an integer programming model and two heuristics.

Dayarian et al. [START_REF] Dayarian | Same-day delivery with drone resupply[END_REF] introduced another original truck-drone combination problem where delivery vehicles are regularly resupplied by drones. Resupply can take place whenever a delivery vehicle is stationary and a drone can land on the vehicle's roof. The problem is named Vehicle Routing Problem with Drone Resupply (VRPDR). The authors presented several policy function approximations to analyze dierent routing and assignment strategies.

Table 1 reports the main papers dealing with UAVs and vehicles performing independent tasks. Columns #V and #D indicate the number of vehicles and drones, respectively.

Reference

Problem #V #D Drone Solution methods capacity Murray and Chu [START_REF] Murray | The ying sidekick traveling salesman problem: Optimization of droneassisted parcel delivery[END_REF] PDSTSP

1 m 1
MILP, heuristics Saleu et al. [START_REF] Mbiadou Saleu | An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem[END_REF] PDSTSP

1 m
1 MILP, iterative two-step heuristic Dell'Amico et al. [START_REF] Dell'amico | Matheuristic algorithms for the parallel drone scheduling traveling salesman problem[END_REF] PDSTSP

1 m
1 MILP, matheuristic Ulmer and Thomas [START_REF] Ulmer | Same-day delivery with heterogeneous eets of drones and vehicles[END_REF] SDDPHF

k m 1
Adaptive dynamic programming Ham [START_REF] Ham | Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming[END_REF] PDSTSP drop&pickup The table clearly shows that when the eet is limited to a single truck, authors have focused on the PDSTSP. Furthermore, it shows that the natural extension of this problem to a eet composed of multiple trucks have not been investigated so far. In this paper, we ll this gap by investigating this extension.

k m ≥ 1

Constraint programming

The Parallel Drone Scheduling Multiple Traveling Salesman Problem

In this section, we introduce the Parallel Drone Scheduling Multiple Traveling Salesman Problem (PDSMTSP), provide a MILP formulation and describe a simple branch-and-cut solution method.

Problem statement

Let G = (N ∪ {0}, A) be a complete directed graph where N = {1, . . . , n} is the customer set and 0 is the depot. A eet of K vehicles and a eet of M drones are available. Each vehicle delivers customers with a single tour starting from the depot, visiting a subset of customers and returning back to the depot. Drones are constrained to perform back and forth trips between the depot and the customers, delivering a single customer in each trip. Some customers are not eligible for drone delivery, because of practical constraints such as the limited payload or the ying range of drones. The subset of customers that can be served by a drone is denoted N d . These customers are consistently called drone-eligible in the rest of the paper. Figure 6 depicts a solution of the PDSMTSP on an instance with 10 customers, among which 5 are drone-eligible.

A travel time t ij is incurred when a vehicle goes through an arc (i, j) ∈ A. A travel time t i is incurred when a drone serves a customer i ∈ N d (t i includes take-o, back and forth ight trips, service and landing times). Assuming that both the vehicles and the drones can start from the depot at time 0, the objective of the PDSMTSP is to minimize the delivery completion time, i.e., the time at which all the vehicles and all drones are back to the depot, with the service of all customers carried out.

Clearly, the choice of completion time for the objective function is motivated by previous works on the subject and is somehow academic. In practice, service quality or other types of costs are likely to be considered, among which those related to: vehicle usage, energy, human resources, maintenance, logistics operations. . . Even so, completion time nicely reects the objective of limiting as much as possible the time devoted to distribution and could equivalently represent a constraint on the time available for deliveries.

MILP formulation

In this section, we express the PDSMTSP with a MILP formulation. We introduce the following decision variables:

• z i = 1 if customer i is visited by a vehicle, 0 if it is visited by a drone (i ∈ N);

• x ijk = 1 if arc (i, j) belongs to vehicle tour k, 0 otherwise ((i, j) ∈ A, 1 ≤ k ≤ K);

• w ij = 1 if arc (i, j) belongs to a vehicle tour, 0 otherwise ((i, j) ∈ A);

• y im = 1 if customer i is assigned to drone m, 0 otherwise (i ∈ N d , 1 ≤ m ≤ M); • T ≥ 0 indicating the completion time.
The model is:

minimize T (1) subject to T ≥ (i,j)∈A t ij x ijk (1 ≤ k ≤ K) (2) T ≥ i∈N d t i y im (1 ≤ m ≤ M)
(3)

z i = 1 (i ∈ N \ N d) (4)
1≤m≤M

y im = 1 -z i (i ∈ N d) (5)
w ij = 1≤k≤K x ijk ((i, j) ∈ A) (6)
(i,j)∈A

w ij = z i (i ∈ N) (7)
(0,j)∈A

x 0jk ≤ 1 (1 ≤ k ≤ K) (8)
(i,j)∈A

x ijk = (j,i)∈A x jik (i ∈ N, 1 ≤ k ≤ K) (9)
j∈S l∈N ∪{0}\S

w jl ≥ z i (S ⊆ N, S = ∅, i ∈ S) (10)
z i ∈ {0, 1} (i ∈ N) (11)
x ijk ∈ {0, 1} ((i, j) ∈ A, 1 ≤ k ≤ K) (12)
w ij ∈ {0, 1} ((i, j) ∈ A) (13)
y im ∈ {0, 1} (i ∈ N d , 1 ≤ m ≤ M) (14)
T ≥ 0 (15)
The objective (1) is to minimize completion time T . Constraints (2) and (3) give lower bounds on T expressed by completion times of each vehicle and drone. Constraints (4) ensure that customers that are not drone-eligible are served by a vehicle. Constraints [START_REF] Bouman | Dynamic programming approaches for the traveling salesman problem with drone[END_REF] guarantee that every drone-eligible customer is also served, either by a vehicle or a drone. Constraints (6) and [START_REF] Cheng | Formulations and exact algorithms for drone routing problem[END_REF] express that if a customer is served by a vehicle, it is assigned to a vehicle tour. Constraints [START_REF] Choi | Optimization of multi-package drone deliveries considering battery capacity[END_REF] stipulate that each vehicle leaves the depot at most once. Constraints (9) ensure ow conservation for vehicle tours. Subtour Elimination Constraints (SEC) are provided by constraints [START_REF] Daknama | Vehicle routing with drones[END_REF]. These constraints ensure that given a non empty subset of customers S ⊆ N , if at least one customer in S is visited by a vehicle, there exists at least one outgoing arc from S. Finally, constraints [START_REF] Dayarian | Same-day delivery with drone resupply[END_REF] to [START_REF] Dpdgroup | DPDGroup Drone Delivery[END_REF] dene decision variables.

Branch-and-cut procedure

The model described in the previous section could be used to solve exactly the problem with a MILP solver, but, because of the weak LP relaxation quality and the exponential size of subtour elimination constraints [START_REF] Climaco | A bicriterion shortest path algorithm[END_REF], it may only allow solving very small-size instances. In order to address slightly larger instances, we implemented a simple branch-and-cut algorithm in which subtour elimination constraints (SECs) are dynamically added to the formulation. When, at any node of the branch-and-bound tree, the ow supported by the linear relaxation contains a subtour, the corresponding SEC is added to the formulation.

The branch-and-cut is implemented with CPLEX and exploits the possibilities oered by this solver. We respectively use Lazy Constraint Callbacks and User Cut Callbacks to add SECs when incumbent solutions are integer or fractional. We implemented two separation algorithms to cover these two cases.

