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Abstract

This paper is mainly devoted to the study of controlled sweeping processes
with polyhedral moving sets in Hilbert spaces. Based on a detailed analysis
of truncated Hausdorff distances between moving polyhedra, we derive new
existence and uniqueness theorems for sweeping trajectories corresponding to
various classes of control functions acting in moving sets. Then we establish
quantitative stability results, which provide efficient estimates on the sweeping
trajectory dependence on controls and initial values. Our final topic, accom-
plished in finite-dimensional state spaces, is deriving new necessary optimality
and suboptimality conditions for sweeping control systems with endpoint con-
strains by using constructive discrete approximations.
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1. Introduction and Problem Formulation

In this paper we consider a family of sweeping processes with controlled polyhe-
dral moving sets defined on a Hilbert space H. To describe this family, fix some
x0 ∈ H and, for arbitrary control functions (u, b) : [0, T ]→ Hm×Rm satisfying
x0 ∈ C(u,b)(0), define the moving polyhedral set

C(u,b)(t) := {x ∈ H| 〈ui(t), x〉 ≤ bi(t) ( i = 1, . . . ,m)} (t ∈ [0, T ]) . (1.1) movpoly
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This induces the controlled sweeping process
(
S(u,b)

)
given by

−ẋ(t) ∈ NC(u,b)(t) (x(t)) a.e. t ∈ [0, T ] , x(0) = x0 ∈ C(u,b)(0), (1.2) sweeping

where NC(x) stands for the classical normal cone of convex analysis defined as

NC(x) := {v ∈ H
∣∣ 〈v, y − x〉 ≤ 0} if x ∈ C and NC(x) := ∅ else. (1.3) nc

We emphasize that the differential inclusion in (1.2) comes along with the hidden
pointwise state constraints x(t) ∈ C(u,b)(t) for all t ∈ [0, T ], because otherwise
the normal cone is empty by definition.

Uncontrolled sweeping processes were introduced and initially studied by
Moreau [25, 26, 27] and then were extensively developed in the literature, where
the main attention was paid to the existence and uniqueness of solutions and
various applications; see, e.g., [1, 6, 7, 18, 20, 16] with their references.

Existence and uniqueness of class-preserving solutions x(u,b) to the sweeping
dynamics (1.2) generated by control functions (u, b) in (1.1) from various classes
in Hilbert spaces is the first topic of our paper. Note that the standard approach
to this issue (see, e.g., [20]) consists of checking the Hausdorff Lipschitz conti-
nuity of the moving set (1.1). However, this does not make much sense when
the moving set is an unbounded polyhedron. The W 1,2-preserving existence
and uniqueness results for moving polyhedra were obtained by Tolstonogov
[31, 32, 33] and more recently in [9] under certain qualification conditions in
Hilbert and finite-dimensional settings; see more discussions in Section 3. Here
we develop a novel approach involving the truncation of polyhedra and deriving
refined error bounds. This allows us obtain new class-preserving results, which
shows that Lipschitz continuous (resp. absolutely continuous) controls in (1.1)
uniquely generate Lipschitz continuous (resp. absolutely continuous) trajecto-
ries of (1.2) under an explicit and easily formulated uniform Slater condition
for moving control polyhedra in separable Hilbert spaces.

The second topic of our study addresses quantitative stability issues on the
Hölderian dependence of solutions to (1.2) on the corresponding perturbations
of controls (u, b) in moving sets as well as the initial value x0 in separable
Hilbert spaces. To the best of our knowledge, such questions have never been
posted for the sweeping processes formulated in (1.1) and (1.2). Based on the
aforementioned truncation techniques and error bounds, we establish efficient
results in this direction in the W 1,1 control-trajectory framework.

The third topic we investigate here concerns an optimal control problem for
the sweeping process in (1.1) and (1.2) under the additional pointwise equality
constraint on the u-component of controls and geometric endpoint constraint
x(u,b) ∈ Ω on trajectories. Optimal control theory for sweeping processes, with
addressing the main issue of deriving necessary optimality conditions, has been
started rather recently in [11] and then has been extensively developed in subse-
quent publications (see, e.g., [2, 5, 8, 9, 10, 12, 13, 14, 15, 35] and the references
therein), which did not concern however systems with endpoint constraints.
Problems of sweeping optimal control, that are governed by discontinuous dif-
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ferential inclusions with intrinsic pointwise and irregular state constraints, con-
stitute one of the most challenging class in modern control theory. We develop
here the method of discrete approximation, which allows us to constructively
approximate the constrained control sweeping process under consideration by
discrete-time sweeping systems with perturbed endpoint constraints so that fea-
sible and optimal solutions to discrete approximations strongly converge to the
designated feasible and locally optimal solutions of the original problem under
the uniform Slater condition introduced above. Employing then advanced tools
of first-order and second-order variational analysis and generalized differentia-
tion, we derive new necessary optimality conditions for discrete approximations
that gives us efficient suboptimality conditions for a general class of local mini-
mizers in the original problem of sweeping optimal control.

The rest of the paper is organized as follow. Section 2 presents major tech-
nical developments on the truncation and error bounds, which are of their own
interest while being widely used in deriving the main results of the paper. Sec-
tion 3 is devoted to establishing the class-preserving existence and uniqueness
theorems for the controlled sweeping process. Section 4 addresses stability issues
for sweeping trajectories under control and initial value perturbations. In Sec-
tion 5 we formulate an optimal control problems for the sweeping process (S(u,b))
with endpoint constraint and construct its well-posed discrete approximations
with establishing the W 1,2-strong convergence of feasible and optimal solutions.
The final Section 6 provides necessary optimality and suboptimality conditions
for such control problems via advanced tools of generalized differentiation.

2. Error bounds and truncation of moving sets
sec:trunc

This section plays a crucial role in describing and justifying our strategy to derive
existence and stability results for sweeping processes with controlled polyhedra
in both finite-dimensional and infinite-dimensional settings. The conventional
by now theory of sweeping processes establishes the existence of Lipschitz contin-
uous solutions of the sweeping dynamics via the Hausdorff Lipschitz continuity
of moving sets; see, e.g., Theorem 2 in [20] and its proof. Unfortunately, this
approach does not work for the case of unbounded moving polyhedra. For in-
stance, in the case in moving halfspaces, i.e., for m = 1 in (1.1), the Hausdorff
distance is either zero (if the two halfspaces coincide), or infinity otherwise.
Hence the only “moving” halfspaces satisfying Hausdorff Lipschitz continuity
are constant in time, which clearly does not offer any freedom for controlling
the process. However, when truncating the moving polyhedron with a ball, the
Hausdorff Lipschitz continuity may well be achieved. This suggests the follow-
ing strategy, which will be implemented in the paper. First we intend to show
that Lipschitzian controls lead us to bounded continuous solutions of the sweep-
ing process and that the moving polyhedron truncated with a ball sufficiently
large to contain this solution is Hausdorff Lipschitz, which hence verifies the
actual Lipschitz continuity of the solution. The second step of our approach is
to establish an appropriate error bound for the truncation moving polyhedra.

For the reader’s convenience, we split this section into several subsections
and present numerical examples providing the driving forces for our approach.
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2.1. Hausdorff Lipschitz continuity of truncated moving polyhedra

As discussed above, it is generally hopeless to ensure a Hausdorff Lipschitz
estimate for moving polyhedra (1.1) in the form

dH
(
C(u,b)(s), C(u,b)(t)

)
≤ L̂ |s− t| ∀s, t ∈ [0, T ] . (2.4) hausorig

Our efforts are now paid to establish a truncated estimate of type

dH

(
Cr(u,b)(s), C

r
(u,b)(t)

)
≤ L̂ |s− t| ∀s, t ∈ [0, T ] , (2.5) haustrunc

where r ≥ 0 is appropriately given, and where Cr := C∩B (0, r). To accomplish
this, we proceed in following two steps. Our first step is to derive the weakened
Hausdorff estimate given by

d
(
x,C(u,b)(t)

)
≤ L (‖x‖) |s− t| ∀s, t ∈ [0, T ] ∀x ∈ C(u,b)(s) (2.6) weakhaus0

with some monotonically increasing function L(·). Estimate (2.6) clearly yields

d
(
x,C(u,b)(t)

)
≤ L̂ |s− t| ∀s, t ∈ [0, T ] ∀x ∈ Cr(u,b)(s) (2.7) weakhaus

with L̂ := L (r). In the second step we prove the general estimate

d
(
x,Cr(u,b)(t)

)
≤ 3d

(
x,C(u,b)(t)

)
∀t ∈ [0, T ] ∀x ∈ B (0, r) (2.8) truncest

for all r sufficiently large. Combining the latter with (2.7) will ensure the desired
truncated estimate (2.5). Details follow.

2.1.1. Limitations of Hoffman’s error bound

The first idea, which comes to our mind for proving (2.6), is the use of the
classical Hoffman’s error bound; see, e.g., [4, Theorem 2.200]. It guarantees in

our setting that, for each t ∈ [0, T ], there exists some L̃ (t) := L(t, u(t), b(t))
ensuring the distance estimate

d
(
x,C(u,b)(t)

)
≤ L̃ (t) max

i=1,...,m
[〈ui(t), x〉 − bi(t)]+ ∀x ∈ H (2.9) hoffman

provided that C(u,b)(t) 6= ∅. In particular, for x ∈ C(u,b)(s) it follows from
〈ui(s), x〉 ≤ bi(s) for i = 1, . . . ,m, that

[〈ui(t), x〉 − bi(t)]+ (2.10)

= [〈ui(t), x〉 − 〈ui(s), x〉+ 〈ui(s), x〉 − bi(s) + bi(s)− bi(t)]+
≤ [〈ui(t), x〉 − 〈ui(s), x〉+ bi(s)− bi(t)]+
≤ ‖ui(t)− ui(s)‖ ‖x‖+ |bi(s)− bi(t)| ∀i = 1, . . . ,m.

