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ABSTRACT

Emergency Medical Services (EMS) first mission is to reach people requiring ur-
gent medical attention and transport them to hospitals or care facilities. In many
cases, EMS also provide a second mission, which concerns the non-emergency trans-
portation of patients from one hospital to another, or between their home and med-
ical facilities. These services have different characteristics and goals from a manage-
rial standpoint (i.e. emergency requests are uncertain, while transport requests are
known in advance and can be planned) and in practice, most EMS organizations
split their fleet into two sub-fleets that are managed independently. However, both
missions are in most of the cases carried out by the same types of ambulances and
crews, suggesting that managing both fleets together might bring potential advan-
tages. This study is one of the first ones, if not the first, to explore the potential
advantages of a new management strategy that allows sharing resources between
two separated ambulance fleets. In particular, the proposed strategy allows for dy-
namically modifying the size of each fleet considering that a subset of ambulances
can change their mission during the day to better adapt to the system’s state. This
strategy offers an incomplete integration of the fleets, but has the worthy advantages
of improving the overall system performance and being simple to implement by an
EMS organization. Numerical experiments on realistic instances demonstrate, using
a discrete event simulation tool, the feasibility and benefits of the proposed strategy.
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1. Introduction

Since the pioneering work of Savas (1969), a considerable amount of research has been
devoted to the development of decision models to support the management of Emer-
gency Medical Services (EMS). Generally speaking, EMS around the world provide
similar services, but important differences can be observed in the way those services
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are provided. Dick (2003) classified EMS practices into Anglo-American and Franco-
German systems. In the Anglo-American model, on which this study is based, EMS
organizations are mostly separated from the medical system, and offer solely paramedi-
cal care. Their aim is to respond to emergency calls as soon as possible and to transport
the patient to the appropriate medical facility quickly and safely. In a number of cases,
organizations providing EMS also provide transportation services for patients that need
to be moved from one hospital to another, or between their home and medical facilities
(Reuter-Oppermann, van den Berg, and Vile 2017).

To clearly distinguish non-emergency requests from emergency ones, non-emergency
transport requests will be referred to as transport requests. Both services require sim-
ilar resources, i.e. vehicles and crews, so one might expect some benefit from a joint
planning of these common resources. Nonetheless, to the extent of our knowledge, EMS
organizations often deal with their fleets in separated manners.

On the one hand, emergency requests are related most of the time to life-threatening
and time-sensitive situations. They require the fast deployment of an ambulance from
its location to the scene of the emergency, and often imply the patient transfer to
a hospital to receive adequate care after their stabilization. Therefore, the strategic
location of ambulances in the served territory is of paramount importance to keep
response times as low as possible, or under given standards (Bélanger, Ruiz, and Soriano
2019). Specifically, the response time refers to the time elapsed from the reception of a
request to the ambulance’s arrival at the scene (Reuter-Oppermann, van den Berg, and
Vile 2017). Coverage is another important measure used to evaluate EMS performance,
which is related to the system’s ability to respond to a percentage of requests within
a predetermined time threshold (McLay and Mayorga 2010). By nature, emergency
requests are highly random: decisions regarding the ambulance location is mostly based
on expected demand values or probabilities.

On the other hand, transport requests are generally not as time-sensitive as emer-
gency requests. Nonetheless, delays can cause patient discomfort, but can also impact
the efficiency of health system performance, e.g. if a patient arrives late to a scheduled
appointment (Beaudry et al. 2009). Consequently, transport services often focus on
delays to measure their performance, which includes delay to requested appointments
and the number of requests for which the vehicle arrived late. Contrarily to emergency
requests, the response to transport requests can be planned: they are known in ad-
vance so the organization has some time to organize its resources (van den Berg and
van Essen 2019). A transport request implies an ambulance traveling to the patient’s
pickup location, boarding the patient in the ambulance, and transporting them to the
final destination where the team is discharged. In most cases, transports start or finish
at a hospital. Therefore, vehicles assigned to transport requests are often managed by
creating a sequence of movements between hospitals.

Although a number of resources or capacity sharing schemes have been proposed
in the literature for a variety of industrial or service providing contexts, emergency
and transport requests are generally handled separately by EMS organizations. But
as a matter of fact, one may wonder if capacity sharing strategies might be useful in
the context of EMS organizations, and even more, what should be the real extent of
the improvement achieved by such strategies. Indeed, only few papers have considered
interactions between emergency and transport fleets (Kiechle et al. 2009; van den Berg
and van Essen 2019). To the best of our knowledge, this study is among the first ones, if
not the first, proposing not only a realistic and potentially easy to implement strategy,
but also a thorough empirical analysis of the improvement brought by two capacity
sharing strategies.
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More precisely, this study proposes a policy that exploits the hypothesis that each
fleet answers random demands of different nature and thus uncorrelated. Therefore, it
is reasonable to assume that, if at a given moment the demand for one type of service is
higher than expected, the demand for the other service may be lower than expected. If it
is the case, some capacity from the latter might be temporarily transferred to the former
in order to help coping with the demand surge. The proposed policy takes the form
of an online algorithm that, at each new event, evaluates the expected performance of
each fleet with respect to their respective metrics, and decides whether or not a transfer
of a vehicle, i.e. changing the vehicle’s mission or in other words changing the type of
requests it is assigned to, may improve the situation. If it is the case, a mathematical
model is solved to identify the vehicle that will be reassigned from one fleet to the other.
Notice that no transfer deteriorating one fleet expected performance will be accepted,
particularly in the case of the emergency fleet. Moreover, based on the selected location
model for the emergency fleet, demand zones are generally covered within standard
times by more than one ambulance, so the transfer of a well chosen vehicle to perform
other tasks might only have a minor impact (few seconds) on the expected response
time, ensuring that in all the cases it will be kept under the standard. The proposed
approach has been designed to be flexible enough so as to adapt to various EMS
policies. Extensive empirical analysis using simulation highlights the potential of the
proposed capacity sharing, but also its challenges when compared to the independent
management generally observed in practice.

It is important to note that this study assumes that all - or a subset - of the vehicles
and crews have the equipment and the training and skills to perform both emergency
and transport requests as we have observed in some organizations under the Anglo-
American model. However, since having over-equipped vehicles and over-trained crews
may incur higher operational costs, the proposed capacity sharing approach has been
designed to consider only a subset of predefined ambulances able to perform the two
types of requests.

The paper is structured as follows. The next section reviews relevant contributions
devoted to the management of emergency and non-emergency transport fleets, respec-
tively, and then reports the works that have attempted to coordinate, to some extent,
both fleets. Section 3 describes how emergency and non-emergency transport fleets are
managed independently, along with the methods or tools used to do it. Then, Sec-
tion 4 proposes a capacity sharing scheme to pool vehicles from both fleets. Results
to extensive numerical experiments are reported in Section 5, which includes a discus-
sion on the potential of the proposed capacity sharing advantages and challenges. The
conclusion proposes further research avenues and closes the paper.

2. Literature Review

For more than 50 years, the management of emergency services has received a lot of
attention from the Operations Research scientific community (Brotcorne, Laporte, and
Semet 2003; Goldberg 2004; Reuter-Oppermann, van den Berg, and Vile 2017). Several
decision problems ranging from demand forecasting to real-time fleet management
have been studied and dealt with by various means, including optimization techniques
and simulation methods (Ingolfsson, Erkut, and Budge 2003; Aringhieri et al. 2017).
While most of the efforts have been directed towards the response to emergency and
life-threatening situations, studies devoted to non-emergency patient transportation
remain limited. In the following, we give an overview of diverse methods and approaches
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that have been used to deal with both types of requests, particularly those that allow
real-time fleet management. We will then review the few available works that seek to
find ways to benefit from shared resources.