The separation of SECs for integer solutions amounts to detecting a circuit in a graph. This is achieved by a simple search algorithm on the graph dened by arcs (i, j) with w ij > 0. Any circuit not connected to the depot gives a new SEC.

When the incumbent solution is fractional, we build an auxiliary graph G aux = (V aux , A aux) such that V aux = {0} ∪ {i ∈ N : z i > 0} and A aux = {(i, j) ∈ A : w ij > 0}. With each arc (i, j) ∈ A aux , we associate a capacity c ij = w ij . Then, for each customer i ∈ V aux , we apply Ford and Fulkerson algorithm [START_REF] Ford | Flows in networks[END_REF] to compute the maximal ow between the depot and i. Given i ∈ V aux , capacity constraints ensure that the maximal ow cannot exceed z i . If it is less than z i , the customers not reached during the search for an augmenting chain form a set S from which a new SEC is generated.

Hybrid Metaheuristic

In this section we describe the solution approach that we proposed. As already explained, it extends a procedure developed in [START_REF] Mbiadou Saleu | An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem[END_REF] for the case with a single vehicle (PDSTSP). We quickly recall this procedure below.

The procedure starts by building a TSP tour τ (also called giant tour) visiting all the customers. This tour is then decomposed into a subsequence τ vehicle and a complementary subset π drones , which respectively give a tour for the vehicle and a set of customers assigned to the drones. This decomposition is performed by dynamic programming, with a labeling mechanism. Vehicle tour τ vehicle is then reoptimized with the Lin-Kernighan heuristic [START_REF] Helsgaun | An eective implementation of the LinKernighan traveling salesman heuristic[END_REF]. The assignment of customers from π drones to individual drones is solved as a Parallel Machine Scheduling (PMS) problem with a greedy heuristic. The next step is to reconstruct a new giant tour that will be used for the subsequent iteration. This is carried out by inserting in the vehicle tour all the customers served by drones, with a randomized best insertion strategy.

The solution method developed for the PDSMTSP basically follows the same idea, but with some important changes. Decomposing the giant tour τ becomes much harder because a tour is expected for each one of the K vehicles. To preserve acceptable computing times, we heavily restrict the possibilities in the decomposition. Roughly speaking, vehicle tours will correspond to successive subsequence of τ : having two subsequences that overlap is not allowed. For that reason, the quality of the decomposition cannot be entirely ensured and we introduce some quick local search operators to intensify the search. The heuristic is coined hybrid metaheuristic to reect the fact that it combines components from dierent paradigms (a global framework similar to an iterated local search, dynamic programming to decompose the giant tour, a greedy algorithm to optimize drone operations. . .) as will be detailed hereafter.

In Section 4.1, we describe in more details the general scheme of the heuristic. Section 4.2 presents the dierent local search moves implemented. The decoding procedure, decomposing the giant tour, is detailed in Section 4.3.

General scheme of the hybrid metaheuristic

We adopt the following notation. A solution S is represented as a vector of K customer sequences and M sets (τ 1 , τ 2 , . . . , τ K , π 1 , . . . , π M), where τ 1 , τ 2 , . . . , τ K indicate the visit order of the customers for the K vehicles and π 1 to π M the sets of assigned customers for the M drones. We denote c 1 k (S) the completion time for vehicle k in solution S and c 2 m (S) the completion time for drone m. Finally,

c(S) = max(c 1 1 (S), . . . , c 1 K (S), c 2 1 (S), . . . , c 2 M (S))
is the solution cost. To illustrate the notation, let us consider the solution depicted in Figure 6: the solution vector is ((1, 10, 9), [START_REF] Bouman | Dynamic programming approaches for the traveling salesman problem with drone[END_REF][START_REF] Chang | Optimal delivery routing with wider drone-delivery areas along a shorter truck-route[END_REF][START_REF] Cheng | Formulations and exact algorithms for drone routing problem[END_REF][START_REF] Choi | Optimization of multi-package drone deliveries considering battery capacity[END_REF][START_REF] Bin Othman | Routing of carrier-vehicle systems with dedicated last-stretch delivery vehicle and xed carrier route[END_REF], (3), (2)).

The general scheme of the heuristic is summarized in Algorithm 1 and is explained hereafter.

Initialization (Lines 1 and 2). We initialize the algorithm with a giant TSP tour τ where a vehicle is visiting the depot and all the customers. This tour is obtained with a nearest-neighbor construction procedure. It provides a starting solution

(τ 1 = τ, τ 2 = ∅, . . . , τ K = ∅, π 1 = ∅, . . . , π M = ∅)
, where all the customers are visited by the rst vehicle in the order of sequence τ . No customers are assigned to other vehicles nor to the drones.

Decoding (Line 4). Procedure split decomposes sequence τ in K complementary subsequences: τ 1 , τ 2 , . . . , τ K for customers assigned to the K vehicles and a set π drones for customers assigned to the eet of drones. This complex procedure is detailed in Subsection 4.3.

Algorithm 1 General scheme of the hybrid metaheuristic

1: τ ← solveT SP () 2: bestSol ← (τ rec 1 = τ, τ rec 2 = ∅, . . . , τ rec K = ∅, π rec 1 = ∅, . . . , π rec M = ∅)
3: while the computing time limit is not reached do 4:

(τ 1 , τ 2 , . . . , τ K , π drones) ← split(τ) 5: (τ opt 1 , τ opt 2 , . . . , τ opt K) ← reoptimizeT SP (τ 1 , τ 2 , . . . , τ K) 6: (π opt 1 , . . . , π opt M) ← optimizeP M S(π drones) 7: (τ imp 1 , τ imp 2 , . . . , τ imp K , π imp 1 , . . . , π imp M) ← improveSol(τ opt 1 , τ opt 2 , . . . , τ opt K , π opt 1 , . . . , π opt M) 8: if solution (τ imp 1 , τ imp 2 , . . . , τ imp K , π imp 1 , . . . , π imp M) is better than bestSol then 9: bestSol ← (τ imp 1 , τ imp 2 , . . . , τ imp K , π imp 1 , . . . , π imp M) 10: end if 11:
τ ← buildGiantT our(bestSol)

12: end while Route reoptimization (Line 5). Every vehicle route τ 1 to τ K is reoptimized with the TSP Lin-Kernighan heuristic, using Helsgaun's implementation [START_REF] Helsgaun | An eective implementation of the LinKernighan traveling salesman heuristic[END_REF].

Drone assignement (Line 6). The output of the decoding procedure does not provide a detailed planning for the drones; it only indicates which customers will be served by drones. The assignment of customers to individual drones is a PMS problem and is solved with the well-known longest processing time heuristic [START_REF] Pinedo | Scheduling: Theory, algorithms and systems development[END_REF].

Local search (Line 7). Procedure improveSol performs local search moves to improve the current solution.

These moves and the local search strategy are described in Subsection 4.2.

Update of the current solution (Lines 8 and 10). The new solution

(τ imp 1 , τ imp 2 , . . . , τ imp K , π imp 1 , . . . , π imp M)
is compared with bestSol and the latter is updated if needed. A solution S is considered to be better than another solution S if one of the two following conditions hold:

• c(S) < c(S)

• c(S) = c(S) and

K k=1 c 1 k (S) + M m=1 c 2 m (S) < K k=1 c 1 k (S) + M m=1 c 2 m (S)
This way, when two solutions have the same objective value, the one that minimizes the sum of completion times is preferred.