When (u, b) is Lipschitz continuous, this combines with the previous estimate
to give us (with ‖·‖∞ referring to the maximum norm) the inequalities

d
(
x,C(u,b)(t)

)
≤ L̃ (t) (‖u(t)− u(s)‖∞ ‖x‖+ ‖b(s)− b(t)‖∞)

≤ L̃ (t) (‖x‖+ 1)K |s− t| ∀x ∈ C(u,b)(s),
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where K is a Lipschitz constant of (u, b). Therefore, if the function L̃ (t) is
bounded from above on [0, T ], say by L∗, then the desired estimate (2.6) would
follow with the function L (τ) := (τ + 1)L∗, which is clearly monotonically
increasing. Unfortunately, even for Lipschitzian controls (u, b), the function

L̃ (t) may be unbounded from above as can be seen from the following example.

counter Example 1. In (1.1) put m := 2, H := R2, T := 1 and define the smooth
(hence Lipschitz continuous) control pair

u1 (t) := (0, 1) ; b1 (t) := 1; u2 (t) := (t,−1) ; b2 (t) := 0.

For t ∈ (0, 1], take x (t) :=
(
t−3, 1

)
and observe that

d
(
x (t) , C(u,b)(t)

)
= t−3 − t−1 and max

i=1,...,m
[〈ui(t), x (t)〉 − bi(t)]+ = t−2 − 1.

It thus follows from (2.9) that L̃ (t) ≥ t−1 for all t ∈ (0, 1]. Therefore, the

function L̃ (t) is unbounded on [0, T ].
specialcases Remark 1. There are certain special cases in which Hoffman’s error bound

leads us to a bounded function L̃ (t) in (2.6) on the interval [0, T ], even for
non-Lipschitzian controls (u, b). We mention the following:

1. In the case of a moving halfspace (i.e., m = 1 and u(t) 6= 0 for all t ∈
[0, 1]) with a continuous control u : [0, T ] → H and an arbitrary control
b : [0, T ]→ R, we have that

d
(
x,C(u,b)(t)

)
= ‖u(t)‖−1

[〈u(t), x〉 − b(t)]+ ≤ L
−1 [〈u(t), x〉 − b(t)]+

for all t ∈ [0, 1] and all x ∈ H, where L := inf
t∈[0,1]

‖u(t)‖ > 0.

2. In the case where variable control functions are situated only on the right-
hand side of (1.1), i.e, when u (t) ≡ u 6= 0) while b : [0, T ]→ R is arbitrary,
it follows from [19, Proposition 4.6] that

d
(
x,C(u,b)(t)

)
≤ L max

i=1,...,m
[〈ui(t), x〉 − bi(t)]+ ∀t ∈ [0, T ] ∀x ∈ H

whenever C(u,b)(t) 6= ∅ for all t ∈ [0, T ].

Example 1 illustrates the drastic impact of fully controlled polyhedral moving
sets on Hoffman’s error bound starting from dimension two, even for smooth
controls. Fortunately, it turns out that—despite the fact that the approach
using Hoffman’s error bound sketched above is not viable for our purposes—we
may find an alternative path based on (2.6), in order to reach the desired goal.
To support this idea, let us revisit Example 1 and observe that the sweeping
process generated by the Lipschitzian control in this example does admit a
unique Lipschitzian solution for an arbitrary initial point x0 ∈ C(u,b)(0).

countercalc Example 2. Consider the control pair (u, b) defined in Example 1 and fix an
arbitrary initial point x0 ∈ C(u,b)(0). We subdivide the initial polyhedron as
C(u,b)(0) = Ω1 ∪ Ω2 with the sets

Ω1 :=
{
x ∈ C(u,b)(0)

∣∣ x2 < x1

}
and Ω2 :=

{
x ∈ C(u,b)(0)

∣∣ x2 ≥ x1

}
.
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If x0 ∈ Ω2, then for an arbitrary time t ∈ (0, 1) the boundaries of the two
controlled halfspaces have no contact with x0. Consequently, ẋ(t) = 0 for all
t ∈ (0, 1), and hence x (t) = x0 for all t ∈ [0, 1]. In contrast, for x0 ∈ Ω1 we get

x (t) =

 x0 t ∈ [0, t1]
y (t) t ∈ (t1, t2)

(1/t, 1) t ∈ [t2, 1]
, t1 =

x0,2

x0,1
, t2 =

{
1√

‖x0‖2−1
if ‖x0‖ ≥

√
2

∞ else
,

y1 (t) =
‖x0‖√
1 + t2

, and y2 (t) =
‖x0‖√
1 + t2

t.

Here t1 denotes the time when the second halfspace (the moving one) becomes
binding for x0 for the first time, i.e., when tx0,1 = x0,2. This gives us the
indicated formula for t1. For t < t1 both halfspaces are nonbinding for x0; so
ẋ(t) = 0, and hence x (t) = x0 for all t ∈ [0, t1]. For t ≥ t1 the second halfspace
is binding. The first halfspace also becomes binding at a certain time t2 > t1; so
we have x2 (t) = 1 for all t ∈ [t2, 1]. Since the second halfspace keeps binding, it
follows that tx1 (t) = x2 (t) = 1 from where we conclude that x1 (t) = 1/t during
this period of time. It remains to determine the trajectory x (t) for t ∈ (t1, t2),
as well as the switching time t2. Since in this interval only the second halfspace
is binding, we derive the following relations from the sweeping dynamics:

−ẋ(t) ∈ NC(u,b)(t) (x(t)) = R+ (t,−1) ∀t ∈ (t1, t2) .

Consequently, there exists a function λ (t) ≤ 0 such that

ẋ1(t) = tλ (t) ; ẋ2(t) = −λ (t) ∀t ∈ (t1, t2) .

On the other hand, with the second halfspace being binding, we also have that
tx1 (t) = x2 (t) for all t ∈ [t1, t2). This tells us therefore that

ẋ1(t) = −tẋ2(t) = −x2 (t)

x1 (t)
ẋ2(t)⇐⇒ ẋ1(t)x1 (t) + ẋ2(t)x2 (t) = 0 ∀t ∈ (t1, t2) .

The solution to the latter differential equation is given by x2
1 (t) + x2

2 (t) = C,
where the constant C can be identified from the fact that x (t1) = x0, which

yields C = ‖x0‖2. Along with the equality tx1 (t) = x2 (t), we identify the
function y(t) indicated in the formula above. Finally, the switching time t2 is
determined from the relation y2 (t2) = 1. Observe that for ‖x0‖ <

√
2 the first

halfspace is never binding in the given time interval [0, 1]. It is easy to check
that the determined solution x(t) is Lipschitz continuous on the entire interval
[0, 1], and as such it has to be unique due [20, Theorem 3].

2.1.2. Uniform Slater condition and weakened Hausdorff estimate

As shown in our subsequent analysis, the reason why the announced result—that
Lipschitzian controls yield Lipschitzian solutions of the sweeping process—can
be maintained in Example 1 despite the fact that an argumentation via Hoff-
man’s error bound does not apply, consists in the fulfillment of an appropriate
constraint qualification. Now we introduce this qualification condition, which
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plays a crucial role not only in establishing existence and stability results pre-
sented in what follows, but also in the two last sections of the paper dealing
with the verification of the strong convergence of discrete approximations and
the derivation of necessary optimality conditions for sweeping optimal control.

Here is this easy formulated and natural qualification condition.

Definition 1. We say that the moving polyhedron in (1.1) generated by the
given control pair (u, b) satisfies the uniform Slater condition if

∀t ∈ [0, T ] ∃x ∈ H such that 〈ui (t) , x〉 < bi (t) ∀i = 1, . . . ,m. (2.11) unifslater

We emphasize that, unlike the boundedness of L̃(t) in Hoffman’s error bound
estimate (2.9), this constraint qualification is essential for our desired result.
Indeed, a simple two-dimensional example taken from [13, Example 2.3] shows
that, even for smooth control functions, the sweeping process (1.2) may not
admit a solution when (2.11) is violated. On the other hand, we see below
that (2.11) yields the weakened Hausdorff estimate (2.6), which is the first step
mentioned in the introduction to this section.

Before deriving (2.6) via (2.11), we show that the following seemingly stronger
version of (2.11) has been used in the earlier work on the existence of solutions
to sweeping processes defined by moving polyhedra [9, Assumption (H4)]:

∃ε > 0 ∀t ∈ [0, T ] ∃x ∈ H with 〈ui (t) , x〉 ≤ bi (t)− ε ∀i = 1, . . . ,m (2.12) slater2

It turns out, however, that this “strong uniform Slater condition” is equivalent
to the uniform Slater condition formulated in (2.11).

slaterequiv Proposition 1. Assume that the control (u, b) in (1.1) is continuous. Then
conditions (2.11) and (2.12) are equivalent.

Proof. Since (2.12) obviously yields (2.11), it remains to verify the opposite
implication. Assume that (2.12) fails, which tells us that

∀n ∈ N ∃tn ∈ [0, T ] ∀x ∈ H ∃i ∈ {1, . . . ,m} with 〈ui (tn) , x〉 > bi (tn)− 1

n
.

For some subsequence tnk ∈ [0, T ], there exists t̄ ∈ [0, T ] such that tnk →k t̄.
Fix an arbitrary vector x ∈ H and then get

∀k ∈ N ∃ik ∈ {1, . . . ,m} with 〈uik (tnk) , x〉 > bik (tnk)− 1

nk
.

Selecting another subsequence, find i∗ ∈ {1, . . . ,m} such that ikl ≡ i∗. There-
fore, we have the inequalities〈

ui∗
(
tnkl

)
, x
〉
> bi∗

(
tnkl

)
− 1

nkl
for all l ∈ N.