2.1. Works Related to Emergency Transportation

The main goal of an EMS is to respond to life-threatening situations as quickly as
possible; the response time being highly influenced by both ambulance locations and
dispatching rules (Bélanger, Ruiz, and Soriano 2019). Indeed, at any given time during
the day, ambulances need to be located on the territory to serve. The ambulance loca-
tion problem therefore aims to select the best standby sites where ambulances wait for
incoming calls. The notion of coverage, which measures the number of zones (or pos-
sible demands) that can be covered within a predetermined time threshold, have been
used extensively to formulate location models. Toregas et al. (1971) formulated what
we know to be the first coverage model used to determine the number of ambulances
to fully cover a region of interest. However, since many EMS organizations have to
operate with a given fleet of ambulances, whose number is fixed, Church and ReVelle
(1974) proposed instead to maximize the coverage with a given ambulance fleet. This
idea further resulted in the development of many variants, which differ mostly by the
way they account for the several sources of uncertainty. Multiple coverage models that
seek to increase the number of vehicles covering each zone have been formulated to
mitigate ambulance unavailability (Daskin and Stern 1981; Hogan and ReVelle 1986;
Gendreau, Laporte, and Semet 1997). Despite their simplicity, these models have been
used extensively to inform decision-making in various situations (Laporte et al. 2009),
which highlight their potential application in practice. Several models have also been
proposed to capture the dynamic and uncertain behavior of EMS in a more explicit
manner using diverse approaches such as probabilistic modeling (Daskin 1982; Batta,
Dolan, and Krishnamurty 1989), chance-constrained programming (ReVelle and Hogan
1989; Ball and Lin 1993; Beraldi and Bruni 2009), two-stage programming (Beraldi,
Bruni, and Conforti 2004; Boujemaa et al. 2018; Bertsimas and Ng 2019), or robust
optimization (Zhang and Jiang 2014; Bertsimas and Ng 2019).

All previous research assumed that each ambulance returns to its designed standby
site after serving a request, regardless of the time of the day or the state of the system.
However, the demand pattern typically changes over the day and can evolve in an
unpredictable manner, which forces managers to modify ambulance locations in order
to better adapt to the system’s evolution (Bélanger, Ruiz, and Soriano 2019). The
latter is referred to as ambulance relocation. An ambulance can be relocated at given
time intervals, for instance, every two hours, or in real time, either at the end of an
ambulance’s mission to determine its next standby site (Maxwell et al. 2009; Schmid
and Doerner 2010) or after an ambulance is dispatched to adapt to the new system’s
state (Gendreau, Laporte, and Semet 2001; Andersson and Värbrand 2007). Several
models have been proposed to tackle variants of the relocation problem, which fits
specific contexts, including multiperiod (Schmid and Doerner 2010; van Barneveld,
Bhulai, and van der Mei 2017; Degel et al. 2015), offline (Gendreau, Laporte, and
Semet 2006; Nair and Miller-Hooks 2009; Sudtachat, Mayorga, and McLay 2016) and
online relocation models (Gendreau, Laporte, and Semet 2001; Jagtenberg, Bhulai, and
van der Mei 2015; van Barneveld, van der Mei, and Bhulai 2017). It has been shown
that adapting the system in real time can lead to significant improvements (Belanger
et al. 2016).
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Once we receive the calls, another important decision that will affect the system per-
formance is to determine which ambulance will answer the call. Despite several recent
studies that seek to propose new and improved dispatching rules, see e.g. McLay and
Mayorga (2013), Bandara, Mayorga, and McLay (2014), andNasrollahzadeh, Khademi,
and Mayorga (2018), the closest-idle policy, which always sends the closest ambulance
to the call scene, remains the prevailing one.

2.2. Works Related to Non-Emergency Transportation

In many cases, EMS also provide transportation services for patients needing to go
from one hospital to another, or between their home and medical facilities. Since these
transport requests are known some time in advance, the main decision is therefore to
plan ambulance routes in order to serve all transport requests efficiently and without
delay, which includes the assignment of requests to ambulances and the sequencing
of the transports to be performed. This problem is strongly related to the dial-a-ride
problem (Ho et al. 2018), which consists in designing vehicle routes and schedules in a
system of demand-dependent, collective people transportation (Cordeau and Laporte
2007; Molenbruch, Braekers, and Caris 2017). From a modeling perspective, dial-a-ride
problems (DARP) are related to Vehicle Routing Problems (VRP) with pickups and
deliveries. Cordeau and Laporte (2007) distinguished between the static and dynamic
natures of transport requests’ arrivals and identified two distinct modes for DARPs.
The static case only serves the transport requests received ahead of a certain time
limit, whereas the dynamic case considers requests throughout the day and updates
the scheduling plan accordingly. In the healthcare context, specific constraints also
need to be taken into account, such as special equipment, alternative loading modes
and patient isolation (Beaudry et al. 2009). In addition, several objectives are simul-
taneously pursued, both from the organization perspective (e.g. minimizing traveling
distance) and from the patient perspective (e.g. minimizing lateness).

The patient transport problem has been studied in different contexts, which leads
to different variants of the DARP and diverse solution approaches. Early studies have
dealt with a static version of the problem in which all transport requests are known
when routes are designed. This situation is common for organizations that transport
patients from their home to clinics to receive care or treatment for which the appoint-
ment time is known in advance, e.g. rehabilitation centers (Melachrinoudis, Ilhan, and
Min 2007) or outpatient clinics (Parragh et al. 2012). However, most of the time, only
a portion of requests are known a priori, the remaining being received in real time, so
that the designed routes need to be adjusted as requests come in. Thus, the nature
of DARP becomes dynamic. Therefore, fast heuristics are required to solve the prob-
lem in real time, which is again complicated by a set of context-specific constraints.
To this end, several solution approaches have been built over time including insertion
heuristics (Hanne, Melo, and Nickel 2009), tabu search (Beaudry et al. 2009), variable
neighborhood search (Schilde, Doerner, and Hartl 2011), memetic algorithms (Zhang,
Liu, and Lim 2015), and iterated local search (Lim, Zhang, and Qin 2017). In all afore-
mentioned cases, it is assumed that multiple patients can travel together given that
some constraints are respected and the required equipment is available (e.g. no more
than one stretcher and one wheelchair), each vehicle having the capacity to accommo-
date several patients. However, in ambulance transportation, as the one we are dealing
with in this paper, the capacity of the vehicle is limited to one patient. This special
case has been tackled in Kergosien et al. (2011) who introduced a tabu heuristic to
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schedule transport requests, allowing subcontracting to a private company if the fleet
capacity is not enough to serve the demand.

2.3. Works Related to Joint Management of Emergency and
Non-Emergency Transportation Services

Thus far, we have presented studies that focused on one type of requests and assumed
a dedicated fleet of vehicles. Indeed, most of the works on EMS concentrated on the
development of models and solution approaches to support the management of one fleet
or the other. However, despite their different natures, the response to emergency calls
and non-emergency transports can be performed by similar, if not the same resources.
Therefore, one might think that a certain pool of resources can service both emergency
and non-emergency transports. Kergosien et al. (2014) studied three fleet management
strategies to deal with two types of requests, emergency and non-emergency. The first
strategy is classic and consists in managing two fleets independently, one for each type
of requests. The main idea of the second and third strategies is to treat both types of
requests as if they were all emergencies, and manage a single fleet that serves them.
In the second strategy, each transport request is modeled as a "dummy" emergency
request that occurs at the patient earliest transportation date. The third strategy im-
proves the second one by anticipating the best dates to perform the transport requests.
The performance of each strategy is evaluated using a discrete-event simulation tool.