Construction of the new giant tour (Line 11). The tours of the best solution are rst concatenated in a random order. Then, customers assigned to drones are randomly inserted. The resulting giant tour is optimized with 2-opt.

Note that this algorithm can be interpreted as an Iterated Local Search [START_REF] Lourenço | Iterated local search[END_REF] (ILS). Each iteration of the algorithm ends with a local optimum. This local optimum is perturbed by randomly constructing a new giant tour and decoding this giant tour. The new solution is then improved by local search until a new local optimum is found. The main focus, and originality, of our algorithm is the way the perturbed solution is obtained. The objective at this step is to both avoid restarting from a random solution and being attracted to the same local optimum. The giant tour construction procedure ensures that a large quantity of information from the best solution is preserved. The projection to the space of permutations enables large moves in the solution space, and thus limits the risk that the same local optima are repeatedly explored.

The drawback of this approach is the time spent when decoding solutions. Dierent mechanisms have been implemented to limit this time. However, this step remains the bottleneck of the algorithm. Seeing the complexity of each iteration, we decided to accept new solutions according to a better-walk mechanism, that is, only improving solutions are accepted.

The three main novelties of this algorithm compared to the one developed in our previous work [START_REF] Mbiadou Saleu | An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem[END_REF] are:

• The introduction of ad hoc local search moves to complement the decomposition procedure and converge towards better solutions.

• The modication of the split procedure to handle multiple vehicles, with new label denition, extension rules, lower bounds and upper bounds.

• The introduction of the Iterated Local Search framework to improve the exploration of the search space.

Local search

Figures 7 and8 describe the dierent types of local search moves that we implemented, respectively between a vehicle and a drone, or between two vehicles:

• Tranfer move (Figure 7(a), Figure 7(b)): a drone-eligible customer is transferred from a vehicle to a drone or from a drone to a vehicle.

• Exchange move drone-veh (Figure 7(c)): a drone-eligible customer in a vehicle tour and a drone customer are exchanged.

• Relocate move (F Figure 8(a)): a customer located in a vehicle route is moved to another vehicle route.

• Exchange move veh-veh (Figure 8(b)): two customers of two dierent vehicle routes are interchanged.

• Cross move (Figure 8(c)): two sequences of customers are exchanged by crossing two edges in two dierent routes.

The moves are applied until a local optimum is obtained. If the maximal completion time is due to a vehicle, the above order is followed when applying moves. If it is by a drone, the search is limited to the transfer and exchange moves, in this order. A rst improvement strategy is employed: as soon as an improving move is found, the solution is updated and the neighborhoods are explored again from the beginning. In all cases, the search is restricted to neighbor solutions that involve the vehicle or drone with the maximal completion time. Indeed, no improvement is possible otherwise. When a customer is moved from this vehicle/drone, it is rst tentatively moved to the vehicles/drones with minimum completion time.

The transfer neighborhood has a size O(n × M) when the transfer is from a vehicle to a drone, O(n × |N d |) otherwise. The size for the exchange move between a drone and a vehicle is also O(n × |N d |). Other neighborhoods have a size O(n 2). Every solution in every neighborhood can be evaluated in constant time O(1).

Decoding procedure split(τ)

In this section, we explain how K vehicle tours and a set of customers assigned to drones are extracted from a sequence τ with the split procedure. We introduce the following notation. i < τ j indicates that i precedes j in τ ; j = pred τ (i) means that j is the direct predecessor of i in τ ; equivalently, j = succ τ (i) means that j is the direct successor of i. Given i and j with i < τ j, time τ (i, j) is the path length (in terms of the sum of travel times) from i to j by following arcs in τ ; to simplify further notation, time τ (i, i) is also introduced and set to 0.

Procedure split(τ) decomposes sequence τ by assigning each customer to one of the vehicles (sequences τ 1 , . . . τ K) or to the set of drone customers (set π drones). It respects the following constraints: if i < τ j and i, j ∈ τ k then i < τ k j; if i < τ j, i ∈ τ k and j ∈ τ l with k = l, then k < l. Intuitively, these constraints mean that the decoding procedure cut sequence τ in K pieces: each piece contains the customers assigned to a vehicle plus some other customers assigned to drones.

We perform this decomposition by introducing an acyclic directed graph and solving a multi-criteria shortest path problem [START_REF] Climaco | A bicriterion shortest path algorithm[END_REF] by dynamic programming.

Denition of the acyclic graph

We introduce G τ = (V τ , A τ) an acyclic graph dened as follows. V τ = {0, 1, 2, . . . , n, n + 1} represents the set of customers completed by two copies of the depot: the original depot 0 and its copy n + 1. In the multi-creteria shortest path problem, 0 will be the origin and n + 1 the destination. Given i and j in V τ , with i = j, arc (i, j) exists in A τ if and only if the two following conditions are both satised:

• i < τ j
• all the customers between i and j in τ are drone-eligible:

i < τ µ < τ j ⇒ µ ∈ N d With every arc (i, j) ∈ A τ , we associate a cost vector (c 1 ij , c 2 ij). The rst cost component c 1 ij represents the cost incurred if a vehicle travels directly from i to j: c 1 ij = t ij .
The second cost component c 2 ij represents the corresponding cost induced for the drones. If the vehicle travels directly from i to j, all customers µ in-between (which by denition of A τ are all drone-eligible) are assigned to the drones:

c 2 ij = 1 M × {µ∈V τ : i<τ µ<τ j} t µ .
This value does not exactly give the contribution of these customers to the completion time of the drones, which could only be obtained by solving a PMS problem, but provides an optimistic (lower-bound) value and a good approximation. Figure 9 shows an illustrative example for an instance with 5 customers. Customers 2 and 4 are not drone-eligible. The vehicle travel cost matrix is reported in Table 2(a) in which we add the copy of the depot (node 6). Table 2(b) presents the drone-trip costs for drone-eligible customers. We assume τ = (1, 2, 3, 4, 5) and a single drone.

Dynamic programming scheme

Paths starting from node 0 in graph G τ can be matched with partial decompositions of sequence τ . The information about this decomposition is captured in a label associated with the path. A label is dened with the following attributes:

• n veh is the index of the current vehicle; the tours (sequences τ k) of vehicles with index k < n veh are known; the tours of vehicles with index k > n veh are still empty;

• c preV eh is the cost of the longest of the tours that are already known ;

• c curV eh is the cost of the current vehicle tour;

• c drone is the approximated drone cost;

• pred is the label from which this label was obtained.

We note L = (n veh , c preV eh , c curV eh , c drone , pred). Equivalently, the atributes of a label L are denoted n veh (L), c preV eh (L) and so on.

The dynamic programming procedure is described in Algorithm 2. The principle is to progressively associate a list of labels L(i) with each node i of G τ . At the initialization, L(i) is set to ∅ for every node i (Line 1). The procedure then starts by assigning label (1, 0, 0, 0, ∅) to L(0) (Line 2).