Passing there to the limit as l → ∞ gives us 〈ui∗ (t̄) , x〉 ≥ bi∗ (t̄). Since x ∈ H
was chosen arbitrarily, we arrive at

∃t̄ ∈ [0, T ] ∀x ∈ H ∃i∗ ∈ {1, . . . ,m} with 〈ui∗ (t̄) , x〉 ≥ bi∗ (t̄) ,

which contradicts (2.11) and thus completes the proof of the proposition. �
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Now we turn to the announced proof of the weakened Hausdorff estimate (2.6).
Given δ > 0, define the δ−moving polyhedron by

C
(δ)
(u,b)(t) :=

{
x ∈ H

∣∣ 〈ui(t), x〉 ≤ bi(t)− δ (i = 1, . . . ,m)
}

(t ∈ [0, T ]) . (2.13) delmov

To proceed, we first present the following crucial technical lemma involving
continuous controls (u, b) ∈ C([0, T ],Hm)× C([0, T ],Rm) in the moving polyhe-
dron (1.1) endowed with the maximum norm

‖(u, b)‖∞ := max
t∈[0,T ],i=1,...,m

‖ui(t)‖+ max
t∈[0,T ],i=1,...,m

|bi(t)| .

The associated closed ball in this space centered at (u, b) with radius r > 0 is
denoted by B∞ ((u, b), r).

strongselection Lemma 1. Fix continuous control (ū, b̄) ∈ C([0, T ],Hm) × C([0, T ],Rm) satis-
fying the uniform Slater condition (2.11). Then there exists ε > 0 such that
whenever γ ∈ (0, ε) we can find a continuous function x̂ ∈ C([0, T ],H) for which

x̂(t) ∈ C(γ)
(u,b)(t) ∀t ∈ [0, T ] ∀(u, b) ∈ B := B∞

((
ū, b̄
)
,

ε− γ
3 (1 + ‖x̂‖∞)

)
. (2.14) select1

Furthermore, we have the estimate

d(x,C(u,b)(t)) ≤
f(u,b)(t, x)

f(u,b)(t, x)− f(u,b)(t, x̂(t))
‖x− x̂(t))‖ ∀t ∈ [0, T ] (2.15) select2

for all t ∈ [0, T ], all x ∈ H\C(u,b)(t), and all (u, b) ∈ B, where f(u,b)(t, x) :=
maxi=1,··· ,m〈ui(t), x〉 − bi(t). Finally,

d(x,C(u′,b′)(t)) ≤

‖x− x̂(t)‖min

{
1, γ−1 max

i=1,··· ,m
[〈u′i(t)− ui(s), x〉+ bi(s)− b′i(t)]+

}
(2.16) select3

for all (u, b), (u′, b′) ∈ B, all s, t ∈ [0, T ] , and all x ∈ C(u,b)(s).

Proof. As shown in Proposition 1, the imposed uniform Slater condition (2.11)
is equivalent to (2.12) for (u, b) := (ū, b̄). Using the latter and choosing ε > 0
therein, pick an arbitrary number γ ∈ (0, ε) and define

δ :=
2ε+ γ

3
∈ (0, ε) .

Then condition (2.12) tells us that

∀t ∈ [0, T ] ∃x ∈ H with 〈ūi (t) , x〉 ≤ b̄i (t)− ε < b̄i (t)− δ ∀i = 1, . . . ,m.

In other words, for each t ∈ [0, T ] the convex set C
(δ)

(ū,b̄)
(t) admits a Slater point.

This ensures the inclusion

C
(δ)

(ū,b̄)
(t) ⊆ cl

{
x ∈ H

∣∣ 〈ūi (t) , x〉 < b̄i (t)− δ
}
∀t ∈ [0, T ]
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which in turn allows to conclude (by invoking, e.g., [3, Theorem 3.1.5]) that

C
(δ)
(u,b) : [0, T ] ⇒ H is a lower semicontinuous multifunction. Since the images

C
(δ)

(ū,b̄)
(t) are closed and convex for all t ∈ [0, T ], the classical Michael selection

theorem ensures the existence of a continuous function x̂ ∈ C([0, T ],H) with

x̂(t) ∈ C(δ)

(ū,b̄)
(t) ∀t ∈ [0, T ] .

Next we fix an arbitrary continuous control (u, b) ∈ B and get by the definition
of δ the following inequalities:

〈ui (t) , x̂(t)〉 − bi (t) ≤ 〈ūi (t) , x̂(t)〉+ ‖ui (t)− ūi (t)‖ · ‖x̂(t)‖ − bi (t)

≤ b̄i (t)− δ + ‖ui (t)− ūi (t)‖ · ‖x̂(t)‖ − bi (t)

≤ 2

3
(ε− γ)− δ ≤ −γ ∀t ∈ [0, T ] ∀i = 1, . . . ,m.

Thus x̂ ∈ C([0, T ],H) and x̂(t) ∈ C(γ)
(u,b) (t) for all t ∈ [0, T ], which verify (2.14).

Addressing the second assertion of the lemma, fix arbitrary elements t ∈
[0, T ], (u, b) ∈ B, and x ∈ H\C(u,b)(t). Remembering the construction of f(u,b),
we have that f(u,b)(t, x) > 0 by x ∈ H\C(u,b)(t) and f(u,b)(t, x̂(t)) ≤ −γ < 0 by
the already proved relation ( 2.14), define

λ :=
f(u,b)(t, x)

f(u,b)(t, x)− f(u,b)(t, x̂(t))
∈ (0, 1) .

It follows from the convexity of f(u,b)(t, ·) that

f(u,b)(t, (1− λ)x+ λx̂(t)) ≤ (1− λ)f(u,b)(t, x) + λf(u,b)(t, x̂(t)) = 0,

and so (1−λ)x+λx̂(t) ∈ C(u,b)(t). This verifies (2.15), which can be written as

d(x,C(u,b)(t)) ≤ ‖x− ((1− λ)x+ λx̂(t))‖ = λ‖x− x̂(t)‖.

It remains to justify the final assertion of the lemma. To proceed, fix ar-
bitrary elements s, t ∈ [0, T ], (u, b), (u′, b′) ∈ B, and x ∈ C(u,b)(s). If x ∈
C(u′,b′)(t), then (2.16) holds trivially. Supposing now that x /∈ C(u′,b′)(t) gives
us f(u′,b′)(t, x) > 0 and f(u,b)(t, x̂(t)) ≤ −γ by (2.14). Therefore, (2.15) yields

d(x,C(u′,b′)(t))

≤
f(u′,b′)(t, x)

f(u′,b′)(t, x)− f(u′,b′)(t, x̂(t))
‖x− x̂(t))‖ ≤ γ−1f(u′,b′)(t, x)‖x− x̂(t))‖

≤ γ−1
(
f(u′,b′)(t, x)− f(u,b)(s, x)

)
‖x− x̂(t))‖

(
because of x ∈ C(u,b)(s)

)
≤ γ−1‖x− x̂(t)‖ max

i=1,··· ,m
[〈u′i(t)− ui(s), x〉+ bi(s)− b′i(t)]+ .

Since x̂(t) ∈ C(γ)
(u′,b′)(t) ⊆ C(u′,b′)(t) by (2.14), we also have that d(x,C(u′,b′)(t)) ≤

‖x− x̂(t))‖. Combining the above verifies (2.16) and completes the proof. �
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We are now in a position to derive the weakened Hausdorff estimate (2.6).

slaterest Theorem 1. Let (u, b) be a Lipschitz continuous control along which the moving
polyhedron (1.1) satisfies the uniform Slater condition (2.11). Then there exist
constants K1,K2 ≥ 0 such that the weakened Hausdorff estimate (2.6) holds
with the monotonically increasing function L : R+ → R+ defined by

L (r) := K1 (r + 1) (r +K2) (r ≥ 0) . (2.17) lrquad

Proof. We again employ the uniform Slater condition (2.11) in the equivalent
form (2.12) by Proposition 1. Then we get from (2.16) in Lemma 1 that

d(x,C(u,b)(t)) ≤
2

ε
‖x− x̂(t)‖ max

i=1,··· ,m
[〈ui(t)− ui(s), x〉+ bi(s)− bi(t)]+

along a continuous function x̂(·) for all s, t ∈ [0, T ] and all x ∈ C(u,b)(s). Define
κ := max

t∈[0,T ]
‖x̂ (t)‖ ≥ 0 and denote by K ≥ 0 a Lipschitz constant of the control

pair (u, b). Then we have the estimate

d(x,C(u,b)(t)) ≤
2K

ε
‖x−x̂(t)‖ (‖x‖+ 1) |s− t| ≤ 2K

ε
(‖x‖+ κ) (‖x‖+ 1) |s− t|

for all s, t ∈ [0, T ] and all x ∈ C(u,b)(s). This is exactly (2.6) with the mono-
tonically increasing function L (r) := δ−1K (r + κ) (r + 1). �

Remark 2. The moving polyhedron C(u,b) defined in Example 1 does satisfy
the uniform Slater condition. To see this, select the constant solution x (t) ≡
(0, 0.5) in (2.11). Thus the estimate (2.6) can be verified in this example via
Theorem 1, while the usage of Hoffman’s error bound does not lead us to the
desired result. The reason is that Hoffman’s error bound—if applicable as in
the special cases mentioned in Remark 1—would necessarily bring us to an
affine function L in (2.6); see the discussion above in Example 1. Yet, a closer
inspection of the example shows that such an affine function L cannot work in
this example. Indeed, consider the sequences

x(n) := (2n, 0) ∈ C(u,b) (0) ; tn := n−1 (n ∈ N) .

Assuming that estimate (2.6) holds with an affine function L (r) := ar + b and
choosing s := 0, we arrive at the following contradiction

n ≤
√

1 + n2 = d
(
x(n), C(u,b)(tn)

)
≤
(
a
∥∥∥x(n)

∥∥∥+ b
)
tn

= (2an+ b)n−1 ≤ 2a+ |b| ∀n ∈ N.

On the other hand, the choice of the quadratic function (2.17) by Theorem 1
allows us to derive the weakened Hausdorff estimate (2.6) in this example.
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2.1.3. General truncation lemma

The last subsection of this section accomplishes the second step of our approach
outlined in the introduction to this section. The following general truncation
result clearly implies the desired estimates (2.8) for truncating polyhedra.