Recently, van den Berg and van Essen (2019) studied a system that utilizes two
types of vehicles: basic life support (BLS) ambulances and advanced life support
ambulances (ALS). BLS ambulances can only serve non-emergency transport requests,
and ALS ambulances are generally reserved for emergency requests, but can be sent
to serve non-emergency transport if the BLS fleet capacity is exhausted. The authors
proposed a model that seeks to build BLS routes in such a way that the remaining
coverage offered by ALS ambulances is maximized. Finally, Kiechle et al. (2009)
studied a case where all the vehicles in a single fleet can serve all types of demands.
When a request is received, the closest vehicle is sent to the call, and several heuristics
are used to reorganize the routes planned to perform non-emergency transports.
In other words, non-emergency requests are planned without taking into account
emergency requests and, whenever an emergency request arrives, an ambulance
is deployed and its other tasks are being redistributed among other ambulances.
Simulation was used to evaluate the performance of each heuristic and their impact
on coverage for potential emergency requests.

We can conclude that, despite of the diversity of methods and approaches proposed
to manage emergency or transport fleets, very few works take into account collaboration
between ambulances dedicated to emergency and non-emergency services. The goal of
this paper is therefore to explore the potential of a collaborative scheme allowing
capacity sharing between fleets. We would like to stress that this paper focuses on
showing the feasibility and benefits of the proposed approach rather than comparing
the performance of existing methods for handling two independent ambulance fleets.
For this reason, two well-known methods from the literature have been adapted for the
management of each fleet, one devoted to emergency requests, the other to transport
requests. This will constitute our baseline. Then, the capacity sharing scheme will be
added, allowing the transfer of vehicles between fleets. Since each fleet will still be
managed according to its own methods and rules, we believe that this setting will
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provide a fair assessment of the proposed capacity sharing scheme.

3. Managing Fleets Independently

We consider a single EMS organization operating two ambulances fleets, denoted EF
and TF , which are dedicated to serving emergency and non-emergency transport
requests, respectively. For the sake of simplicity, non-emergency transport requests are
referred to as transport requests. Managing the fleets consists basically in assigning
requests to ambulances (emergency or transport) and, in the case of EF , locating
idle ambulances at standby sites in such a way that they will respond to emergency
requests in a timely manner. Therefore, according to each fleet’s vocation, the problem
can be divided into two distinct subproblems, an ambulance location problem for
deploying EF ambulances over the territory to serve, and a special variant of a
dial-a-ride problem for assigning and scheduling transport requests to TF vehicles.
The next sections propose and justify the choice of specific methods to handle and
solve these specific sub-problems.

3.1. Handling Emergency Requests: An Ambulance Location problem

To cope with the arrival of emergency requests, a set of ambulances needs to be located
at standby sites where they wait for incoming calls. The region to serve is divided into
demand zones, each zone being characterized by the probability that the next incoming
emergency request comes from it (this probability can be computed based on historical
data and/or the population density of the zone). In addition, each emergency request
is characterized by its location, the duration of the intervention at the scene, the travel
time from the scene to the destination hospital, and the discharge time at the hospital.
All this information is not known in advance and will be revealed in real time.

This situation can be modeled as a location problem, which aims to select ambulance
standby sites in such a way that the expected demand coverage is maximized. As
it was discussed in Section 2, several formulations can be proposed to model this
problem. These variants distinguish mainly by the way they tackle explicitly or not
the uncertain availability of ambulances at the moment a call arrives. In our case, and
keeping in mind that the main goal of this research is to assess if a capacity sharing
approach might be interesting in practice, we preferred to rely on deterministic models
instead of using probabilistic models such as the maximum expected coverage problem
(MEXCLP) Daskin (1982). Indeed, these models generally require to make hypothesis
on probabilistic parameters such as the so called busy fraction whose setting might
impact the system performance and therefore introduce some noise when analyzing
the benefits of the capacity sharing scheme. Although deterministic models do not
explicitly consider the fact that a vehicle might not be able to serve a call, some models
such as the backup coverage model 2 (BACOP2) (Hogan and ReVelle 1986) seek to
mitigate ambulance unavailability by ensuring the coverage of each demand point by
two ambulances. In fact, the BACOP2 proposes a bicriteria formulation that, given a
number of available vehicles, seeks to locate them to simultaneously maximize (1) the
population covered at least once, and then (2) the population that is covered twice.
By doing so, the model aims to avoid concentrating vehicles in zones that are easy to
serve, and rather locates them in areas that seem critical. In our implementation, we
replaced the population of a zone by the probability that the next call originates from
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that zone. In the system under study, the BACOP2 is used to relocate ambulances in a
dynamic manner to maximize the system performance in two specific situations: when
an emergency request arrives or when an ambulance completes its task. On the one
hand, each time a new request arrives, the closest available ambulance is dispatched
to the call, so the system’s coverage decreases. If it decreases in such a way that
a demand zone is not covered, or that less than 50% of demand zones are covered
twice, then the relocation of the remaining ambulances is launched in order to improve
coverage. Ambulance relocation encompasses two steps. In the first step, the BACOP2
is executed so that the best locations for the remaining ambulances are found (note
that the resulting solution does not give the information on which ambulance should
be located to which standby location, but only the best locations). Then, the second
step determines how to move ambulances from their current locations to the new ones.
This problem is modeled as a task assignment problem where a task represents a new
standby location to reach, machines correspond to ambulances, and the assignment
costs - meant to be minimized - are related to the distances between the ambulance
current and the new locations.

On the other hand, whenever an ambulance completes a task, two cases are to be
considered. First, if at least one demand zone is not covered, the newly idle ambulance
is sent to the standby site that maximizes the number of zones that are covered once.
Otherwise, the ambulance is sent to the standby location that maximizes the number
of zones that are covered twice.

3.2. Scheduling Non-Emergency Requests: a Dial-a-ride problem

The assignment and scheduling of transport requests among the available vehicles
consist in solving a variant of a dial-a-ride problem (DARP) where the objective is to
minimize the traveling costs and patient inconvenience. The latter is often measured as
a delay on the appointment time. However, contrarily to a general DARP, we suppose
that, in the case of transport requests, the ambulance can only carry one patient at a
time. We also assume that each transport request is characterized by an origin and a
destination, usually hospitals, although a patient’s home can also be considered as an
origin or a destination, and an appointment time that corresponds to the earliest time
at which the patient is ready to be transported. If the transport starts after this time,
a delay is incurred. Each transport request is also characterized by an estimation of the
service time, which includes the time needed to travel from the vehicle position to the
patient location, the time to board the patient, the transport time between the origin
and the destination, and the time required to transfer the patient at the destination.
Notice that the actual service time is only known when the transport is completed.

DARPs are very difficult to solve, and the proposed capacity sharing scheme needs
to solve the DARP each time a new event occurs. Moreover, the dynamic nature of
requests’ arrival process makes that, even if a lot of effort is dedicated to finding a high
quality solution, the arrival of a new request forces the system to solve a new DARP and
therefore change and adapt the previously found solution. These arguments led us to
the conclusion that a simple heuristic method able to produce good quality solutions in
a short computational time might be the best approach to implement, and we propose
a two-step constructive heuristic inspired by Jaw et al. (1986). In the first step, all
known requests are sorted in ascending order of appointment time. In the second step,
each of the sorted requests is assigned to an ambulance in the following manner. If
the request can be performed without delay, then it is assigned to the ambulance that
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minimizes the total travel distance. Otherwise, if none of the ambulances can avoid a
delay responding to the request, the ambulance that can start the transport the soonest
is selected. Finally, it is worth mentioning that, once an ambulance has completed a
transport, it waits as much as possible before traveling to its next mission’s departure
location. This strategy could help avoid an empty ride if a last-minute request occurs
with a departure from the hospital where the ambulance is located.