The procedure goes through the graph from the origin depot node 0 to the destination depot node n + 1 by following the order dened in sequence τ . Function increment on Line 5 is introduced for this purpose. The list of labels L(i) of a given node i is obtained by extending labels in the list of labels of its predecessor nodes (Lines 6-19). For any predecessor node j and any label L of L(j), two possible extensions may occur:

1. A rst extension is to add arc (j, i) to the current vehicle tour. The new generated label L is dened by (Line 8):

                 n veh (L) = n veh (L) c preV eh (L) = c preV eh (L) c curV eh (L) = c curV eh (L) + c 1 ji c drone (L) = c drone (L) + c 2 ji pred(L) = L 2.
A second extension consists in closing the tour of the current vehicle and starting a new vehicle tour with an available vehicle. This extension is not allowed when: j = 0, i = n + 1 or n veh (L) = K; furthermore, the extension is not considered when pursuing with the current vehicle does not increase the current global cost: indeed, it would then be suboptimal to start the tour of a new vehicle (Line 12). When the extension is carried out, the new label L is given by (Line 13):

                 n veh (L) = n veh (L) + 1 c preV eh (L) = max(c preV eh (L), c curV eh (L) + t j,0) c curV eh (L) = t 0,i c drone (L) = c drone (L) + c 2 ji pred(L) = L
In order to limit the number of labels generated in the lists as the procedure advances in the graph, some bounding mechanisms (Lines 9 and 14) and a dominance rule (Lines 10 and 15) are introduced. These two components are detailed below.

At the end, the vehicle tours are retrieved through a backtracking mechanism based on attribute pred and starting with the best label found in L(n+1), i.e., the label that minimizes max(c preV eh (L), c curV eh (L), c drone (L)). Nodes that are not in the vehicle tours are assigned to the drones.

Algorithm 2 Procedure split(τ)

1: L(i) ← ∅ for 0 ≤ i ≤ n + 1 2: L(0) ← {(1, 0, 0, 0, ∅)} 3: i ← 0 4: while i <τ n + 1 do 5: increment i 6:
for all j subject to (j, i) ∈ A τ do 7:

for all L ∈ L(j) do 8:

L ← extend L by adding arc (j, i) to the current tour 9: if L is not pruned by bounding mechanisms then 10:

insert with dominance L in L(i) 11: end if 12: if extending L by starting a new vehicle tour should be considered then 13:

L ← extend L by adding arc (j, 0) to the current tour and starting a new tour with arc (0, i)

Insertion with dominance

When a label has to be added to a list of labels, dominance tests are tried. These tests are done with all the labels in the list, both to check whether the new label should be discarded or if an existing label should be removed. The dominance rule is very simple. Given a node i ∈ τ and two labels L a and L b in L(i), L a dominates L b if the following inequalities are all satised:

       n veh a ≤ n veh b max c preV eh (L a), c curV eh (L a) + t i,0 , c drone (L a) ≤ max c preV eh (L b), c curV eh (L b) + t i,0 , c drone (L b) c curV eh (L a) ≤ c curV eh (L b) c drone (L a) ≤ c drone (L b)

Upper bound generation

The bounding mechanisms rely on three upper bounds that are computed before starting the dynamic programming algorithm, for a given sequence τ . A rst upper bound U B 1 is given by the value of the best solution found so far by the hybrid algorithm. The other bounds rely on Algorithm 3. This algorithm computes the minimal cost χ(i, k) that can be achieved to serve all customers up to i in the order of sequence τ using k vehicles (i ∈ τ , 1 ≤ k ≤ K). Compared to Algorithm 2 the possibility to serve customers with drones is ignored. Algorithm 3 applies the following recursion:

       χ(i, 1) = time τ (0, i) + t i,0 (i ∈ τ), χ(0, k) = 0 (2 ≤ k ≤ K), χ(i, k) = min j<τ i max χ(j, k -1), t 0,succτ (j) + time τ (succ τ (j), i) + t i,0 (i ∈ τ : i = 0, 2 ≤ k ≤ K). (16)
The recursion introduces vertex j at which the last route starts, computes the associated completion time and states that χ(i, k) is given by the best splitting point j.

Algorithm 3 Procedure decompose(τ)

1: χ(i, 1) ← time τ (0, i) + t i,0 , ∀i ∈ τ 2: χ(0, k) ← 0, ∀k = 2..K 3: for k = 2..K do 4: i ← 0 5: while i = n + 1 do 6: i ← succ τ (i) 7: χ(i, k) ← min j<τ i max χ(j, k -1), t 0,succτ (j) + time τ (succ τ (j), i) + t i,0 8:
end while 9: end for 10: return χ Upper bounds U B 2 and U B 3 try to circumvent the extra diculty of having multiple vehicles. They both aggregate the K vehicles into a single one. To do so, we introduce what we call the vehicle acceleration coecient α = α(K), which approximates the speedup needed for a single vehicle to execute the same set of deliveries than a eet of K vehicles in the same amount of time. The two bounds dier in the value of this coecient. Then, a heuristic split procedure is used to determine the customers assigned to drones and those assigned to the speedy vehicle. Algorithm 3 is nally used to determine the K vehicle tours for the latter.

More precisely, the second upper bound U B 2 works as follows:

1. Determine the acceleration coecient α = χ(n+1,1) χ(n+1,K) ; this coecient approximates the gains obtained when K vehicles are used instead of 1;

2. Apply procedure split(τ) assuming a single vehicle, changing costs c 1 ij to tij α to account for the acceleration, deactivating the bounding mechanisms and keeping only the best label at each node; 3. Consider the subsequence τ obtained with this procedure and re-apply Algorithm 3 to decompose it into K vehicles tours τ 1 , τ 2 , ..., τ K (these tours can be obtained backwardly from χ(n + 1, K));

4. Solve the PMS problem with the longest processing time heuristic for the remaining customers; 5. Compute the completion time and set U B 2 to this value.

The third upper bound U B 3 is obtained as U B 2 but changing the acceleration coecient α to K. U B is set as the best (minimal) upper bound among these three bounds:

U B = min(U B 1 , U B 2 , U B 3).

Lower bound generation

We introduce a lower bound LB tot (i, L) on the minimal completion time that can be achieved when extending a label L associated with a customer node i. LB tot (i, L) requires to precompute value SP (i) of the shortest path in G τ between i and n + 1, with modied arc costs set to c

1 ij + M × c 2 ij .
Values SP (i) are computed for all nodes i with a single backward exploration of the acyclic (topologically-ordered) graph G τ . They indicate the minimal total distance that will be traveled by the vehicles and drones between i and n + 1 in the solution space dened by the split(τ) procedure. Figure 10 reports SP (i) for the example introduced with Figure 9.

Then, given i ∈ τ and L ∈ L(i), the total distance traveled by vehicles n veh (L) to K and by the M drones is at least c curV eh (L) + M × c drone (L) + SP (i). Hence, at least one of those vehicles or drones cannot complete its duty before time LB tot (i, L) with:

LB tot (i, L) = c curV eh (L) + M × c drone (L) + SP (i) K -n veh (L) + 1 + M Bounding mechanism A label L ∈ L(i)
is pruned if one the following rules applies:

• R1: max c preV eh (L), c curV eh (L) + t i,0 , c drone (L) ≥ U B;

• R2: LB tot (i, L) ≥ U B.
Rule R1 identies labels whose completion time is already at least U B. Rule R2 applies lower bound LB tot (i, L).

