Stability, persistence and adaptive ability of Atlantic salmon populations network

Mathieu Buoro, UMR ECOBIOP (INRAE/UPPA) Stephanie Carlson, University of California Berkeley

Working hypothesis: (1) Populations biocomplexity provides network stability through asynchrony and adaptive potential (Portfolio Effect)

(2) Dispersal provides network stability through rescue effects (+PE)

③ Negative interaction can exist between
biocomplexity and dispersal
(homogenization) (-PE)

CONTEXT Drivers of populations network stability, persistence and adaptive ability

METHODS

Salmon metapopulation modeling

Individual-Based Atlantic Salmon Model

: a demo-genetic individual-based model for a single population (Piou & Prévost 2012)

- Eco-evolutionary processes:
 - Environmental effects
 - Phenotypic plasticity
 - Genetic adaptation
 - Dispersal

METHODS

Salmon metapopulation modeling

Genetic diversity

Homogenous

populations

RESULTSPopulations network stability and Evolutionary rescue

RESULTS Populations network stability and Evolutionary rescue

RESULTS Populations network stability and Evolutionary rescue

I

Years

Years

CONCLUSION & NEXT STEPS

 <u>Diversity alone does not necessarily promote populations network stability, but can increase populations</u> <u>adaptive ability combined to dispersal</u>

CONCLUSION & NEXT STEPS

 <u>Diversity alone does not necessarily promote populations network stability, but can increase populations</u> adaptive ability combined to dispersal

- Persistence and adaptive ability facing climate change ?
- Consequences of climate change on synchrony and dispersal?

 Fisheries management in the context of spatially structured populations

CONCLUSION & NEXT STEPS

 Diversity alone does not necessarily promote populations network stability, but can increase populations adaptive ability combined to dispersal

- Persistence and adaptive ability facing climate <u>change ?</u>
- Consequences of climate change or and dispersal?

Jement in the context of spatially Jopulations

Salmon metapopulation modeling

MetalBASAM

a spatially structured version of IBASAM

Dispersal modeling assumptions:

- Constant over space (populations) and time
- Not phenotypically or genotypically determined

Effect of dispersal on metapopulation stability

Role of dispersal in metapopulation response

Diversity of responses to environmental changes

Role of dispersal in metapopulation response

- **PE > 1** \rightarrow Metapopulation more stable than expected
- $PE < 1 \rightarrow$ Metapopulation less stable than expected

Anderson et al, 2013

Population type

Source

Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon

Nicola J. Barson¹*, Tutku Aykanat²*, Kjetil Hindar³, Matthew Baranski⁴, Geir H. Bolstad³, Peder Fiske³, Céleste Jacq⁴, Arne J. Jensen³, Susan E. Johnston⁵, Sten Karlsson³, Matthew Kent¹, Thomas Moen⁶, Eero Niemelä⁷, Torfinn Nome¹, Tor F. Næsje³, Panu Orell⁷, Atso Romakkaniemi⁷, Harald Sægrov⁸, Kurt Urdal⁸, Jaakko Erkinaro⁷, Sigbjørn Lien¹ & Craig R. Primmer²

Axis 1: Role of biocomplexity and dispersal on metapopulation response to CC

Synchrony = 1

 \rightarrow Populations highly synchronous

 \rightarrow Metapopulation size variable

Synchrony = $\frac{\sigma_{metapop}^2}{(\sum_{noni} \sigma_{pop_i})^2}$

Synchrony = 0

 \rightarrow Populations highly asynchronous \rightarrow Metapopulation size stable

PE < 1