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“ CONTEXT Drivers of populations network stability, persistence and adaptive ability

Working hypothesis:

@ Populations biocomplexity provides
network stability through asynchrony and
adaptive potential (Portfolio Effect)

@ Dispersal provides network stability
through rescue effects (+PE)

@ Negative interaction can exist between
biocomplexity and dispersal
(homogenization) (-PE)
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“ CONTEXT Drivers of populations network stability, persistence and adaptive ability

Working hypothesis:

@ Populations biocomplexity provides
network stability through asynchrony and
adaptive potential (Portfolio Effect)

@ Dispersal provides network stability often studied separately
through rescue effects (+PE) — Here in a unified framework

@ Negative interaction can exist between
biocomplexity and dispersal
(homogenization) (-PE)



“ CONTEXT Drivers of populations network stability, persistence and adaptive ability

Atlantic salmon (Salmo salar)
- A good case of study
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A metapopulation perspective for saimon and other
anadromous fish
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“ METHODS Salmon metapopulation modeling

IBASAM Individual-Based Atlantic Salmon Model
: a demo-genetic individual-based model for a single population (Piou & Prévost 2012)
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“ METHODS Salmon metapopulation modeling

Individual-Based Atlantic Salmon Model

IBASAM
: a demo-genetic individual-based model for a single population (Piou & Prévost 2012)
From genes to metapopulations - %
(Baguette et al, 2017) Metapopulation
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Populations network stability and Evolutionary rescue
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“ RESULTS Populations network stability and Evolutionary rescue

_ Optimal value of the trait
Scenario:

[ Homogenous
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| resutrs

Network stability

Populations network stability and Evolutionary rescue

Trait value

-0.1 0.1 0.3

-0.3

10 20

30

40

Dispersal rates (%)

Douron river

Despersal rase
0% 20% . 40%
10% M| 30% m 50%
’
e e———— == — — — — —
1 I | 1 I
10 20 30 40 50

Years

50

Trait value

0.1 0.3

-0.1

-0.3

Scenario:

Optimal value of the trait

[ Homogenous e 91
populations E o]
Bl Genetic diversity R
(changed trait value) ch , : 1
-0.5 0.0 0.5
Growth potential
Yar river Leguer river
Despersal rae 2 7 Despersal rase
0% 20% . 40% il 0% 20% M 40%
| 30% . 50% Q 10% M 30% m 50%
=
©
..................... >
=
()
S
|_

Years

Years




| concrusion & NexT sTEPS

= Diversity alone does not necessarily promote populations network stability, but can increase populations
adaptive ability combined to dispersal




CONCLUSION & NEXT STEPS

Diversity alone does not necessarily promote populations network stability, but can increase populations

adaptive ability combined to dispersal

Persistence and adaptive ability facing climate =  Fisheries management in the context of spatially
change ? structured populations

Consequences of climate change on synchrony
and dispersal?




CONCLUSION & NEXT STEPS

Diversity alone does not necessarily promote populations network stability, but can increase populations

adaptive ability combined to dispersal
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Persistence and adaptive ability facing climate
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and dispersal?




“ METHODS Salmon metapopulation modeling

FRANCE

MetalBASAM  a spatially structured version of IBASAM

Dispersal modeling assumptions:

’q e
= Constant over space (populations) and time DmadBeN
e I e
= Not phenotypically or genotypically determined hand

= Choice of destination population based on distance and attractivity

Density of probability

Distance (km)



“ RESULTS Effect of dispersal on metapopulation stability

Metapopulation
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“ CONTEXT Role of dispersal in metapopulation response

Populations
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Biocomplexity at different levels:

= phenotypes and genotypes

= population dynamics (asynchrony)

b Diversity of responses to environmental changes
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(Schindler et al, 2015)



“ CONTEXT Role of dispersal in metapopulation response

Populations
Metapopulation
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N Biocomplexity at different levels:
L \ stability and persistence
= phenotypes and genotypes homogenization
= synchronyzation of populations dynamics = “anti-rescue” effects
Q L (Harding and McNamara, 2002)
Homogenization of responses




METHODS
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Mean parr density by m? (5 last years)
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LETTER

doi:10.1038/nature16062

Sex-dependent dominance at a single locus
maintains variation in age at maturity in salmon

Nicola J. Barson'*, Tutku Aykanat?*, Kjetil Hindar3, Matthew Baranski?, Geir H. Bolstad?3, Peder Fiske?, Céleste Jacq®,
ArneJ. Jensen?, Susan E. Johnston®, Sten Karlsson?, Matthew Kent!, Thomas Moen®, Eero Niemeld’, Torfinn Nome!, Tor F. Naesje?,
Panu Orell’, Atso Romakkaniemi’, Harald Szegrov®, Kurt Urdal®, Jaakko Erkinaro’, Sigbjern Lien! & Craig R. Primmer?
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“ Axis 1: Role of biocomplexity and dispersal on metapopulation response to CC

How dispersal influences metapopulation stability ?
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