Figure ?? illustrates the split(τ) subroutine on the graph presented in Figure 9, with K = 2 and M = 1. List L(i) is reported under every node i. In Figure ??(a), the bounding mechanisms are not applied. Labels can only be removed by dominance. Dominated labels are crossed out. The best label is indicated in red with a '*' symbol beside in list L(6), as well as labels from which it inherits (and that allow to reconstruct the dierent vehicle tours). In Figure ??(b), the bounding mechanisms are reinserted. Applied on this sequence, the upper bound generation algorithms provide an upper bound U B = 27. The bounding rules enabling to delete a label are reported at the right of the strikethrough label. In this gure, L(6) = ∅ because the upper bound cannot be improved. In both cases, the vehicle tours obtained with the procedure are: τ 1 = (0, 1, 2, 0) and τ 2 = (0, 4, 5, 0). Customer 3 is assigned to the drone. The cost of the solution is 27.

Experiments and results

In this section, the eectiveness of the proposed solution method is examined. The environment used for the computational work is Intel core(TM) i5-6200U CPU @ 2.30Ghz 2.40Ghz; 8GB RAM; Windows 10; 64 bits. Solution methods are implemented in C++ language.

The MILP of Section 3.2 is solved by using IBM Concert Technology and CPLEX 12.6 on an Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz with 2x8 cores 25M cache and 62.5GB of RAM.

Figure 11 Illustration of the split procedure on the graph of Figure 9, without or with the bounding mechanisms (K = 2, M = 1). The last element of the denition of a label (pred) has not been represented for the sake of simplicity

Problem instances

Not being aware of any instances in the literature for the PDSMTSP, we have selected 20 instances from the CVRPLIB (a repository of instances for the Capacited Vehicle Routing Problem). Instances have been chosen among those with the depot near the barycenter of all customers. Instance size varies between 50 and 199 customers. The 20 instances are:

• 5 instances from set CMT (Christodes, Mingozzi and Toth, 1979): CMT1, CMT2, CMT3, CM4, CMT5

• 3 instances from set E (Christodes and Eilon, 1969): E-n51-k5, E-n76-k8, E-n101-k8

• 2 instances from set M (Christodes, Mingozzi and Toth, 1979): M-n151-k12, M-n200-k16

• 7 instances from set P (Augerat, 1995): P-n51-k10, P-n55-k7, P-n60-k10, P-n65-k10, P-n70-k10, P-n76-k5, P-n101-k4

• 3 instances from Uchoa et al. (2014) benchmark: X-n110-k13, X-n115-k10, X-n139-k10

The number of customers in instances CMT1 to CMT5 is 50, 75, 100, 150 and 199, respectively. In other instances, the number of nodes (customers and depot) is indicated in the name, after letter 'n'. To adapt these instances to our problem, we modied the eet size and introduced drones. Precisely, we arbitrarily set K = eet size . These values are reported in result tables. For all instances, we assume that all customers are drone eligible. We use the Manhattan distance for the vehicles and the Euclidean distance for drones. This is made possible because customers are represented by their coordinates x and y in all instances.

Limitation of the number of labels in procedure split(τ)

Seeing that the number of generated labels in procedure split(τ) can grow exponentially according to instance sizes, we proposed a method to limit this number. This method complements bounding mechanisms, previously presented, that might not be enough. The method is based on a threshold T max that will limit the number of labels at a node x ∈ τ to at most K × T max . To do so, we rst group labels according to their value n veh (L) . Then, in each group, we sort labels in the increasing order of value c preV eh (L) + c curV eh (L) + c drone (L) and only keep the T max rst labels.

To analyze the eciency of this method, we conducted a set of experiments by varying parameter T max . We only considered the ve CMT instances, which represents a sample of instances with dierent sizes. For each instance, we generated 25 sequence τ with a randomized version of the nearest neighbor heuristic. Then, for each sequence, we applied procedure split(τ) with dierent values of T max . Table 3 presents aggregated results. In the table, we report the average (Avg), maximum (Max) and standard deviation (SD) of the number of labels generated in the procedure, the relative error related to the dierence of completion time value without and with limitation of labels and the computing time.

As expected, results show that when T max increases, the number of labels generated in procedure split(τ) and the computing time increase while the relative error decreases. In view of these results, we considered that the best trade-o between solution quality (low error rate) and execution time was obtained with T max = 60. For the remainder of the experiments, when it is indicated that labels are limited, we keep this value.

Solution with the branch-and-cut algorithm

In this section, we report the results obtained when solving the PDSMTSP with the branch-and-cut algorithm presented in Section 3.2. We limit these experiments to the smallest instances (n ≤ 100). The time limit is set to 3 hours (10800 seconds). Results are detailed in The table is organized as follows. Gap1 is the percentage gap between the value of the linear relaxation z lr at the root node (the integrity constraints are relaxed but the SECs are applied) and the cost of the best integer solution z ub (Gap1 = 100 × z ub -z lr z ub). Gap2 is the percentage gap between the best lower bound z lb and z ub (Gap2 = 100 × z ub -z lb z ub). #Nodes gives the number of nodes explored in the branch-and-cut tree (a zero indicates that the process ended at the root node. #LC and #UC report the number of SECs added with LAZYCONSTRAINTCALLBACK (used to search for constraints violated by an integer solution) and USERCUTCALLBACK (used to search for constraints violated by a fractional solution), respectively. CPU is the computing time in seconds. #Veh and #Dro provide the number of vehicles and drones used in the best integer solution. #D.C. is the number of customers assigned to the drones in this solution. C.T. is its completion time (z ub). In Table 4, we can see that the branch-and-cut algorithm largely fails to solve the PDSMTSP in 3 hours. No optimal solutions are found (or, at least, no proven optimal). Furthermore, after 3 hours, and even for the smaller instances, gaps remain very large.

Hybrid metaheuristic and variants

In this section, we nally evaluate the hybrid metaheuristic, called HM hereafter. In order to investigate how results are impacted by the dierent components in HM, we introduce several variants and compare our results to those obtained with these variants:

HMb. The reconstruction of the giant tour is modied (Line 11 of Algorithm 1). We consider a parameter X. The idea of this new giant tour reconstruction is to concatenate the rst X vehicle tours of the best solution in a random order and then insert the customers assigned to the drones and the customers of the remaining K -X vehicles via best insertion. Initially the value of X is set to X = K. This value changes and is updated as follows: if the current solution is better than bestSol (Line 8 of Algorithm 1), the value of X is set to K (we intensify the search around the new best solution) otherwise the value of X is set to max (0, X -1) (we decrement X if X > 0 to diversify).

MS. The giant tour (Line 11 of Algorithm 1) is generated with a randomized nearest-neighbor heuristic.

In our implementation, one of the three nearest neighbors is randomly chosen. This randomization is also introduced at the initialization of the algorithm (Line 1 of Algorithm 1). Compared to HM, the learning component is lost, and the iterative mechanism is that of a standard multi-start instead of an ILS (see Algorithm 4). HM(LL), HMb(LL), MS(LL). The three heuristics HM, HMb and MS, are declined in a second version.

In these new versions, labels are limited using the technique presented in Section 5.2. Every elementary iteration of the algorithm should then be less ecient but faster. cases results are very similar, even if most best values are found with the unrestricted split(τ) procedure. It is however interesting to see that eliminating labels provide some robustness. For some dicult instances, like X-n139-k10, it avoid getting stuck in a dicult decoding. On our set of instances, methods with label elimination always reach at least 25 iterations in the imparted 1000 seconds. On the contrary, when the number of labels is not limited in procedure split(τ), several cases with very few iterations, sometimes a single, can be observed. Completely avoiding exploration is however not enough. When decoding is only based on upper bounds, solution quality signicantly decreases. Again, no best values are found with this setting.