TL Lemma 2. Let (X, ‖ · ‖) be a normed space, and let C be a nonempty, closed,
and convex subset of X. Define the truncating set Cr := C ∩ B (0, r) for r > 0.
Then we have the estimate

d(x,Cr) ≤ 2r

r − d(0, C)
d(x,C) ∀x ∈ B (0, r) ∀r > d (0, C) . (2.18) truncest0

Consequently, it follows that

d(x,Cr) ≤ 3d(x,C) ∀x ∈ B (0, r) ∀r > 3d (0, C) . (2.19) truncest1

Proof. Pick arbitrary elements r > d (0, C), x ∈ B (0, r), and ε with 0 < ε <
r − d(0, C). If x ∈ C, then x ∈ Cr and (2.18) holds trivially. Assume now that
x /∈ C, and so d(x,C) > 0. Choose x0, y ∈ C such that

‖x0‖ ≤ β := d (0, C) + ε, ‖x− y‖ ≤ d(x,C) + min {ε, d (x,C)} . (2.20) tworel

If ‖y‖ ≤ r, then y ∈ Cr, and (2.18) follows from the inequality in (2.20).
Therefore, it remains to examine the case where ‖y‖ > r. The equality in (2.20)
combined with ε < r − d(0, C) gives us the estimate ‖x0‖ ≤ β < r. Therefore,
there exists γ ∈ (0, 1) such that ‖z‖ = r for z := (1− γ)y + γx0. The convexity
of C readily ensures that z ∈ Cr. Then we have

r ≤ (1− γ)‖y‖+ γ‖x0‖ or, equivalently, γ (‖y‖ − ‖x0‖) ≤ ‖y‖ − r.

Due to ‖y‖ > r > β ≥ ‖x0‖, the latter implies that

‖z − y‖ = γ‖y − x0‖ ≤
‖y‖ − r
‖y‖ − β

(‖y‖+ β) .

Taking into account that ‖x‖ ≤ r brings us to

‖y‖ ≤ ‖y − x‖+ ‖x‖ ≤ d(x,C) + ε+ r,

and therefore we arrive at the estimate

‖z − y‖ ≤ ‖y‖+ β

‖y‖ − β
(d(x,C) + ε).

Combining all the above leads us to the relationships

‖z−x‖ ≤ ‖z−y‖+‖y−x‖ ≤ (1+
‖y‖+ β

‖y‖ − β
)(d(x,C)+ε) ≤

(
2 +

2β

r − β

)
(d(x,C)+ε).

Since z ∈ Cr and ε was chosen arbitrarily with 0 < ε < r − d(0, C), we get

d(x,Cr) ≤
(

2 +
2d(0, C)

r − d(0, C)

)
d(x,C),

which verifies (2.18) and thus completes the proof of the truncation lemma. �
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3. Existence and uniqueness of sweeping solutions
exsol

The main goal of this section is establishing two class-preservation existence
and uniqueness theorems for polyhedral controlled sweeping processes defined
in (1.1) and (1.2) under the uniform Slater condition (2.11) in the setting of
separable Hilbert spaces. Namely, we aim at proving that Lipschitz continuous
controls (u, b) uniquely generate Lipschitz continuous trajectories of S(u,b) and
that absolutely continuous (of class W 1,1) controls uniquely generate sweeping
trajectories of the same class. Note that results of this type in the W 1,2 control-
trajectory framework we obtained in [31, 32, 33] for various types of sweeping
processes under appropriate assumptions in separable Hilbert spaces. Similar
preservation results of class W 1,2 were established in [9] in finite dimensions
under the strong uniform Slater condition (2.12) reducing to (2.11) as we now
know. Observe also that results of this type in class of W 1,1 were derived in
[13, 12] for polyhedral sweeping processes in finite-dimensional spaces under
essentially stronger qualification conditions than (2.11) used in what follows.
Our approach below is strongly based on the truncation procedure and error
bound estimates developed in the previous section.

Here is the first theorem dealing with Lipschitzian controls.

existlip Theorem 2. Let H be a separable Hilbert space. Assume that (u, b) is Lips-
chitz continuous control and that the moving polyhedron C(u,b) in (1.1) satisfies
the uniform Slater condition (2.11) along this control pair. Then the sweeping
process

(
S(u,b)

)
admits a unique Lipschitz continuous solution.

Proof. Theorem 1 ensures the existence of a monotonically increasing function
L : R+ → R+ satisfying the weakened Hausdorff estimate (2.6). This gives us

for each r > 0 a constant L̂r := L (r) such that (2.7) holds. Thus for all r > 0,
all s, t ∈ [0, T ], and all x ∈ C(u,b)(s) with ‖x‖ ≤ r there is y ∈ C(u,b)(t) satisfying

‖x− y‖ ≤
(
L̂r + 1

)
|s− t| .

Indeed, the latter is obvious with the choice of y := x in the case where s = t,

and this follows from (2.7) and from d
(
x,C(u,b)(t)

)
<
(
L̂r + 1

)
|s− t| in the

case where s 6= t. Since the linear function s 7−→
(
L̂r + 1

)
s trivially belongs

to W 1,2 [0, T ], it is r-weakly uniformly lower semicontinuous from the right for
p = 2 in the sense of Tolstonogov [31, eq. (2.2)]. Therefore, we deduce from
[31, Lemma 2.1 and Lemma 3.1] that the sweeping process

(
S(u,b)

)
has a unique

solution x∗ ∈ W 1,2 ([0, T ] ,H). In particular, the trajectory x∗(t) is absolutely
continuous on [0, T ]. It remains to show that x∗(t) is Lipschitz continuous on
this interval. To proceed, define

ρ := max
t∈[0,T ]

‖x∗ (t)‖ ; r := 3ρ+ 1 (3.21) rhordef

and then fix arbitrary s, t ∈ [0, T ] and

x ∈ Cr(u,b)(s) := C(u,b)(s) ∩ B (0, r) .

12



As a solution to
(
S(u,b)

)
, the function x∗(t) satisfies the hidden state constraint

x∗ (t) ∈ C(u,b)(t). Therefore, we obtain

r = 3ρ+ 1 ≥ 3 ‖x∗ (t)‖+ 1 > 3d
(
0, C(u,b)(t)

)
.

This allows us to invoke the truncation result from Lemma 2 to get

d
(
x,Cr(u,b)(t)

)
≤ 3d

(
x,C(u,b)(t)

)
. (3.22) almost

On the other hand, Theorem 1 yields (2.6) and hence gives us a constant L̂ such
that (2.7) holds for our selected s, t ∈ [0, T ]. Combining this with (3.22), and
recalling that s, t, x were chosen arbitrarily, we arrive at the estimate

d
(
x,Cr(u,b)(t)

)
≤ 3L̂ |s− t| ∀s, t ∈ [0, T ] ∀x ∈ Cr(u,b)(s).

Interchanging the roles of s and t readily yields the desired Lipschitz Hausdorff
estimate (2.5) of the truncated moving polyhedron with modulus 3L̂. Employing
the standard existence result from [20, Theorem 2]) leads us to deducing from

the obtained estimate that the truncated sweeping process
(
S̃(u,b)

)
defined as

−ẋ(t) ∈ NCr
(u,b)

(t) (x(t)) a.e. t ∈ [0, T ], x(0) = x0 ∈ Cr(u,b)(0) (3.23) tildes

admits a Lipschitz continuous solution x̃(·). It follows from the definitions in
(3.21) that for all r > ρ we have the inclusions

x∗ (t) ∈ C(u,b)(t) ∩ B (0, ρ) ⊆ C(u,b)(t) ∩ intB (0, r) ⊂ Cr(u,b)(t) ∀t ∈ [0, T ] .

On the one hand, the resulting inclusion justifies the feasibility of the initial
point in

(
S̃(u,b)

)
due to x0 = x∗ (0). On the other hand, it tells us that

NCr
(u,b)

(t) (x∗(t)) = NC(u,b)(t) (x∗(t)) ∀ t ∈ [0, T ] .

Therefore, x∗(·) being a solution to
(
S(u,b)

)
is also a solution to

(
S̃(u,b)

)
. Since

x∗(t) is absolutely continuous on [0, T ] as an element of W 1,2 ([0, T ] ,H), and

since
(
S̃(u,b)

)
can have at most one absolutely continuous solution by [20, The-

orem 3], we conclude that x∗(·) = x̃(·). This ensures that x∗(t) is Lipschitz
continuous on [0, T ], since x̃(t) is so. Thus we complete the proof. �

Our next goal in this section is establish the existence of a unique absolutely
continuous solution of the sweeping process

(
S(u,b)

)
generated by any absolutely

control (u, b) in the moving polyhedron (1.1) under the same uniform Slater con-
dition. Recall that the norms on the spaces of absolutely continuous functions
W 1,1([0, T ],Hm) and W 1,1([0, T ],Rm) are defined, respectively, by

‖u‖1,1 :=

m∑
i=1

‖ui(0)‖+

m∑
i=1

∫ T

0

‖u̇i(t)‖dt, ‖b‖1,1 :=

m∑
i=1

|bi(0)|+
m∑
i=1

∫ T

0

|ḃi(t)|dt.
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The norm on the product spaceW 1,1([0, T ],Hm)×W 1,1([0, T ],Rm)) is ‖(u, b)‖1,1 :=
‖u‖1,1+‖b‖1,1, and the induced ball around (u, b) with radius r is B1,1 ((u, b) , r).

The proof of the following theorem elaborates a reduction idea from [30] that
allows us to deal with non-Lipschitzian controls of the sweeping dynamics.

existsobolev Theorem 3. Let H be a separable Hilbert space. Take
(
ū, b̄
)
∈W 1,1([0, T ],Hm)×

W 1,1([0, T ],Rm) and suppose that the moving polyhedron C(u,b) in (1.1) satis-
fies the uniform Slater condition (2.11). Then the control pair (u, b) generates
a unique solution x ∈W 1,1 ([0, T ] ,H) of the sweeping process

(
S(u,b)

)
in (1.2).