4. A Capacity Sharing Scheme for Ambulances Pooling

We consider now that the organization providing both emergency and transport ser-
vices owns a fleet of identical ambulances. It is also assumed that all – or a subset
– of the vehicles and crews are able to perform both kind of services. As described
in Section 3, the fleet is split into two fleets EF and TF that answer both uncertain
demands which are, or are assumed to be, uncorrelated. Therefore, it is fair to expect
that in a number of cases, episodes of stress faced by one particular fleet may coincide
with a lower than nominal workload of the other. We hypothesize that these unre-
lated variations in the fleet workloads might be used to improve the overall system
performance if some permeability is allowed between both fleets.

Without loss of generality, we assume that both fleets have been dimensioned to
achieve, under normal conditions, expected target performances α0 and β0, which are
computed with respect to coverage and average delays on transport appointment, re-
spectively. However, other performance metrics might be considered. Accordingly, n
ambulances have been assigned to EF and are either busy responding to emergency
requests or located at standby sites. The best standby sites to use can be determined
by any ambulance location method. In our case, we use the BACOP2 method as de-
scribed in Section 3.1. We also assume that, upon the arrival of an emergency request,
the closest idle ambulance is always sent to the call. Meanwhile, m ambulances are
reserved to perform transport requests. Transport requests are assigned to ambulances
using a scheduling method, in our case, the method described in Section 3.2, which
seeks to minimize both delays and the total travelled distance. Again, the particular
method is not relevant to the study, since the goal is not to compare performances of
specific scheduling methods, and other approaches might be used.

We assume that a capacity sharing scheme, which takes the form of a policy table,
has been negotiated between the managers of the two fleets in such a way that, each
time a new event occurs, i.e. the arrival or the completion of a request, and considering
the system’s state and the workload of both fleets, it is decided whether or not a transfer
of a vehicle from one fleet to the other might be advantageous. Furthermore, if it is
the case, the specific ambulance to transfer is selected and the necessary adjustments
are made to the fleets. The next subsection presents and describes a policy table that
helps decide ambulance transfers, while Section 4.2 explains how the actual transfer
is implemented.

4.1. A Policy Table to Decide Ambulance Transfers Between Fleets

We assume that managers have agreed on a policy table, where lines i ∈ I refer to
possible levels of performance for EF , and columns j ∈ J correspond to consecutive
ranges of performance for TF . Table 1 illustrates such a generic policy table. Each
cell (i, j) identifies a combination of performance ranges for EF and TF that can also
be seen as different system’s states. Therefore, each state (i, j) is limited by αi and
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αi, and by βj to βj , which are the lower and upper performance bounds for EF and
TF fleets, respectively. We define the first state in the matrix (0, 0) as the target (or
best) performance for both fleets. Finally, notice that i + j sets a partial order on
the potential system’s states, so states (1, 0) and (0, 1) are considered equivalent, but
preferred to any state for which i + j > 1. From a practical standpoint, the design of
the policy table consists of setting the cardinality of I and J , and the right values for
αi and βj , ∀i ∈ I and ∀j ∈ J .

TF Performance
β ≤ β0 β1 < β ≤ β1 ... βj < β ≤ βj ... β ≤ βJ

E
F

P
er
fo
rm

an
ce

α ≥ α0

α1 > α ≥ α1

... (i− 1, j)

αi > α ≥ αi (i, j − 1) (i, j) (i, j + 1)
... (i+ 1, j)

α ≥ αI

Table 1. A generic policy table

Without loss of generality, we consider that the system’s state change upon two types
of events: the arrival of a new request or the completion of an ongoing one. Each time
one of those events happens, corresponding actions are taken according to each fleet
management strategy, as it was discussed in Section 3, and the new system’s state is
estimated. For instance, if an EF ambulance completes serving an emergency request,
then it is relocated according to the proposed relocation strategy. EF performance α
is the expected coverage given the actual locations of the ambulances in the fleet. As
per TF , a proxy of its performance β is computed as the expected average delay on the
transport appointments that are planned to be served within the next two hours. Notice
that other arbitrary approximations might be used to estimate TF ’s performance by
using, for example, longer or shorter horizons, or even computing the average delay
overall known transport requests not yet completed, but we believe that the proposed
proxy is a fair one and right enough for the assessment of the TF . Assuming that
αi > α ≥ αi and βj < β ≤ βj , the system’s state is denoted by (i, j). If the new
state is not the target state i = j = 0, then a potential vehicle transfer between
fleets is evaluated. To this end, one must carefully assess the benefits of the transfer
of a vehicle both from EF to TF and from TF to EF . Indeed, for each case, the
benefit to the fleet that receives an additional vehicle may be lower or higher than the
performance worsening of the fleet that releases it. The decision to transfer a vehicle
or not thus depends both on the current performance of each fleet, but also on the
expected improvement and deterioration resulting from the transfer. The policy table
explicitly formalizes the tradeoffs that managers are ready to accept between both
fleets as illustrated hereafter.

Let us assume that an event happens. The event is handled by the system according
to the fleet’s policy as it has been explained in Section 3, and the new system state
(i, j) is estimated. Then, the effects on the fleet’s performance of ambulance transfer
from TF to EF and from EF to TF are evaluated. Let us first consider an ambulance
transfer from TF to EF . Such a transfer is considered only if j < J since it is assumed
that managers do not wish to remove a vehicle from a fleet that is already at its
worst performance, i.e. j = J . If the transfer improves EF ’s performance, but it is not
enough as to move the fleet state to i′ < i, then the transfer does not seem to be worthy
and it is discarded. Otherwise, the transfer is considered, leading the system to a new
state (i′, j′) such that i′ < i and j′ ≥ j. The transfer net contribution is computed
as ∆1 = (i − i′) − (j′ − j), where (i − i′) and (j′ − j) provide the “number of states”
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gained by EF and lost by TF , respectively. Then, if i < I, an ambulance transfer from
EF to TF is also studied. If we denote by (i′′, j′′) the new system’s state, the transfer
net contribution is computed as ∆2 = (j − j′′) − (i′′ − i). The transfer offering the
largest net and positive contribution is implemented. If both potential transfers have
positive and equal net contributions, then the one bringing the number of vehicles in
each fleet closer to the one at the target state is preferred and is implemented. Figure
1 illustrates the decisional processes that form the proposed capacity sharing scheme.

Figure 1. Evaluating the potential transfer of a vehicle

4.2. The Transfer of Vehicles between Fleets

Once the transfer of a vehicle has been decided, it is still necessary to select the vehicle
to transfer and to make the adequate adjustments to the fleets to cope with the new
situation. However, choosing the right vehicle to transfer is not an easy task. Although
it is possible to allow any vehicle in the fleet to eventually change its mission, it can
be more interesting from a managerial standpoint to limit the flexibility of the fleets
to a relatively small number of vehicles n∗ ≤ n and m∗ ≤ m. In this case, one must
decide whether the n∗ and m∗ vehicles are identified a priori or not, meaning that
only specific vehicles or any vehicle in the fleet may change its mission, respectively.
The strategy in which the vehicles are identified seems easier to deploy and manage.
Moreover, it is better suited to contexts in which practical constraints exist, including
specific equipment or crew skills. The strategy in which the vehicles are not identified
rather offers increased flexibility.