Going into more details, with table 6 we can see that the number of calls to procedure split(τ) decreases when the size of the instance increases. This was expected because the larger the size of the instance, the larger the number of labels generated in the decoding procedure and the longer the computing time of procedure split(τ). Table 6 also shows that dominance and bounding procedures are essential. They enable to prune more than 95% of the labels in most cases. Unfortunately, for some instances, up to millions of labels remain. For this reason, on large-sized instances (n > 60), about 70 to 90% of the computing time is spent in the decoding procedure, 10 to 30% in the optimization step and 1 to 4% only in the local search. On the contrary, when instances are smaller (n ≤ 60), the heuristics spend more time in the optimization step (50 to 80% of the computing time). Finally, for almost all instances, gD has a value of less than 5% except for a few cases with HM and HMb. It shows that aggregating drones in the decoding procedure has a limited impact.

From Table 7, we can make the following additional observations. For instances of size n < 100, the time spent in the decoding procedure is less than 35% of the running time. On the other hand, it takes about 40% to 70% of the running time for the decoding procedure to be completed on larger instances (n ≥ 100). It shows that eliminating labels in the decoding procedure surely accelerates the procedure. When the larger part of the computing time was initially spent in procedure split(τ), it enables a large increase in the number of iterations. Having an accelerated decoding with labels limitation leads to a lost of eciency of this decoding and an increase in the time spent in the optimization step.

Finally Table 8 shows that, for the 3 variants, approximately 80% of the execution time is spent in the optimization step. The computation of the upper bound is very fast (less than 30% of the execution time in most cases). Most of the running time is spent in the optimization step. This was expected due to the simplicity of the upper bound computation scheme which may lead to solution of low quality.

From Tables 6, 7 and 8, another important observation to be made is the few time spent in local search. This shows that decoding and optimization components together are quite good enough to lead to solutions

Additional experiments

In order to go deeper into the evaluation of the methods and the understanding of the results, we carried out two additional experiments. First, we ran HM on all instances changing the position of the depot (now located at the bottom left corner) in order to see how our heuristic behaves when the depot is on the outskirts.

Second, to discuss the benet of adding drones in delivery operations, we ran HM on all instances considering that all deliveries are made only by vehicles (0 % of drone eligible customers). Table 9 presents these results, with reported information similar to that of previous tables. When analyzing Table 9, several observations can be made. When the depot is located on the outskirts, the completion time increases and the number of customers assigned to the drones decreases as expected. We also notice that the number of iterations of the algorithm increases as well as the time spent at each iteration on reoptimization and on local search. The latter can certainly be explained by the fact that, with less customers served by drones, vehicle tours are longer. The decrease of the time spent in the split procedure, with a signicant decrease in the number of generated labels, is more dicult to interpret. Probably, returns to the depot are more impacting on label values, which helps dominance.

Considering the case of only using trucks, we generally observe a decrease of completion time ranging from 20% to 25%, except for instance X-n139-k10 which exhibits a particular behavior (a better completion time). This is however easily explained by the fact that HM is not eective on this instance as already discussed. Compared to the best heuristic (with value 2492), the result is consistent.

For the two rounds on experiments, it is however dicult to comment about the absolute completion times computed by our algorithms. Surely, it would be interesting to pursue these experiments with real instances, in order to better interpret those values in terms of added-value of drone delivery for logistics providers.

Conclusion

The idea of parcel delivery by drones is gradually becoming a reality all over the world. This paper investigated an extension of the PDSTSP where several vehicles and drones are combined for parcel delivery. We coined this problem as PDSMTSP.

We proposed a hybrid metaheuristic adapted from the iterative two-step heuristic descibed in [START_REF] Mbiadou Saleu | An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem[END_REF] for the PDSTSP. Firstly, a giant tour visiting all customers is built. A second step uses dynamic programming for eciently partitioning the customers of the giant tour between the set of vehicles and the eet of drones with the restriction that each vehicle route follows the order dened by the giant tour. Introducing several vehicles has a huge computational impact on this step. To circumvent this diculty, we introduced several upper bounding and lower bounding techniques. In addition, the restriction imposed in the order of vehicle routes can be very detrimental on eectiveness. In a thrid step, we apply local search to relax this constraint and converge towards better solutions. The general scheme of the hybrid metaheuristic can be interpreted as an Iterated Local Search.

Experiments conducted on instances taken from CVRPLIB allowed us to assess the performance of the proposed heuristic. They demonstrated the importance of the decoding procedure, the bounding techniques in this procedure and the learning mechanism of ILS in the heuristic. Unfortunately, this work being the rst paper on the PDSMTSP, no comparison with the literature was possible. We implemented a simple branch-and-cut algorithm in an attempt of obtaining a comparison basis, but, unfortunately, no competitive results could be obtained with this branch-and-cut.

A perspective of this work is to develop an exact solution framework. Branch-and-price could be a promising approach. The partitioning between vehicles and drones would easily be managed, as it would only aect the master problem, but the completion time objective would certainly be more challenging. Another perspective is to better control the combinatorial explosion in procedure split(τ). Better compromises between decoding quality and number of labels generated can certainly be achieved.

Among possible prospects, we are also thinking about casting our model or the split procedure into the Constraint Programming (CP) framework and handle it through the use of CP tools. Still, we must take care of the fact that the model we have been studying here is weakly constrained: if we remove constraints related to drone eligibility, we are mainly dealing with partition and permutation constraints, that means cumulative constraints which are dicult to propagate. On another hand, another perspective of this work is to investigate more realistic models, taking account of customer time windows, real-time trac or drone recharging for example. Then, these additional constraints might be dicult to integrate in our approach while they would easily be added to a CP model and help propagation.

Finally, another interesting perspective would be to nd more insights on the added-value of drone delivery and on the respective sizing of the drone and vehicle eets. This would basically require additional experiments with modied values for the two eets, but would only be meaningful with more realistic instances and problem denition.

Figure 1

 1 Figure 1 Amazon Prime Air

Figure 2 Figure 5

 25 Figure 2 Google Wing

 depot

Figure 6 A

 6 Figure 6 A set of 10 customers served by 2 vehicles and 2 drones.

Figure 7 Figure 8

 78 Figure 7 Local search operators between a vehicle and a drone (left-hand side: before the move; right-hand side: after the move)

 Drone cost vector ti

Figure 9

 9 Figure 9 Graph G τ for the instance of tables 2(a) and 2(b), with τ = (1, 2, 3, 4, 5).

Figure 10 Values

 10 Figure 10 Values SP (i) for the graph of Figure 9 (M = 1).

 0

2 and M = eet size 2

 22

Table 1

 1 UAVs and vehicles performing independent tasks

Table 2

 2

	Illustrative instance

 ← best label in L(n + 1) 22: derive τ1, τ2, , τK by backtracking from L * 23: π drones ← nodes not in τ1 ∪ τ2 ∪ ∪ τK

	14:	if L not pruned by bounding mechanisms then
	15:	insert with dominance L in L(i)
	16:	end if
	17:	end if
	18:	end for
	19:	end for
	20: end while
	21: L	

*

Table 4 .