Proof. It follows from the Newton-Leibniz formula that

‖f (t)− f (s)‖ ≤
∫ t

s

∥∥∥ḟ (r)
∥∥∥ dr ∀f ∈W 1,1 ([0, T ] ,H)

whenever s, t ∈ [0, T ] with s ≤ t. Therefore, for all such s, t we have

m∑
i=1

‖ui(t)− ui(s)‖+ |bi(t)− bi(s)| ≤

∣∣∣∣∣
∫ t

s

m∑
i=1

‖u̇i(r)‖+ |ḃi(r)|dr + t− s

∣∣∣∣∣
= |γ(t)− γ(s)| (3.24) trafo

with the strongly increasing and absolutely continuous function

γ(t) := t+

∫ t

0

m∑
i=1

‖u̇i(r)‖+ |ḃi(r)|dr (3.25) gamma

For each index i = 1, . . . ,m, introduce the pair (u′i, b
′
i) : [0, γ(T )]→ H × R by

(u′i, b
′
i) (τ) := (ui, bi) (γ−1(τ)), τ ∈ [0, γ(T )].

Then we readily have the relationship

C(u′,b′)(τ) = C(u,b)(γ
−1(τ)), τ ∈ [0, γ(T )]. (3.26) ctrafo

Since γ−1(0) = 0, it follows from (3.26) that x0 ∈ C(u,b)(0) = C(u′,b′)(0). There-
fore, the sweeping process(
S ′(u′,b′)

)
: −ẋ(τ) ∈ NC(u′,b′)(τ) (x(τ)) a.e. τ ∈ [0, γ(T )] , x(0) = x0

is exactly of type
(
S(u,b)

)
as in (1.2). Furthermore, (3.24) yields

‖u′i(τ1)−u′i(τ2)‖+|b′i(τ1)−b′i(τ2)| ≤ |τ1 − τ2| ∀τ1, τ2 ∈ [0, γ(T )] ∀i = 1, . . . ,m,

which tells us that the control (u′, b′) is Lipschitz continuous on the interval
[0, γ(T )]. Observe also that C(u′,b′) satisfies the uniform Slater condition (2.11)
on this interval since C(u,b) does so on the original interval [0, T ]). This allows
us to invoke Theorem 2, applied now to the control (u′, b′), and conclude that
the modified sweeping process

(
S ′(u′,b′)

)
admits a unique Lipschitzian solution
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y(·) with some modulus K. For all t ∈ [0, T ], set z (t) := y (γ(t)), which implies
that ż (t) := ẏ (γ(t)) γ̇(t) for a.e. t ∈ [0, T ]. Hence

‖ż (t)‖ ≤ ‖ẏ (γ(t))‖ γ̇(t) ≤ Kγ̇(t) a.e. t ∈ [0, T ] .

Since y(·) is a solution to
(
S ′(u′,b′)

)
while γ̇(t) > 0 for a.e. t ∈ [0, T ], we get by

using (3.26) that

−ż (t) = ẏ (γ(t)) γ̇(t) ∈ γ̇(t)NC(u′,b′)(γ(t)) (y(γ(t))) = NC(u′,b′)(γ(t)) (z(t))

= NC(u,b)(t) (z(t)) a.e. t ∈ [0.T ].

It follows from (3.25) that γ ∈ W 1,1 ([0, T ],R), and so z ∈ W 1,1([0, T ], H) as
well. Furthermore, we have that z (0) = y (γ(0)) = y(0) = x0 because y(·) is a
solution of

(
S ′(u′,b′)

)
. This allows us to conclude that z(·) is a solution of the

original sweeping process
(
S(u,b)

)
and—being absolutely continuous on [0, T ]—it

is unique by [20, Theorem 3]. �

Finally in this section, we present a consequence of Theorem 3 ensuring the
result of this type for the δ− moving polyhedron (2.13). This result is important
to our applications to stability in the next section.

Cdelta Corollary 1. Let H be a separable Hilbert space, and let the uniform Slater
condition (2.11) be satisfied along a given control

(
ū, b̄
)
∈ W 1,1([0, T ],Hm) ×

W 1,1([0, T ],Rm). Then there exists ε > 0 such that for all numbers δ ∈ [0, ε)
the perturbed sweeping process

−ẋ ∈ N(C
(δ)

(ū,b̄)
(t), x(t)) a.e. t ∈ [0, T ] , x(0) = x̂ (0) ∈ C(δ)

(ū,b̄)
(0) (3.27) ydelta

admits a unique absolutely continuous solution. Here C
(δ)

(ū,b̄)
is defined in (2.13)

and x̂(·) is the continuous selection x̂(t) ∈ C(δ)

(ū,b̄)
(t) taken from (2.14).

Proof. As in the proof of Lemma 1, choose ε > 0 from (2.12) and pick δ ∈ [0, ε).

Then C(ū,̃b) = C
(δ)

(ū,b̄)
, with b̃ defined by b̃i := bi−δ as i = 1, . . . ,m, also satisfies

the uniform Slater condition. The result now follows from Theorem 3. �

4. Quantitative stability of the perturbed sweeping dynamics
quantstab

In this section, we investigate the stability of solutions to controlled polyhedral
sweeping processes with respect to perturbations of controls and initial values of
the sweeping dynamics. Theorem 3 allows us to associate with each absolutely
continuous control (u, b) satisfying (2.11) and with the initial value x(0) = x0 ∈
C(u,b) (0) the unique absolutely continuous solution x(u,b) of the sweeping process(
S(u,b)

)
. In contrast with the previous analysis, where the initial point x0 was

fixed, we now compare solutions of
(
S(u,b)

)
corresponding not only to different

controls but also to different initial points. To emphasize this dependence, let
us write

(
S(u,b,x0)

)
for the sweeping process

(
S(u,b)

)
corresponding to the initial

condition x(0) = x0 ∈ C(u,b) (0) and denote its unique solution by x(u,b,x0). We
begin with the following estimate, which is based on Lemma 1 and uses the
arguments from the proof of Proposition 3 in [17].
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LemmaEstim Lemma 3. Assume that H is a separable Hilbert space, and that the uniform
Slater condition (2.11) holds for some given control (ū, b̄) ∈W 1,1([0, T ],Hm)×
W 1,1([0, T ],Rm). Then there exists ε > 0 such that for all δ ∈ (0, ε), for all

controls (u, b) ∈ B1,1

(
(ū, b̄), δ

1+‖yδ‖∞

)
, and for all corresponding solutions x(·)

to the sweeping processes
(
S(u,b,x0)

)
we have the estimate

‖ẋ(t)‖ ≤ 1

δ
(‖x̂‖∞ + ‖yδ‖∞ + αδ) (1 + ‖yδ‖∞ + αδ)

m∑
i=1

(
‖u̇i(t)‖+ |ḃi(t)|

)
a.e. t ∈ [0, T ]. (4.28) EstTraj2

Here x̂(·) stands for the continuous selection x̂(t) ∈ C(δ)

(ū,b̄)
(t) taken from (2.14),

yδ(·) refers to the associate unique solution of the perturbed sweeping process
(3.27) guaranteed by Corollary 1, and the constant αδ is defined by

αδ :=

∫ T

0

‖ẏδ(t)‖dt+

√√√√(∫ T

0

‖ẏδ(t)‖dt

)2

+ ‖x(0)− x̂ (0) ‖2. (4.29) alphadelta2

Proof. As in previous proofs, we choose ε > 0 from perturbed uniform Slater
condition (2.12) equivalent to the the assumed one (2.11) by Proposition 1. Fix
an arbitrary δ ∈ (0, ε), then fix an arbitrary control pair

(u, b) ∈ B1,1

(
(ū, b̄),

δ

1 + ‖yδ‖∞

)
, (4.30) newradius

and denote by x(·) the corresponding unique solution of the sweeping process(
S(u,b,x0)

)
due to Theorem 3. By the absolute continuity of the triple (u, b, x),

the derivatives ẋ(t), u̇i(t) and ḃi(t) exist for almost all t ∈ [0, 1]. Fixing now
any such time t and then get

x(t− s) = x(t)− s(ẋ(t) + αx(s)), ui(t− s) = ui(t)− s(u̇i(t) + αu,i(s))

bi(t− s) = bi(t)− s(ḃi(t) + αb,i(s)),

where lims→0 αx(s) = 0, lims→0 αu,i(s) = 0 and lims→0 αb,i(s) = 0. Since
x(t− s) ∈ C(u,b) (t− s) for all s, we deduce from (2.16) that

x(t− s) ∈ C(u,b)(t)+

1

δ
‖x(t− s)− x̂(t)‖

m∑
i=1

(‖ui(t− s)− ui(t)‖ · ‖x(t− s)‖+ |bi(t− s)− bi(t)) |B,

where B refers as usual to the unit ball in H. Using the convexity of the C(u,b)(t)
and passing to the limit s ↓ 0, gives us the inclusion

−ẋ(t) ∈ T (C(u,b)(t), x(t)) +
1

δ
‖x(t)− x̂(t)‖

m∑
i=1

(
‖u̇i(t)‖ · ‖x(t)‖+ |ḃi(t)|

)
B,
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where T (S, u) stands for the tangent cone to a convex set S at u in the sense of
convex analysis. As −ẋ(t) ∈ N(C(u,b)(t), x(t)), we arrive at

‖ẋ(t)‖2 ≤ ‖ẋ(t)‖ · 1

δ
‖x(t)− x̂(t)‖

m∑
i=1

(
‖u̇i(t)‖ · ‖x(t)‖+ |ḃi(t)|

)
,

which in turn implies, since t was arbitrarily chosen from a subset of full measure
on [0, T ], the derivative norm estimate

‖ẋ(t)‖ ≤ 1

δ
‖x(t)− x̂ (t) ‖

m∑
i=1

(
‖u̇i(t)‖ · ‖x(t)‖+ |ḃi(t)|

)
a.e. t ∈ [0, T ]. (4.31) EstTraj

To proceed further, let yδ(·) be the unique absolutely continuous solution to the
sweeping process (3.27) according to Corollary 1. Since 〈ūi (t) , yδ(t)〉 ≤ b̄i (t)−δ
for all t ∈ [0, T ] and all i = 1, . . . ,m, we deduce from (4.30) that

〈ui(t), yδ(t)〉 − bi(t) ≤ 〈ui(t)− ūi(t), yδ(t)〉+ b̄i(t)− bi(t)− δ
≤ ‖u− ū‖∞‖yδ‖∞ + ‖b− b̄‖∞ − δ
≤ ‖u− ū‖1,1‖yδ‖∞ + ‖b− b̄‖1,1 − δ
≤ ‖(u, b)− (ū, b̄)‖1,1(1 + ‖yδ‖∞)− δ ≤ 0 ∀t ∈ [0, T ].