Let us define P as the set of ambulances that are allowed to change their mission.
The selection of the vehicle to transfer from P unfolds two cases depending on the
fleet that releases the vehicle.
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Transfer from EF to TF . Let us assume that, at the current moment, EF owns
n′ vehicles whose locations are known. If none of the idle vehicles is in P, then the
transfer process is aborted. If only one of EF ’s idle vehicles belongs to P, then this
vehicle is selected for the transfer. If at least two of EF ’s idle vehicles belong to
P, an ambulance relocation problem is solved with (n′ − 1) vehicles to find a new
location plan with (n′ − 1) standby sites using the BACOP2 model (see Section 3.1).
To identify the ambulance to release, an assignment problem is formulated where n′
ambulances of the current plan must be assigned to (n′ − 1) locations in the new plan
in such a way that the total assignment cost, i.e. the total distance that ambulances
drive from their current to their new location, is minimized and making sure that all
the EF ambulances that not belong to P are assigned to a standby location. The
ambulance which is not assigned to a new location is transferred to TF . Assuming
that, at the current moment, TF owns m′ vehicles, the requests scheduling method
described in Section 3.2 is executed considering the m′ + 1 ambulances and their
current locations and missions. Notice that diversion (i.e. changing a vehicle away
from its current destination to a new current destination) is allowed provided that no
patient is on board.

Transfer from TF to EF . First, the candidates in TF to be transferred are
identified. To this end, let us assume that at the current moment TF owns m′ vehicles
from which m′′ are available (i.e. they do not have a patient on board or they are not
driving to pick up a patient). If none of the m′′ vehicles is in P, then the transfer
process is aborted. If only one of m′′ available vehicles belongs to P, then this vehicle
is selected for the transfer. If at least two of the m′′ available vehicles belongs to P,
the candidate set P ′ is built with them. Assume that, at the current moment, EF
owns n′ idle vehicles whose locations are known. An ambulance relocation problem is
solved with n′ + 1 vehicles to find a new location plan with n′ + 1 standby sites. A
new assignment problem is formulated where the n′ ambulances of the current location
plan plus the ambulances in P ′ must be assigned to n′ + 1 locations, subjected to a
constraint that limits to one the number of ambulances in P ′ that can be assigned to a
standby point. As in the previous case, the assignment problem seeks to minimize the
total travel distance by the ambulances in the relocation process. Finally, the requests
for the TF are reassigned and rescheduled among the m′ − 1 remaining vehicles.

5. Numerical Experiments and Results

This section reports results produced by a set of numerical experiments designed to
assess the potential performance improvement as well as the downside brought by the
proposed capacity sharing scheme, and discusses its potential use in practice.

It first explains how experiments were designed and how the instances were gener-
ated. Then, it reports numerical results to two sets of experiments. In the first set,
it is assumed that, although demand is uncertain, it follows a stable pattern (i.e. call
arrival rates are constant over the planning horizon). Contrarily, the second set of
experiments assumes demand surges at specific moments in time. To be able to eval-
uate the performance of the proposed capacity sharing scheme in a dynamic context,
a discrete event simulation (DES) model is used. We refer the interested reader to
(Kergosien et al. 2015) for a detailed description of the simulation tool, from its design
to its validation. The simulation model was implemented in C++. The different pro-
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posed fleet management strategies were integrated in the simulation model. We used
the commercial software CPLEX to solve the BACOP2 model whenever ambulance
relocation is necessary. In our experiments, the time required by CPLEX each time
it was called during the simulation was short (under 100 ms) which makes that the
whole decision process (from evaluating the potential transfer of an ambulance, to the
selection of the ambulance to transfer and the potential adjustments to the fleets) less
than 2 seconds for all our experiments. Moreover, we solved several instances with the
free solver GLPK and concluded that the computational times were comparable to the
ones required by CPLEX, suggesting that a potential implementation of our approach
wouldn?t require cutting-edge software.

5.1. Experiments Design

To perform the numerical experiments, an instance based on the city of Montreal
(Canada) was considered. The system under study includes 440 zones, 10 hospitals,
1 depot and 38 potential sites, with the city center located in the east side. The
geographic repartition of zones, hospitals, potential sites and depot are presented in
Figure 2. In the case of the simulation, several replications are needed to compute aver-
age values and confidence intervals for the system performance. In our case, after some
preliminary experiments to assess the variability of the observed performance indica-
tors, 50 replications were generated to ensure reasonable confidence intervals during
allexperiments. A replication s consists of different lists of requests along with their
specific characteristics corresponding to a 10-hour working shift. The results reported
in this section, however, correspond to the eight middle hours in order to remove the
transient states corresponding to the first and last hour of the day. Each replication
was generated a priori and stored in files so that the same request lists were used to
fairly compare the considered management strategies.

To create realistic experiments, we gathered and merged several sources of infor-
mation (annual reports of the local EMS organization, demographic statistics of the
region, and information collected from the literature) to set the values of the parame-
ters used to generate the numerical instances. Preliminary experiments allowed the fine
tuning of some demand-related parameters to ensure a workload balance of the two
fleets under stationary demands. Emergency requests were randomly generated in the
following manner. Inter-arrival times were drawn from a Poisson distribution with an
average of 5 minutes. Once a request is generated, it is associated with a specific zone
following a discrete distribution where the probability of selecting a zone depends on
its demographic weight. The hospital destination was randomly selected among 3 sites
that can take in charge emergency requests, each with probability 1/3. Intervention
time at scene varies uniformly between 5 and 10 minutes, and the time to discharge
the patient at the hospital varies, also uniformly, between 10 and 15 minutes. As per
the transport requests, inter-arrival times were drawn from a Poisson distribution with
an average of 3 minutes, and they were assumed to be known by the system 30 to
240 minutes before the pickup time, allowing decision makers some time to schedule
them and plan the routes of ambulances in advance. Origin (or destination) location
was randomly determined to be a hospital with probability 2/3 (the specific hospital
also being selected randomly) or a patient’s home (with probability 1/3). In the latter
case, the specific coordinates of the patient’s home were generated uniformly among
all the 440 zones. The time to take care of the patient at the hospital or at home
varies uniformly between 10 and 15 minutes. In all the cases, traveling times between
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the different sites (hospitals, depots, standby sites, zone centers) were generated as in
(Kergosien et al. 2015).

Figure 2. Geographic repartition of zones, hospitals, potential sites and depot

As it was mentioned before, the policy table is the key to the capacity sharing
proposal. It is therefore necessary to build a credible and balanced table if one wishes to
assess the potential of the approach in practice. This policy table can be obtained after
consultation with different EMS decision makers and managers. From one organization
to another, the emphasis on the quality of response given for one or the other type of
requests, as well as the criteria for evaluation set by the local health authorities, may
differ.

In our case, and without loss of generality, the policy table contains six performance
levels for each fleet. The levels were chosen in the following manner. Firstly, we set
the target performances (a single coverage of 100% with more than 80% of the regions
covered twice, and average lateness under 5 min) that seemed realistic performances
according to reports of real organizations. Preliminary experiments using the indepen-
dent management methods in Section 3 demonstrated that fleets with n = m = 15
vehicles might keep these performance levels under normal conditions. Then, we pro-
posed progressive and somehow homogeneous reductions in performance to set the
following thresholds. In the case of EF , the second and third levels keep the percent-
age of regions covered at 100%, but reduce the percentage of regions covered twice by
2, from higher than 80% to between 40 and 80%, and from there to between 0 and 40%.
Then, only single coverage was concerned. The fourth and fifth levels require coverage
higher than 90% and 85%, respectively. Finally, the last level corresponds to percent-
ages of coverage regions under 85%. As per TF , we simply increased the average delay
by 5 minutes from level to level. The proposed policy table is given in Table 2.