 4

	Instance	Tmax	#LabGen	Error (%)	CPU (s)
	CMT1 (50,3,2) CMT2 (75,5,5) CMT3 (100,4,4) CMT4 (150,6,6) CMT5 (199,9,8)	10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80	Avg 32592.76 58203.16 77896.36 93623.92 105935.48 116271.88 125979.28 135242.32 119888.48 224724.88 317329.20 398036.44 467528.88 529162.64 586593.72 639260.80 170724.80 314293 448786.28 567207.48 677780.20 779789.40 867494.60 947767.12 547245.72 1045624.48 1172400 Max 41065 71635 96438 116711 134491 148682 161281 171434 145406 259763 360712 442525 525287 605701 676084 733429 217266 393205 549272 690704 824038 943959 1047865 1142010 609538 1514593.56 1737610 1947959.24 2246024 2359557.20 2750357 2730814.68 3206762 3079424.64 3607688 3396502.48 3996079 1419540.92 1643841 2711808.24 3096235 3929397.12 4468400 5063679.84 5739811 6142347.12 6936879 7177526.08 8181177 8146948.64 9243250 9029270.76 10223006 635457.72 SD 3221.32 5515.62 7897.76 10518.46 12916.17 14477.09 15664.12 16660.01 12242.51 22649.44 29324.43 34354.79 40268.87 46719.84 51625.91 55147.65 16096.19 32492.02 44498.56 58322.19 70712.04 81315.07 91286.82 102206.65 39888.51 74623.51 115363.92 149516.15 177303.68 209068.25 233764.46 258893.28 108970.19 195440.91 284471.40 348592.79 427684.42 486045.38 567250.70	Avg 11.96 22.61 6.32 Max SD 10.44 27.54 6.79 9.22 27.54 6.32 7.86 19.40 6.06 6.99 19.40 5.98 5.72 19.40 5.62 4.88 19.40 5.37 4.71 16.69 5.11 18.66 29.76 5.06 13.41 25.28 4.93 11.03 24.42 4.90 9.48 20.93 4.50 8.84 21.40 5.02 6.96 19.75 4.04 6.17 17.44 3.70 5.67 17.44 3.71 16.43 25.62 4.83 14.18 21.49 4.37 12.80 22.03 4.82 11.98 19.17 4.43 11.45 17.95 4.55 10.21 17.95 4.52 9.77 16.95 4.10 9.17 16.95 3.98 20.98 29.52 4.36 19.64 27.11 4.42 18.33 25.71 4.10 17.14 26.04 4.84 16.40 23.81 4.45 15.36 23.81 4.41 15.12 22.97 4.17 13.83 20.95 3.94 22.94 33.33 3.94 21.49 28.73 2.84 20.36 27.59 2.73 19.70 26.52 2.43 18.71 27.31 2.53 17.96 24.35 2.04 16.91 24.14 2.94 15.66 23.80 3.18	Avg 0.05 0.06 0.09 0.08 0.09 0.13 0.12 0.13 0.12 0.17 0.28 0.32 0.41 0.66 0.58 0.68 0.19 0.24 0.42 0.49 0.65 1.02 0.98 1.21 0.55 0.77 1.28 1.57 2.10 2.63 3.28 3.73 1.58 2.37 3.22 4.37 5.80 7.20 9.24 10.57 16.40 2.21 Max SD 0.06 0.004 0.07 0.01 0.12 0.02 0.10 0.013 0.13 0.019 0.20 0.03 0.16 0.02 0.20 0.03 0.16 0.01 0.22 0.02 0.38 0.05 0.46 0.06 0.59 0.09 0.99 0.15 0.90 0.13 1.15 0.16 0.25 0.02 0.32 0.03 0.71 0.09 0.71 0.10 0.96 0.13 1.54 0.26 1.52 0.24 2.08 0.31 0.67 0.04 0.88 0.06 1.60 0.17 1.96 0.18 2.67 0.25 3.30 0.32 4.15 0.49 4.74 0.47 2.13 0.20 3.63 0.37 4.36 0.47 6.08 0.67 8.99 1.16 10.71 1.36 15.42 2.08

Table 3

 3 Impact of parameter Tmax on a set of ve representative instances

Table 4

 4 Exact solution of the PDSMTSP with the branch-and-cut algorithm

	Instance	Branch-and-cut details				Solution details	
		Gap1 (%) Gap2 (%) #Nodes #LC #UC CPU (s)	#Veh. #Dro. #D.C. C.T.
	CMT1 (50,3,2) CMT2 (75,5,5) CMT3 (100,4,4) E-n51-k5 (50,3,2) E-n76-k8 (75,4,4) E-n101-k8 (100,4,4) 96.45 22.79 97.20 96.45 22.79 95.73 P-n51-k10 (50,5,5) 64.74 P-n55-k7 (54,4,3) 67.24 P-n60-k10 (59,5,5) 65.87 P-n65-k10 (64,5,5) 83.69 P-n70-k10 (69,5,5) 96.86 P-n76-k5 (75,3,2) 35.26 P-n101-k4 (100,2,2) 93.20	22.41 97.20 96.45 22.41 95.73 96.45 64.63 67.05 65.73 83.68 96.86 35.23 93.19	20100 957 732 20210 2954 732 2896 5834 5842 2782 2570 2776 991	51 49 44 50 38 44 47 94 48 76 44 70 39	23726 10668.5 20101 10653.8 14515 10650.8 23302 10668.8 13712 10606 14515 10650.4 26372 10616.4 17239 10651.9 23596 10560.4 19446 10615.6 18956 10644.1 15555 10620.2 14748 10581.5	3 0 1 3 0 1 4 3 5 5 1 3 1	2 1 4 2 4 4 5 3 5 5 5 2 2	11 75 94 11 75 94 13 11 12 14 68 11 99	188 3630.86 4537.11 188 2975.51 4537.11 230 308 246 580 3166.25 280 4725.47