Therefore, yδ(t) ∈ C(u,b)(t) for all t ∈ [0, T ]. Remembering that x(·) solves the

original sweeping process
(
S(u,b,x0)

)
, it follows that −ẋ(t) ∈ NC(u,b)(t) (x(t)) for

a.e. t ∈ [0, T ], and hence we have

d

dt

1

2
‖x(t)− yδ(t)‖2 = 〈ẋ(t)− ẏδ(t), x(t)− yδ(t)〉

= 〈ẋ(t), x(t)− yδ(t)〉+ 〈−ẏδ(t), x(t)− yδ(t)〉
≤ 〈−ẏδ(t), x(t)− yδ(t)〉 ≤ ‖ẏδ(t)‖ · ‖x(t)− yδ(t)‖∞.

This brings us to the estimate

‖x(t)− yδ(t)‖2

2
− ‖x(0)− x̂ (0) ‖2

2
≤ ‖x− yδ‖∞ ·

∫ T

0

‖ẏδ(t)‖dt ∀t ∈ [0, T ],

which implies on turn that

‖x− yδ‖2∞
2

− ‖x(0)− x̂ (0) ‖2

2
≤ ‖x− yδ‖∞ ·

∫ T

0

‖ẏδ(t)‖dt.

Consequently, we arrive at the inequality

‖x− yδ‖2∞ − 2

(∫ T

0

‖ẏδ(t)‖dt

)
‖x− yδ‖∞ − ‖x(0)− x̂ (0) ‖2 ≤ 0.

Invoking the definition of αδ in (4.29) gives us the estimate

‖x− yδ‖∞ ≤ αδ, (4.32) alphadelta

which being combined with (4.31) verifies the claimed inequality (4.28) and thus
completes the proof of the lemma. �

17



Now we are ready to establish the main stability result.

controltostate Theorem 4. Let H be a separable Hilbert space, and let the uniform Slater con-
dition (2.11) hold for a given control pair (ū, b̄) ∈W 1,1([0, T ],Hm)×W 1,1([0, T ],Rm).
Then there exist a number ρ > 0 and a continuous function K : H ×H → R+

such that for all control pairs

(u, b), (u′, b′) ∈
[
W 1,1([0, T ],Hm)×W 1,1([0, T ],Rm)

]
∩ B1,1

(
(ū, b̄), ρ

)
, (4.33) control ball

for all initial values x0 ∈ C(u,b)(0), x′0 ∈ C(u′,b′)(0), and the associated solutions

x, x′ to the sweeping processes
(
S(u,b,x0)

)
and

(
S(u′,b′,x′0)

)
, respectively, we have

‖x(t)− x′(t)‖2 ≤ ‖x0 − x′0‖
2

+K(x0, x
′
0)‖(u−u′, b−b′)‖∞ ∀t ∈ [0, T ]. (4.34) hoelder

Proof. As above, we employ the equivalent description (2.12) of the uniform
Slater condition (2.11) and take ε > 0 from Proposition 1. Fixing an arbitrary
number δ ∈ (0, ε), define the quantity

ρ := min

{
δ

1 + ‖yδ‖∞
,

ε− δ
3 (1 + ‖x̂‖∞)

}
, (4.35) rhomindef

where x̂(·) is the continuous selection x̂(t) ∈ C
(δ)

(ū,b̄)
(t) satisfying (2.14), and

where yδ(·) is the unique absolutely continuous solution to the perturbed sweep-
ing process (3.27) taken from Corollary 1. Select arbitrary controls (u, b), (u′, b′)
from (4.33), arbitrary initial values x0 ∈ C(u,b)(0), x′0 ∈ C(u′,b′)(0), and the as-

sociated solutions x, x′ to the sweeping processes
(
S(u,b,x0)

)
and

(
S(u′,b′,x′0)

)
,

respectively. Then it follows from (4.32) that

‖x− yδ‖∞ ≤ αδ and ‖x′ − yδ‖∞ ≤ α′δ (4.36) yaldel

for αδ defined in (4.29) and α′δ defined by the same formula with the initial
value x (0) = x0 replaced by the initial value x′ (0) = x′0. Lemma 3 gives us
estimate (4.28) for the control (u, b) as well as the corresponding estimate

‖ẋ′(t)‖ ≤ δ−1 (‖x̂‖∞ + ‖yδ‖∞ + α′δ) (1 + ‖yδ‖∞ + α′δ)

m∑
i=1

(
‖u̇′i(t)‖+ |ḃ′i(t)|

)
a.e. t ∈ [0, T ] (4.37) EstTraj6

for the control (u′, b′). Denoting now

C := (αδ + ‖yδ‖∞ + ‖x̂‖∞) (1 + αδ + ‖yδ‖∞) ,

C ′ := (α′δ + ‖yδ‖∞ + ‖x̂‖∞) (1 + α′δ + ‖yδ‖∞) (4.38) ccbar

and integrating (4.28) ensure that∫ t

0

‖ẋ(s)‖ds ≤ δ−1C

m∑
i=1

∫ t

0

(
‖u̇i(s)‖+ |ḃi(s)|

)
ds ∀ t ∈ [0, T ].
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Therefore, recalling that (u, b) ∈ B1,1

(
(ū, b̄), ρ

)
yields∫ t

0

‖ẋ(s)‖ds ≤ δ−1C ‖(u, b)‖1,1 ≤ δ
−1C

(
ρ+

∥∥(ū, b̄)∥∥
1,1

)
. (4.39) EstTraj3

Similarly, the integration of (4.37) gives us∫ t

0

‖ẋ′(s)‖ds ≤ δ−1C ′
(
ρ+

∥∥(ū, b̄)∥∥
1,1

)
. (4.40) EstTraj4

Let now t ∈ [0, T ] be from a subset of full measure such that ẋ(t) and ẋ′(t)
exist. We clearly have x(t) ∈ C(u,b)(t) and x′(t) ∈ C(u′,b′)(t). Since a ball in
the ‖ · ‖1,1-norm is contained in a ball of the same radius in the ‖ · ‖∞-norm,
the construction of ρ in (4.35) allows us to employ the error bound (2.16) from
Lemma 1. This ensures the existence of x1 ∈ C(u′,b′)(t) and x′1 ∈ C(u,b)(t) with

‖x(t)− x1‖ ≤ δ−1‖x(t)− x̂(t)‖ max
i=1,...,m

[〈u′i(t)− ui(t), x〉+ bi(t)− b′i(t)]+
≤ δ−1‖x(t)− x̂(t)‖ (‖u(t)− u′(t)‖ ‖x(t)‖+ ‖b(t)− b′(t)‖)
≤ δ−1‖x(t)− x̂(t)‖(1 + ‖x(t)‖)(‖(u(t)− u′(t), b(t)− b′(t))‖.

Similar considerations bring us to the estimate

‖x′(t)− x′1‖ ≤ δ−1‖x′(t)− x̂(t)‖(1 + ‖x′(t)‖)(‖(u(t)− u′(t), b(t)− b′(t))‖.

Since x(·) and x′(·) are absolutely continuous solutions to
(
S(u,b,x0)

)
and

(
S(u′,b′,x′0)

)
,

respectively, we deduce from−ẋ(t) ∈ NC(u,b)(t) (x(t)), −ẋ′(t) ∈ NC(u′,b′)(t) (x′(t)),

and the obtained estimates of ‖x(t)− x1‖ and ‖x′(t)− x′1‖ that

d

dt

1

2
‖x(t)− x′(t)‖2

= 〈ẋ(t)− ẋ′(t), x(t)− x′(t)〉 = 〈ẋ(t), x(t)− x′(t)〉 − 〈ẋ′(t), x(t)− x′(t)〉
= 〈ẋ(t), x(t)− x′1〉+ 〈ẋ(t), x′1 − x′(t)〉+ 〈ẋ′(t), x′(t)− x1〉+ 〈ẋ(t), x1 − x(t)〉
≤ 〈ẋ(t), x′1 − x′(t)〉+ 〈ẋ(t), x1 − x(t)〉
≤ ‖ẋ(t)‖‖x′1 − x′(t)‖+ ‖ẋ′(t)‖‖x1 − x(t)‖
≤ δ−1 (‖ẋ(t)‖‖x′(t)− x̂(t)‖(1 + ‖x′(t)‖) + ‖ẋ′(t)‖‖x(t)− x̂(t)‖(1 + ‖x(t)‖))
·‖(u(t)− u′(t), b(t)− b′(t))‖.

For all t ∈ [0, T ] define the function

χ (t) := δ−1 (‖x′(t)− x̂(t)‖(1 + ‖x′(t)‖) + ‖x(t)− x̂(t)‖(1 + ‖x(t)‖)) .

Then the latter estimate can be rewritten as

d

dt

1

2
‖x(t)− x′(t)‖2 ≤ χ (t) (‖ẋ(t)‖+ ‖ẋ′(t)‖) ‖(u(t)−u′(t), b(t)−b′(t))‖. (4.41) chiineq
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It follows from (4.36) and (4.38) that χ (t) ≤ δ−1 (C + C ′). As t was arbitrarily
chosen from a subset of full measure of [0, T ], we integrate (4.41) and then
employ (4.39) and (4.40) to get

‖x(t)− x′(t)‖2 − ‖x(0)− x′(0)‖2

≤ δ−1 (C + C ′)

∫ t

0

(‖ẋ(s)‖+ ‖ẋ′(s)‖) ‖(u(s)− u′(s), b(s)− b′(s))‖ds

≤ δ−1 (C + C ′) ‖(u− u′, b− b′)‖∞
∫ t

0

(‖ẋ(s)‖+ ‖ẋ′(s)‖) ds

≤ δ−2 (C + C ′)
2
(
ρ+

∥∥(ū, b̄)∥∥
1,1

)
︸ ︷︷ ︸

K(x0,x′0)

‖(u− u′, b− b′)‖∞

for all t ∈ [0, T ]. By (4.38), C and C ′ depend continuously on αδ and α′δ,
respectively, which in turn depend continuously on x0 and x′0 by (4.29)). Thus
we verify that the obtained continuous function K(x0, x′0) ensures the claimed
estimate (4.34), and we are done with the proof of the theorem. �

To conclude this section, we present a direct consequence of Theorem 4 for
the case where the initial value x0 in (1.2) is fixed. In this case the function
K(·) in the estimate (4.34) is constant.