The next subsection aims to assess the contribution of the proposed capacity sharing
scheme to the fleets’ performance when the demand is assumed to be stationary and
the workload level of the fleet varies. Then, Subsection 5.3 tries to determine to which
extent the proposed scheme may help the system cope with sudden variations in the
demand faced by one fleet or the other, or even by the two fleets simultaneously.
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% of coverage Average lateness
once twice < 5 min [5 min, [10 min, [15 min, [20 min, ≥ 25 min

10 min[ 15 min[ 20 min[ . 25 min[
100% > 80% (0,0) (0,1) (0,2) (0,3) (0,4) (0,5)
100% ]40%,80%] (1,0) (1,1) (1,2) (1,3) (1,4) (1,5)
100% [0%,40%] (2,0) (2,1) (2,2) (2,3) (2,4) (3,5)

[90%,100%] - (3,0) (3,1) (3,2) (3,3) (3,4) (4,5)
[85%,90%] - (4,0) (4,1) (4,2) (4,3) (4,4) (5,5)
< 85% - (5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

Table 2. Policy Table

5.2. Stationary demand

The goal of this first set of experiments is to assess the performance of the proposed
capacity sharing approach when the demand is assumed to be stationary, and to com-
pare it to the one produced by the independent management strategies. To this end, we
executed the 50 replications presented previously under three management strategies.
In the first strategy referred to as Ind, fleets are managed independently as described
in Section 3. This strategy, which is the one generally observed in practice, constitutes
the baseline of the study. The second and third strategies implement the capacity
sharing scheme in different manners. The second strategy referred to as ShP assumes
that only a subset P of ambulances are able to perform both emergency and transport
requests, so they can change their mission during the day, with |P | = (n′+m′). In the
experiments we set n′ = m′ = 6. In the last strategy, ShAll, all the ambulances are
allowed to change their mission. At the beginning of the day, n = m = 15 ambulances
are assigned to EF and TF .

To investigate the system’s response to different levels of workload, four scenarios
were considered, including n+m = {26, 28, 30, 32}. Table 3 shows the numerical results
produced for each of those 4 scenarios. For each scenario, the results are computed over
the same 50 replications. Results reported under Emergency Requests are#, the av-
erage number of answered emergency requests, Response time, the average response
time for all the answered emergency requests (in seconds), and % within 9 min, the
portion of requests that are served within a 9-minute threshold, which constitutes a
de facto standard in practice. Results reported under Transport Requests are #,
the average number of answered transport requests, Lateness, the average delay with
respect to the patient appointment expressed in seconds, and # Late, the number of
requests for which a delay is observed. Finally, we also computed two proxies related
to the additional cost brought by ambulance transfers in terms of vehicle movements
during changes of missions. To this end, columns under Fleet Efficiency report the
percentage of empty travelled distance (column % Empty travel) and the number of
times an ambulance changes its mission (column # Changes).

It is important to mention that, since results were computed over 50 replications,
statistical tests were performed to ensure that the results produced by the capacity
sharing strategies were significantly different from the ones in the baseline. Taking
advantage of the fact that all three methods were executed using the same list of calls,
we computed for each metric paired-t confidence intervals on the (Ind − ShP) and
(Ind − ShAll) differences for each performance indicator and with α = 0.05. Results
for which the confidence interval missed “0” were reported to Table 3, which explains
why the table contains some results indicated by ‘- -’. Therefore, all reported differences
are significant. Finally, let us mention that since we use 95% confidence intervals, the
overall confidence of our conclusions will be of at least 90%, since they will be based
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on the combined probability that two the confidence intervals simultaneously hold the
“right” value of the distribution average.

Emergency Requests Transport Requests Fleet efficiency
Response % within % Empty

scenario Strat. # Time 9 min # Lateness #Late travel #Changes
Ind 303.3 97.0 94.6 8.7 19.5

15+15 ShP 96.1 290.5 97.9 135.1 147.4 24.0 20.9 2.2
ShAll 288.3 98.3 157.8 28.5 21.1 4.2

Ind 340.5 91.1 177.9 33.3 26.0
13+13 ShP 96.1 320.4 94.3 135.1 296.8 83.5 25.6 18.7

ShAll 311.9 95.5 423.9 111.2 24.9 27.6

Ind 317.4 94.7 116.5 14.6 22.1
14+14 ShP 96.1 299.3 97.2 135.1 209.3 53.7 22.9 10.3

ShAll 297.9 97.7 228.7 65.0 23.1 17.6

Ind 294.5 97.6 85.5 6.8 18.2
16+16 ShP 96.1 287.0 - - 135.1 - - - - 18.6 1.3

ShAll 286.4 98.5 - - 8.9 18.6 1.2

Table 3. Numerical results produced by the three fleet management strategies for different fleet sizes and
assuming stationary demand

Keeping in mind the previous comments, let us look first at the results produced for
scenario (n = m = 15) by strategy Ind. Unsurprisingly, managing the fleets indepen-
dently leads to excellent performances. Indeed, average response time for emergency
requests is just above 303 seconds and 97.0% of the requests were served within the 9
minutes threshold. On average, only 8.7 over more than 135 of the transport requests
were served late and the average lateness was around 94 seconds. The empty travel
time of ambulances for repositioning purposes, to get to the next patient location, or to
come back to their standby sites after completing a mission, represents 19.5% of their
total travel distance. Strategy ShP improves EF ’s performance with respect to Ind
by reducing the response time to 290.5 seconds, an improvement of 12.8 seconds, and
increasing the percentage of requests served within 9 minutes to 97.9%. However, this
improvement is not achieved without a cost. Indeed, the performance of the TF is wors-
ened slightly. With respect to the results of Ind, the average number of late requests
is increased by 15.3 and the average lateness also increases by 52.8 seconds. Finally, it
can be observed that, on average, only 2.2 ambulances changed their mission. Similar
results are obtained for Strategy ShAll: it even further improves the results produced
by ShP for EF , but also offers slightly worse results for TF .

Let us look at results obtained for smaller fleet sizes, i.e. n = m = {13, 14}, and larger
ones, i.e. n = m = {16}. As one might expect, the overall performance of the fleets
deteriorates as the size of the fleets is reduced, and it improves as they increase. For
n = m = {13, 14}, we observe that the capacity sharing strategies always improve the
performance compared to Ind for emergency requests. As per the transport requests,
Ind shows a better performance. If the fleet size increases to n = m = {16}, fleets are
over-dimensioned and they both have the capacity to handle requests with remarkable
performance. Both capacity sharing strategies reduce the average response time for
emergency requests without deteriorating the response of TF , in the case of ShP, or
reducing both the number of late requests and lateness, in the case of ShAll.

Table 3 also shows that the three strategies led to very similar results with respect
to the empty travel time, so the use of capacity sharing strategies does not reduce the
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utilization rate of ambulances. It is worth noting that the number of mission changes
increases as the fleet capacity decreases: this can be seen as an attempt to adapt to
the variability of the request arrival processes. Indeed, when the fleet sizes is reduced
to the smallest value, n = m = {13}, the average number of mission changes rises up
to 18.7 and 27.6 for strategies ShP and ShAll, respectively.