Table 5

 5 Solution values

Table 6

 6 Decoding with procedure split(τ) (complete decoding)

	Instance	Execution details

Table 7

 7 Decoding with limited procedure split(τ) (label elimination)

	Instance CMT1 (50,3,2) CMT2 (75,5,5) CMT3 (100,4,4) CMT4 (150,6,6) CMT5 (199,9,8) E-n51-k5 (50,3,2) E-n76-k8(75,4,4) E-n101-k8 (100,4,4) M-n151-k12 (150,6,6) M-n200-k16 (199,8,8) P-n51-k10 (50,5,5) P-n55-k10 (54,5,5) P-n60-k10 (59,5,5) P-n65-k10 (64,5,5) P-n70-k10 (69,5,5) P-n76-k5 (75,3,2) P-n101-k4 (100,2,2) X-n110-k13 (109,7,6) X-n115-k10 (114,5,5) X-n139-k10 (138,5,5)	Execution details #Iter gD(%) T U B T Opt HM(UB) 2299 1.80 58.74 784.98 51.70 T LS HMb(UB) 2275 1.72 51.63 830.11 37.41 MS(UB) 2228 0.003 54.62 891.56 10.13 HM(UB) 1318 2.85 67.49 800.17 42.48 HMb(UB) 1371 2.81 64.33 827.78 33.03 MS(UB) 1367 0.01 70.08 885.80 6.89 HM(UB) 1068 2.17 86.60 780.01 38.91 HMb(UB) 1307 2.18 88.23 787.96 34.99 MS(UB) 1621 0.005 114.62 824.06 7.81 HM(UB) 710 2.52 166.51 696.51 46.37 HMb(UB) 718 2.51 172.37 713.95 34.37 MS(UB) 992 0.02 211.78 728.63 5.40 HM(UB) 430 3.19 297.64 611.46 24.33 HMb(UB) 424 3.05 310.84 613.63 16.58 MS(UB) 615 0.02 378.96 576.42 3.56 HM(UB) 2250 1.80 54.27 813.95 39.84 HMb(UB) 2153 1.68 50.34 833.54 37.28 MS(UB) 3177 0.17 79.70 835.66 13.94 HM(UB) 1604 2.23 66.60 807.95 37.60 HMb(UB) 1382 2.21 61.48 829.50 34.21 MS(UB) 2077 0.005 95.73 828.64 9.55 HM(UB) 1317 2.20 90.14 782.18 36.48 HMb(UB) 1211 2.13 86.73 797.36 33.91 MS(UB) 1604 0.01 121.34 811.58 7.8 HM(UB) 698 2.66 174.18 710.21 34.59 HMb(UB) 671 2.53 172.67 731.71 25.73 MS(UB) 861 0.01 204.83 746.78 4.27 HM(UB) 423 2.85 289.41 625.17 20.70 HMb(UB) 407 2.88 289.58 626.62 21.08 MS(UB) 545 0.77 307.89 651.94 3.68 HM(UB) 1342 5.04 41.89 862.75 27.59 HMb(UB) 1195 4.91 45.17 826.71 55.80 MS(UB) 1882 0.43 56.55 889.16 7.15 HM(UB) 1262 2.87 52.25 831.88 35.11 HMb(UB) 1678 2.91 51.91 795.34 67.06 MS(UB) 2413 0.002 74.88 853.80 11.24 HM(UB) 1381 4.42 51.95 841.48 30.17 HMb(UB) 1564 4.39 56.32 822.68 36.12 MS(UB) 1722 0.02 63.50 879.45 7.93 HM(UB) 1369 4.09 56.85 817.76 39.89 HMb(UB) 1489 3.96 59.04 815.87 39.92 MS(UB) 1510 0.007 63.82 883.64 6.59 HM(UB) 1314 3.12 62.40 792.90 53.37 HMb(UB) 1414 3.12 62.92 809.69 41.53 MS(UB) 1358 0.004 65.22 884.86 6.18 HM(UB) 1782 1.09 74.51 749.87 54.73 HMb(UB) 1808 1.07 72.22 778.88 47.46 MS(UB) 1547 1.23 73.03 868.26 7.40 HM(UB) 1471 0.65 75.15 775.19 34.40 HMb(UB) 1491 0.62 71.99 791.42 34.22 MS(UB) 2369 1.39 119.92 784.19 11.01 HM(UB) 922 5.35 116.61 763.39 38.94 HMb(UB) 751 5.29 111.39 783.22 35.63 MS(UB) 963 0.02 138.06 816.56 4.69 HM(UB) 1005 2.79 116.02 730.93 55.49 HMb(UB) 961 2.68 116.86 752.25 47.41 MS(UB) 1121 0.67 136.63 808.88 5.44 HM(UB) 1029 3.03 152.88 696.88 54.09 HMb(UB) 806 2.96 152.67 711.63 51.821 MS(UB) 1144 0.1 208.01 731.57 5.71	Solution details #D.C. C.T. 10 174 10 174 9 204 14 140 16 140 15 152 17 195.42 17 197.24 21 216 25 166 22 164 27 192 26 142.04 27 140 34 152 10 168.82 9 174 13 196 14 161.86 14 162 16 186 19 196 17 196 20 216 26 168 25 169.88 27 182 29 152 29 152 30 168 14 118 13 118 14 133.25 10 130 7 132 11 148 13 122 14 120 12 124 12 134 15 131.36 17 154 15 138 13 136.56 20 158 11 210 14 210 13 258 19 353.26 17 354 20 422 17 1926 18 1960 18 1970 20 2316 19 2332 24 2862 25 2594 22 2550 29 3022

Table 8

 8 Decoding with upper bounds only of good quality. However, local search still helps improving the solution.

Table 9

 9 HM with dierent parameters (depot at the left corner, 0% of drone eligible customers)

	Instance	Execution details

Acknowledgments

This work was sponsored by a public grant overseen by the French National Research Agency as part of the "Investissements d'Avenir" through the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001). Financial support was also received from the European Union through the European Regional Development Fund program (ERDF AURA region) and by the Auvergne-Rhône-Alpes region.

We thank reviewers for very accurate comments that helped a lot improving the quality of this paper.

HM(UB), HMb(UB), MS(UB). The three heuristics HM, HMb and MS, are declined in a third version. In these new versions, the decoding procedure is restricted to the computation of the upper bounds: both the lower bound and the labeling algorithm are deactivated. Every elementary iteration of the algorithm should then be even less ecient but faster. Algorithm 4 Multi-start heuristic MS

(τ 1 , τ 2 , . . . , τ K , π drones) ← split(τ) 5:

(τ opt 1 , τ end if 11: end while Table 5 presents the completion times (C.T.) obtained with the 9 heuristics, i.e., HM and the 8 variants, for the 20 instances and the branch-and-cut upper bounds found with a time limit of 3 hours. An additionnal column (LB) shows the values of the lower bound obtained at the end of the branch-and-cut. In the 9 heuristics, the computing time limit is set to 1000 seconds. Best solutions are highlighted in bold. An integer value for the completion time usually indicates that a vehicle is the critical resource. This is due to the use of the Manhattan distance for vehicles, with integer coordinates for customers. When the value of completion time is a real number, the critical resource is a drone. Tables 6 to 8 give more details on the execution of the heuristics. In Table 6 details are provided for methods HM, HMb and MS. In Tables 6 and7, the following information is reported. Column #Split reports the average number of calls to procedure split(τ). #Lb gives the average number of labels generated in procedure split(τ) (summed over all nodes and including labels eventually deleted by the dierent labels pruning mechanisms). Del is the percentage of labels deleted with the label pruning mechanisms. Column gD gives the average gap between the drone completion time found by procedure split(τ) (assuming a single drone with a speed multiplied by M) and the completion time obtained after having applied the LPT heuristic. T Split , T Opt and T LS indicate the computing time spent in procedure split(τ), reoptimization (reoptimizeT SP (τ 1 , τ 2 , . . . , τ K) and optimizeP M S(π drones)) and local search (improveSol(τ opt 1 , τ opt 2 , . . . , τ opt K , π opt 1 , . . . , π opt M)), respectively. #D.C. is the number of customers assigned to the drones. C.T. gives the completion time.

In Table 8, column #Iter represents the number of iterations of the main loop, T U B is the time spent to compute the upper bound. Other columns are labeled as in tables 6 and 7.

In these tables, we can see that the two giant tour construction methods show very similar behaviors (rst line and second line of tables 6 to 8 for each instance). Both solution values and the set of execution parameters shown in the tables are very similar. On the contrary, the multi-start variant (third line) is not able to nd solutions that are as good as those of these two methods. Not a single best solution is found with this approach. It demonstrates the gains provided by the learning technique introduced in the ILS. On the 13 instances for which the branch-and-cut was able to nd a feasible solution (upper bound), we see that most solutions are very far from those obtained with the heuristics. In a few case, the branch-and-cut nds solutions comparable with the worst heuristics. The lower bounds obtained with the branch-and-cut are not very helpful neither. They however conrm on some instances that the best heuristics nd solutions that are at worst of reasonable quality.

Eliminating labels in the decoding procedure does not have a clear impact on solution values. In most