Corollary 2. Let H be a separable Hilbert space, let the uniform Slater condi-
tion (2.11) hold for a given control (ū, b̄) ∈W 1,1([0, T ],Hm)×W 1,1([0, T ],Rm),
and let x0 ∈ C(ū,b̄) be an arbitrarily given initial value in (1.2). Then there
exist positive numbers ρ and K such that for all controls (u, b), (u′, b′) satisfying
(4.33) and the corresponding solutions x(·) and x′(·) of the sweeping processes(
S(u,b,x0)

)
and

(
S(u′,b′,x0)

)
with x0 ∈ C(u,b)(0)∩C(u′,b′)(0), respectively, we have

‖x(t)− x′(t)‖2 ≤ K‖(u− u′, b− b′)‖∞ ∀t ∈ [0, T ].

5. Discrete approximations of controlled sweeping processes
discapp

The last two sections of the paper are devoted to the study of the following op-
timal control problem for the sweeping process (1.2) with controls in polyhedral
moving sets (1.1) and additional endpoint constraints as well as the pointwise
equality constraints on the u-control functions:

min
{
f(u, b)|(u, b) ∈W 1,2([0, T ],Rnm × Rm), ‖ui(t)‖ = 1 (i = 1, . . . ,m)

x(u,b)(T ) ∈ Ω
}
, (P)

where Ω ⊆ Rn is a closed subset, f is a cost function (specified later on), and
x(u,b) is the unique trajectory of the polyhedral sweeping process

(
S(u,b)

)
from

(1.2) generated by a control pair (u, b) = (u(·), b(·)) of the above class on [0, T ].
Such a control pair (u, b) is called a feasible solution to (P ) if ‖u(t)‖=1 for all
t ∈ [0, T ] and x(u,b)(T ) ∈ Ω for the corresponding trajectory of (1.2). Note
that our focus in what follows is on Lipschitzian controls in (P ), which uniquely
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generate by Theorem 2 Lipschitzian sweeping trajectory under the imposed
uniform Slater condition (2.11). At the current stage of our developments for
(P ), we have to restrict ourselves to the case of finite-dimensional state spaces.

Our main goal here is to develop the method of discrete approximations to
investigate the sweeping control problem (P ) and its discrete counterparts from
both viewpoints of stability and deriving necessary suboptimality and optimal-
ity conditions. Stability issues address the construction of finite-difference ap-
proximations of sweeping differential inclusions such that their feasible solutions
strongly approximate a broad class of canonical controls in the original sweeping
process; this notion is introduced in the paper for the first time. Furthermore,
we construct a sequence of discrete-time optimal control problems (Pk) always
admitting optimal solutions, which W 1,2-strongly converge to a prescribed local
minimizer of the intermediate class (between weak and strong, including the lat-
ter) of the original sweeping control problem (P ). This opens the door to derive
necessary optimality conditions for such minimizers of (P ) by using advanced
tools of variational analysis and (first-order and second-order) generalized differ-
entiation. Furnishing this approach, we concentrate here on deriving necessary
optimality conditions for problems (Pk) with the approximation number k ∈ IN
being sufficiently large. The obtained necessary optimality conditions for (Pk)
serve as constructive suboptimality conditions for intermediate local minimiz-
ers of (P ) that are convenient for numerical implementations. This is a clear
advantage of the method of discrete approximations in comparison with other
methods of deriving necessary optimality conditions for continuous-time varia-
tional and control problems. In our separate publication, we are going to realize
the involved limiting procedure of passing to the limit from the obtained nec-
essary optimality conditions for (Pk) (i.e., suboptimality conditions for (P )) to
derive exact necessary optimality conditions for intermediate local minimizers
of continuous-time sweeping control problems of type (P ).

The method of discrete approximations was developed in [21, 22] to establish
necessary suboptimality and optimality conditions for Lipschitzian differential
inclusions. Sweeping differential inclusions are highly discontinuous, and the
machinery of Lipschitzian variational analysis is not applicable in the sweeping
framework. Further developments of this method in various sweeping control
settings can be found in [2, 9, 8, 10, 13, 14] and the references therein. However,
neither these publications, nor those of [5, 15, 35] exploring other approaches to
deriving optimality conditions in different models of sweeping optimal control
address additional endpoint constraints x(T ) ∈ Ω on sweeping trajectories.

In this section we focus on the construction of discrete approximations for
the constrained sweeping dynamics and local minimizers of (P ) with obtain-
ing stability/convergence results, while the next section is devoted to reviewing
the required tools of generalized differentiation and their applications to neces-
sary optimality conditions for discrete approximation problems (Pk) giving us
suboptimality conditions for intermediate local minimizers of (P ).

Let us start with introducing a new notion of canonical controls for problem
(P ) that plays a crucial role in our developments.
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canon Definition 2. We say that a control pair (u, b) ∈ W 1,2([0, T ],Rnm × R) is
canonical for problem (P ) if the following conditions hold:
• The functions u(·) and b(·)) are Lipschitz continuous on [0, T ].
• The uniform Slater condition (2.11) is satisfied along (u, b).
• We have the constraints

‖ui(t)‖ = 1 for all t ∈ [0, T ] and i = 1, . . . ,m.

• The derivatives u̇(·) and ḃ(·) are of bounded variation (BV ) on [0, T ] together
with the derivative of the unique Lipschitz continuous trajectory x(·) of (1.2)
generated by the control pair (u, b).

Observe that the corresponding trajectory to (1.2) generated by a canonical
control pair may not satisfy the endpoint constraint x(u,b)(T ) ∈ Ω, i.e., not any
canonical pair is feasible for (P ).

To proceed with our approach, we construct a sequence of discrete approxi-
mations of the sweeping process (S(u,b)) from (1.2) over the controlled polyhe-
dron (1.1) without any appeal to optimization as in (P ). For each k ∈ N define
the discrete mesh on [0, T ] by

∆k :=
{

0 = tk0 < tk1 < . . . < tkν(k)−1 < tkν(k) = T
}

(5.1) e:DP

with hkj := tkj+1 − tkj ↓ 0, j = 0, . . . , ν(k)− 1, as k →∞. Denote

F (u, b, x) := NC(u,b), C(u, b) :=
{
x ∈ Rn

∣∣ 〈ui, x〉 ≤ bi (i = 1, . . . ,m)
}
. (5.2) F

The following theorem tells us that any canonical control pair (u, b) and
the corresponding sweeping trajectory x(·) can be W 1,2-strongly approximated
by feasible solutions to discrete sweeping processes defined on the partition ∆k

from (5.1) and appropriately extended to the continuous-time interval [0, T ].

da-feas Theorem 5. Let
(
ū(·), b̄(·)

)
be a canonical control pair for (P ), and let x̄(·) be

the corresponding unique solution of the Cauchy problem in (1.2). Then there ex-

ist a mesh ∆k in (5.1), a sequence of piecewise linear functions (ũk(·), b̃k(·), x̃k(·))
on [0, T ], and a sequence of positive numbers δk ↓ 0 as k → ∞ such that

(ũk(0), b̃k(0), x̃k(0)) = (ū(0), b̄(0), x0),

1− δk ≤
∥∥ũki (tkj )

∥∥ ≤ 1 + δk for all tkj ∈ ∆k, i = 1, . . . ,m, (5.3) e:a-dc

x̃k(t) = x̃k(tkj )+(t−tkj )ṽkj , tkj ≤ t ≤ tkj+1 with − ṽkj ∈ F
(
ũk(tkj ), b̃k(tkj ), x̃k(tkj )

)
for j = 0, . . . , ν(k)− 1, k ∈ N, and the sequence {(ũk(·), b̃k(·), x̃k(·))} converges
to (ū(·), b̄(·), x̄(·)) as k →∞ in the W 1,2-norm topology on [0, T ].
Proof. As mentioned, the existence of the unique Lipschitz continuous trajec-
tory x̄(·) of the Cauchy problem for the polyhedral sweeping process in (1.2)
generated by the given canonical control pair (ū(·), b̄(·)) follows from Theorem 2.
Now we are in a position to deduce the claimed assertions from [9, Theorem 4.1]

under the BV assumption on ˙̄u(·), ˙̄b(·), and ˙̄x(·). Indeed, the qualification con-
dition (H4) from [9, Theorem 4.1] is equivalent to the uniform Slater condition
(2.11) by our new result obtained in Proposition 1. Thus the application of [9,
Theorem 4.1] gives us all the assertions claimed in this theorem. �
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From now on, we consider for simplicity problem (P ), where the cost function
is defined in the Mayer form via a given terminal state function ϕ : Rn → R by

f(u, b) := ϕ
(
xu,b(T )

)
.

If the function ϕ is lower semicontinuous, then problem (P ) admits a (global)
optimal solution in W 1,2([0, T ],Rnm × Rm) provided that there is a bounded
minimizing sequence of feasible solutions; see [9, Theorem 3.1] and its proof.
Since our main attention is paid to deriving necessary (sub)optimality conditions
in (P ), it is natural to define an appropriate notion of local minimizers.