To summarize, it is difficult to conclude on which management strategy, if any, is
better. Strategies based on the capacity sharing scheme seem to favor the emergency
fleet at the expense of the transfer one. This can be explained, at least partially, by
the choice of the performance thresholds for TF in the policy table. In fact, since
the target performance is set to an average lateness lower than 5 minutes, capacity
sharing strategies do not try to improve situations where lateness remains under 300
seconds, which is the case for ShAll in all scenarios, but also for ShP, except the scenario
with 13 + 13 ambulances. Also, it is worth mentioning that the proposed policy table
takes average lateness as the proxy for TF but does not account for the number of late
requests. This fact might be at the origin of the higher number of late requests produced
by the capacity sharing strategies. As mentioned before, the results on the percentage
of empty travel times show that both capacity sharing strategies only increase empty
travel marginally, and that the number of mission changes remains small.

5.3. Response to Sudden Increases of Demand

The capacity of both emergency and transport fleets are generally set according to
the expected or nominal demand. However, in practice, fleets must face temporary
demand variations that affect the system’s ability to maintain target performances.
The capacity sharing scheme proposed in this paper exploits the hypothesis that the
emergency and the non-emergency transportation fleets answer random demands of
different nature and thus uncorrelated. Therefore, it is reasonable to assume that,
during a period of demand higher than nominal for one fleet, it may happen that the
other one experiments a lower than nominal demand. If it is the case, some capacity
from the latter might be transferred to the former in order to cope with the demand
surge in such a way that the global performance might be improved. However, if the
demand for both types of services increases at the same time, it is not conceivable that
some capacity from one fleet could be transferred to the other. To evaluate this ability
of the proposed capacity sharing strategies, we run a series of experiments in which one
or several surges in demand is provoked. To do so, we reduce the requests inter-arrival
time by 5%. The duration of a surge is arbitrarily set to 60 minutes. Eight different
scenarios were elaborated according to the number of surges faced by each fleet (0, 1
or 2) and their combinations. It is worth mentioning that, in all cases, the timespan of
surges was set in such a way that two surges do not happen simultaneously. Finally,
fleet sizes were set to n = m = {15}. Numerical results for all scenarios, which consists
of the average over the 50 replications, are presented in Table 4. Again, as described
previously, only statistically significant results are presented, otherwise the symbol ‘-
-’ is indicated.

The first four scenarios correspond to the cases where surges affect only one fleet. Let
us analyze first cases (1−0) and (2−0), where EF faces one and two surges, respectively.
In such cases, we can observe that the proposed capacity sharing strategies improve
markedly both the response time and the percentage of regions covered within the 9
min standard. However, capacity sharing strategies slightly increase average lateness
and the number of late transport requests. Nonetheless, as it was mentioned in the
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Emergency Requests Transport Requests Fleet Efficiency
Surges Response % within Average % Empty
EF-TF Strat. # Time 9 min # Lateness #Late travel #Changes

Ind 338.8 90.3 84.9 8.6 20.5
1-0 ShP 105.9 305.5 94.9 135.4 177.4 34.8 22.1 5.2

ShAll 300.0 95.6 181.8 41.1 22.2 7.5
Ind 375.8 84.6 85.1 8.9 21.4

2-0 ShP 115.4 323.3 92.3 135.1 190.7 41.9 23.4 6.8
ShAll 314.3 93.8 205.8 50.6 23.4 11.3
Ind 305.5 96.4 723.9 66.7 21.0

0-1 ShP 96.0 - - - - 152.3 545.8 - - 21.8 13.7
ShAll 298.8 97.2 573.1 73.8 21.7 19.2
Ind 309.4 96.8 778.9 104.7 22.2

0-2 ShP 96.1 317.3 95.4 160.6 594.0 91.1 22.7 24.6
ShAll - - - - 630.4 - - 22.3 33.8
Ind 346.2 89.4 677.5 51.1 22.1

1-1 ShP 106.1 319.7 92.8 145.1 412.9 60.5 23.2 16.9
ShAll 311.1 94.5 456.2 72.4 23.0 22.6
Ind 347.2 89.3 784.0 106.9 23.5

1-2 ShP 105.8 338.3 91.4 159.8 584.6 97.5 24.1 28.4
ShAll 326.5 93.4 625.0 115.3 24.0 38.8
Ind 379.9 83.5 754.4 68.1 23.1

2-1 ShP 115.6 340.5 89.7 152.6 481.8 82.0 24.5 19.4
ShAll 330.4 91.5 535.6 95.6 24.2 32.2
Ind 380.0 83.4 832.5 112.2 23.6

2-2 ShP 115.6 351.4 88.1 164.9 588.7 105.3 25.1 28.3
ShAll 334.1 91.5 639.8 122.0 24.8 42.4

Table 4. Numerical results produced by the three fleet management strategies for different number of surges
in demand

previous subsection, average lateness is in all cases lower than 3.5 minutes, far below
the 300 seconds threshold that was set for the best performance of TF in the policy
table. In other words, it is assumed that those lateness values are not only acceptable,
but excellent with respect to the target performances. If we compare both sharing
strategies, ShAll leads to better results than ShP regarding EF ’s performance, but
also produces slightly worse results for TF ’s.

Let us now look at cases (0− 1) and (0− 2), where TF faces on one and two surges,
respectively. ShP reduces lateness achieved by Ind from 723.9 seconds (one surge) and
778.9 seconds (two surges) to 545.8 and 594.0 seconds, which represent reductions of
24.6% and 23.7%, respectively. It also produces the same 1 number of late requests
than Ind for the one-surge case, but reduces the number of average late requests to
91.1 (i.e. 12.9%) for the two-surge experiments. At the same time, it leads to the same
statistical or slightly worse performance as Ind with respect to EF . On its side, ShAll
produces for the one-surge case a reduction in lateness of 20.8% with respect to the
results of Ind and slight improvements in the response time (a reduction of 6.6 sec
or 2.2%) and percentage of coverage, which becomes 97.2%. For the two-surge case,
the reduction in lateness achieves 148.5 seconds (19.1%) and the rest of performance
metrics are statistically equal to those produced by Ind. We can therefore conclude that
capacity sharing strategies handle in a very interesting manner surges in TF requests
with none or a very small deterioration on EF ’s performance.

Finally, let us move to cases where surges (one or two) affect both types of requests.
Table 4 shows that the results produced by the sharing capacity strategies clearly dom-

1from a statistical standpoint: the confidence interval around the average of the difference between ShP and
Ind contains the value 0.
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inate the ones produced by the independent management. In particular, ShP reduces
the response time, increases the percentage of emergency requests answered within the
9 min. threshold, and reduces average lateness with respect to independent manage-
ment in all the cases. Improvements range from 2.6% up to 10.4% in response time,
while the percentage of coverage increases from 2.4 up to 7.4%. As per TF perfor-
mance, average lateness is reduced from 25.4 up to 36.1%. Moreover, in cases (1 − 2)
and (2− 2), it also improves the number of late transport requests.

ShAll produces the best average response time and the percentage of emergency
requests answered within the 9 min. time limit in all cases, with reductions in response
time ranging from 6.0% up to 13.0% and a significant increase in coverage. Indeed, for
cases (2 − 1) and (2 − 2), the coverage increases from 83.5 and 83.4%, for Ind, up to
91.5% for ShAll. It also improves average lateness with respect to Ind in all cases, but
reductions are slightly smaller than the ones produced by ShP.

Table 4 also shows that, when surges are more frequent, ambulances tend to travel
more often empty. In all the cases, nonetheless, the increase in the percentage of empty
travel produced by the capacity sharing strategies is fairly small with respect to in-
dependent management. However, the number of mission’s changes increases with the
number of surges, to reach 28.3 and 42.4 for ShP and ShAll strategies in the (2 − 2)
case.

To better illustrate how the capacity sharing scheme acts, Figure 3 shows, for the
first instance of the (2− 2) set, the number of emergency and transport requests (left
axis) as well as the number of ambulances included in each fleet (right axis). The figure
covers an eight-hour period, which has been divided into 32 time intervals of 15 min.
Three horizontal lines have been added to identify the initial number of ambulances
in each fleet (n = m = 15), as well as the expected number of requests per 15 min
to be served by each type of fleet (3 and 5 for emergency and transport requests,
respectively).

Figure 3 illustrates how, at the beginning of the day, fleet sizes adjust to cope with
the surge in emergency requests. To this end, up to three ambulances are transferred
from TF to EF . Later, from periods 7 to 10, both emergency and transport requests
are at their expected values before a first surge in transport demand occurs (periods 11
to 14). After, the number of ambulances assigned to each fleet stabilizes until period
18, when the arrival of the second surge in emergency demand provokes the transfer of
three TF vehicles to EF . Fleets adjust again to cope with the second surge in transport
requests in period 28, before the end of the simulation.

5.4. Implementing capacity sharing strategies in real contexts

The numerical results presented in the previous subsections confirm that, from a pure
performance perspective, the capacity sharing strategies are very interesting, particu-
larly when the system must handle variations in the arrival rate of requests. For these
situations, the capacity sharing strategies take advantage of the flexibility granted by
their ability to transfer ambulances between fleets. This allows for adapting the capac-
ity of the fleets resulting in more robust responses. Indeed, the numerical experiments
demonstrate that, in case of demand surges, both capacity sharing strategies mitigate
performance worsening without impacting too much the performance of the other fleet.
We therefore believe that in a practical context where variations in the arrival rate of
requests might also translate into lower demand, capacity sharing strategies would per-
form even better due to their ability to pool resources. It is also important to recall
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Figure 3. Variation of the number of requests and the number of ambulances in each fleet for a scenario with
4 surges in demand
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that no move deteriorating the current performance of a fleet will be accepted by the
capacity sharing mechanism. In particular, although one might think that in no case a
transfer from the emergency fleet to the transportation fleet should be accepted, such
a transfer can be done in specific occasions without deteriorating appreciably (several
seconds) the emergency fleet’s expected response time.

Nevertheless, we would like to insist on the fact that these numerical results were
produced for a particular implementation of the capacity sharing scheme, with specific
methods to manage the individual fleets and a given policy table, so one must be
careful when generalizing them to other settings. Simulation tools as the one used in
this research can be, in our opinion, very useful to assess the value of capacity sharing
strategies in the context of a given organization. That being said, we believe that the
proposed experiments provide a precise idea of the benefits that may be achieved by
such strategies.

These compelling results lead us to discuss the practical application of the sharing
schemes and query potential barriers. Firstly, from a computational perspective, mod-
els and algorithms supporting the decision-making process require a very short time,
so we believe that they might be easily integrated into a real-time decision support
system. Indeed, during the simulation, we note that for each event, all decision pro-
cesses (from evaluating the potential transfer of an ambulance, to the selection of the
ambulance to transfer and the potential adjustments to the fleets) were computed in
less than 2 seconds. Secondly, from a practical standpoint, the implementation of the
capacity sharing scheme seems feasible in modern EMS organizations. In fact, these
organizations already own advanced communication systems connecting the vehicles
to the dispatch center, so the crews already receive instructions in real-time. As per
the potential cost of equipping vehicles and training crews to perform both kind of ser-
vices, we believe it marginal in the context of the Anglo-American model. Moreover,
the capacity sharing strategy offers excellent results even when only a reduced number
of vehicles can perform both types of requests. In our opinion, the hardest obstacle
for the implementation of capacity sharing schemes would be the reluctance of crews
to perform both types of tasks and more specifically, to manage the impact on their
remuneration. However, taking into account the potential improvement on the quality
of the service provided to the population, we believe that organizations and unions will
be able to negotiate and agree on more flexible models concerning the activity and the
remuneration of crews.

6. Conclusion

More often than not, organizations providing EMS are also in charge of the non-
emergency patient transports between medical facilities or between those and patients’
homes. Although these non-emergency requests require very similar resources (vehicles
and crew) or even the exact same resources as emergency requests, many organizations
operate separate fleets to handle these two kinds of demands. In this paper, we explore
the advantages that a strategy managing both fleets jointly may achieve. To this end,
we propose a capacity sharing approach aiming at granting some permeability between
fleets in an attempt to improve the overall system performance. The approach exploits
the hypothesis that the fleets answer random demands of different nature and thus
uncorrelated. Therefore, it is reasonable to assume that, if at given moment the demand
for one type of service is higher than expected, it may happen that the demand for the
other will be lower than expected. If it is the case, the transfer of one or more vehicles
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may contribute to improve the overall performance. The approach takes the form of
an online algorithm that, at each new event, evaluates the expected performance of
each fleet in terms of their specific metrics and decides whether or not a “transfer”,
i.e. a change in the mission of a vehicle, may improve the situation. If it is the case, a
mathematical formulation is solved to identify the vehicle that will be transferred from
one fleet to the other. Two versions of the capacity sharing approach are considered.
In the first version, only a restricted subset of specific ambulances is able to change
their mission while, in the second version, all the ambulances can perform both tasks.

To assess the contributions of the capacity sharing approach, we have simulated
the performance of a base case in which each fleet is managed independently using
specific methods and then compared it to the case where the capacity sharing scheme
is applied. In particular, non-emergency transport requests are scheduled by solving
a dial-a-ride problem whilst the BACOP2 formulation is used to locate and relocate
the ambulances of the emergency fleet in order to maximize the coverage. Two sets
of experiments have been executed. In the first set, it is assumed that although both
emergency and non-emergency requests are uncertain, they follow a stable pattern
(i.e. the arrival rates are constant). In the second set of experiments, we assume a
more realistic situation where demand surges happen at specific moments in time to
represent the variations in requests arrivals observed in practice. All the experiments
confirm the positive contribution of the two versions of the capacity sharing approach,
particularly when the system faces surges in demand. Meanwhile, the proposed capacity
sharing strategies do not seem to reduce the efficiency since the percentage of time that
vehicles travel empty are not increased or increased very slightly. This capacity sharing
approach offers an incomplete integration of the fleets but has the worthy advantages
of improving the overall system performance and it is easily configurable to adapt to
many EMS policies.

We believe that the practical implementation of the capacity sharing approach is
feasible. The computational time required to execute all the decision process when a
new request arrives, is less than 2 seconds. Moreover, EMS organizations already own
advanced communication systems connecting the vehicles to the dispatch center and
the potential cost of equipping vehicles and training crews to perform both kind of
services is, in the context of the Anglo-American model, low or marginal. However,
the contribution of the sharing approach depends on the particular characteristics of
the demand faced by each organization, so preliminary simulation experiments should
be run before launching the implementation in a given organization. In this sense, the
capacity sharing approach lies on the values set in the policy table that rules the con-
ditions for the transfer of vehicles between fleets. The policy table must be elaborated
carefully since it represents tradeoffs between the different levels of performance for
each fleet that are considered as comparable to managers. Last but not least, the po-
tential sudden changes of mission cannot be envisaged without further studies on the
crews’ working and remuneration conditions that would need to be negotiated between
unions and organizations.
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