The notion of local minimizers of our study in this paper occupies an inter-
mediate position between the classical notions of weak and strong minimizers
in variational and control problems, while encompassing the latter. Following
[21], where this notion was initiated for Lipschitzian differential inclusions (see
also [22] for more details), we keep the name “intermediate” for the version of
this notion in the setting of our sweeping control problem (P ).

ilm Definition 3. We say that a feasible control pair (ū, b̄) for (P ) is an inter-
mediate local minimizer in this problem if there exists ε > 0 such that

ϕ
(
xū,b̄(T )

)
≤ ϕ

(
xu,b(T )

)
for any feasible solution to (P ) satisfying the condition

‖(u, b)− (ū, b̄)‖W 1,2 + ‖xu,b − xū,b̄‖W 1,2 ≤ ε. (5.4) loc

The notion of strong local minimizer for (P ) is a particular case of Defi-
nition 3, where the norm ‖xu,b − xū,b̄‖W 1,2 in (5.4) is replaced with the norm
‖xu,b − xū,b̄‖C in the space of continuous functions C([0, T ],Rn). It is not hard
to construct examples showing that there exist intermediate local minimizers to
(P ) that fail to be strong ones; see [21, 22, 34] even for simpler problems.

Having F (u, b, x) from (5.2), fix a Lipschitz continuous intermediate local
minimizer (ū, b̄) for (P ) with the corresponding sweeping trajectory x̄(·) := xū,b̄
and assume that the uniform Slater condition (2.11) holds along (ū, b̄). Take the
mesh ∆k from (5.1) and identify the points tkj with the index j if no confusion

arises. Consider now discrete triples (uk, bk, xk) with the components

(uk, bk, xk) := (uk0 , u
k
1 , . . . , u

k
ν(k), b

k
0 , b

k
1 , . . . , b

k
ν(k), x

k
0 , x

k
1 , . . . , x

k
ν(k))

and form the sequence of discrete approximation problems (Pk) by:

minimize ϕ
(
xkν(k))+ (5.5) disc-cost

1

2

ν(k)−1∑
j=0

∫ tkj+1

tkj

∥∥∥∥(ukj+1 − ukj
hkj

,
bkj+1 − bkj

hkj
,
xkj+1 − xkj

hkj

)
−
(

˙̄u(t), ˙̄b(t), ˙̄x(t)
)∥∥∥∥2

dt

over the triples (uk, bk, xk) subject to the following constraints:

xkj+1 ∈ xkj − hkjF (ukj , b
k
j , x

k
j ), j = 0, . . . , ν(k)− 1, (5.6) disc-sw
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xk0 = x0 ∈ Cū,b̄(0), (uk0 , b
k
0) =

(
ū(0), b̄(0)

)
, xkν(k) ∈ Ω + ξkIB, (5.7) ini

1− δk ≤
∥∥uki (tkj )

∥∥ ≤ 1 + δk for all tkj ∈ ∆k, i = 1, . . . ,m, (5.8) u-const

ν(k)−1∑
j=0

∫ tkj+1

tkj

∥∥∥(ukj , bkj , xkj )− (ū(t), b̄(t), x̄(t)
)∥∥∥2

dt ≤ ε

2
, (5.9) ic1

ν(k)−1∑
j=0

∫ tkj+1

tkj

∥∥∥∥(ukj+1 − ukj
hkj

,
bkj+1 − bkj

hkj
,
xkj+1 − xkj

hkj

)
−
(

˙̄x(t), ˙̄a(t), ˙̄b(t)
)∥∥∥∥2

dt ≤ ε

2
,

(5.10) ic2

where {δk} in (5.8) is taken from Theorem 5 applied to (ū, b̄) and can be chosen
such that both inequalities in (5.8) are strict, where ε > 0 in (5.9) and (5.10) is
taken from Definition 3 of the intermediate local minimizer (ū, b̄) for (P ), and
where the sequence {ξk} of the endpoint perturbations in (5.7) is defined by

ξk := ‖x̃k(T )− x̄(T )‖ → 0 as k ∈ N (5.11) end-pert

via the sequence {x̃k(·)} approximating x̄(·) in Theorem 5.

The next theorem establishes the existence of optimal solutions to prob-
lems (Pk) for all k ∈ N and then shows that any sequence of optimal controls
{(ūk, b̄k)} to (Pk) constructed for the given canonical intermediate local min-
imizer (ū, b̄) of (P ), together with the corresponding sequence of discrete tra-
jectories {x̄k} piecewise linearly extended to the whole interval [0, T ], strongly
W 1,2-converge as k →∞ to the prescribed local optimal triple (ū, b̄, x̄) for (P ).

ilm-conver Theorem 6. Let (ū, b̄) be a canonical intermediate local minimizer for (P ) with
the corresponding sweeping trajectory x̄(·). The following assertions hold:

(i) If the cost function ϕ is lower semicontinuous around x̄(T ), then each prob-
lem (Pk) admits an optimal solution whenever k ∈ N is sufficiently large.
(ii) If in addition ϕ is continuous around x̄(T ), then every sequence of optimal
solutions {(ūk, b̄k)} to (Pk) and the corresponding sequence of discrete trajec-
tories {x̄k}, being piecewise linearly extended to [0, T ], converge to (ū, b̄, x̄) as
k →∞ in the norm topology of W 1,2([0, T ],Rmn × Rm × Rn).

Proof. To verify (i), observe first that the set of feasible solutions to problem
(Pk) is nonempty for all large k ∈ N. Namely, we show that the approximat-

ing sequence {(ũk, b̃k, x̃k)} from Theorem 5, being applied to the given canon-
ical intermediate local minimizer (ū, b̄) of the original problem (P ), consists
of feasible solutions to (Pk) when k is sufficiently large. Indeed, the discrete
sweeping inclusions (5.6) with the initial data in (5.7) are clearly satisfied for

{(ũk, b̃k, x̃k)} together with the control constraints (5.8), the conditions in (5.9)
and (5.10) also hold for large k by the W 1,2-convergence of the extended triples

{(ũk(t), b̃k(t), x̃k(t))} to (ū(t), b̄(t), x̄(t)) on [0, T ] as k →∞, and the fulfillment
of the endpoint constraint in (5.7) for the approximating trajectories x̃k(·) fol-
lows from x̄(T ) ∈ Ω and the definition of ξk in (5.11) by Theorem 5 applied to
the canonical intermediate local minimizer (ū, b̄). It follows from the construc-
tion of (Pk) and the structure of F in (5.2) that the set of feasible solutions to
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(Pk) is closed. Furthermore, the constraints in (5.8)–(5.10) ensure the bound-
edness of the latter set. Since ϕ is assumed to be lower semicontinuous around
x̄(T ), the existence of optimal solutions to such (Pk) follows from the classical
Weierstrass existence theorem in finite dimensions.

Now we verify assertion (ii) of the theorem. Consider an arbitrary sequence
{(ūk(·), b̄k(·), x̄k(·))} of optimal controls to (Pk) and the associated trajectories
of (5.6) that are piecewise linearly extended to [0, T ]. We aim at proving

lim
k→∞

∫ T

0

∥∥( ˙̄uk(t), ˙̄bk(t), ˙̄xk(t)
)
− ( ˙̄u(t), ˙̄b(t), ˙̄x(t)

)∥∥2
dt = 0, (5.12) lim-con

which readily yields the claimed convergence in (ii). Supposing on the con-
trary that (5.12) fails gives us a subsequence of k → ∞ (no relabeling) along
which the limit in (5.12) equals to some σ > 0. Due to (5.10), the sequence

{( ˙̄uk(t), ˙̄bk(t), ˙̄xk(t))} is weakly compact in L2([0, T ],Rmn×Rm×Rn), and hence
it contains a subsequence that converges to some triple (ϑu(·), ϑb(·), ϑx(·)) ∈
L2([0, T ],Rmn × Rm × Rn) weakly in this space. Employing Mazur’s weak
closure theorem tells us that there is a sequence of convex combinations of

( ˙̄uk(·), ˙̄bk(·), ˙̄xk(·)), which converges to (ϑu(·), ϑb(·), ϑx(·)) strongly in L2([0, T ],Rmn×
Rm × Rn), and hence almost everywhere on [0, T ] along a subsequence. Define

(
û(t), b̂(t), x̂(t)

)
:= (ū(0), b̄(0), x0)+

∫ t

0

(
ϑu(τ), ϑb(τ), ϑx(τ)

)
dτ for all t ∈ [0, T ]

and get that ( ˙̂u(t),
˙̂
b(t), ˙̂x(t)) = (ϑu(t), ϑb(t), ϑx(t)) for a.e. t ∈ [0, T ]. It fol-

lows from the construction of (û(t), b̂(t), x̂(t)) and the passage to the limit as
k → ∞ in (5.7)–(5.10) that ‖û(t)‖ = 1 on [0, T ], that x̂(T ) ∈ Ω, and that

(û(t), b̂(t), x̂(t)) belongs to the ε-neighborhood of (ū(·), b̄(·), x̄(·)) in the norm
topology of W 1,2([0, T ],Rmn × Rm × Rn). Let us now check that the limiting

triple (û(·), b̂(·), x̂(·)) satisfies the sweeping inclusion

−ẋ(t) ∈ NC(u(t),b(t))

(
x(t)

)
for a.e. t ∈ [0, T ] (5.13) sweep

over the controlled polyhedron. It follows from (5.6) due to (1.1) and (5.2) that〈
ūki (tj), x̄

k(tj)
〉
≤ b̄ki (tj) for all i = 1, . . . ,m, all j = 0, ν(k)−1, and k ∈ N.

Passing there to the limit as k →∞ ensures the conditions

〈ûi(t), x̂(t)〉 ≤ b̂i(t) for all i = 1, . . . ,m and t ∈ [0, T ], (5.14) Ck

i.e., x̂(t) ∈ C(û(t),̂b(t)) on [0, T ]. To proceed further, we use the construction of

F in (5.2) and rewrite (5.6) along the optimal triple (ūk, b̄k, x̄k) for (Pk) as

− x̄
k(tj+1)− x̄k(tj)

hkj
∈ NC

(ūk(tj),b̄k(tj))

(
x̄k(tj)

)
(j = 0, . . . , ν(k)− 1, k ∈ N).

(5.15) disc-sw1
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Recalling the piecewise linear extensions (ūk(t), b̄k(t), x̄k(t)) of the discrete triples

(ūk, b̄k, x̄k) and their strong W 1,2-convergence to the triple (û(t), b̂(t), x̂(t)) satis-
fying (5.14) tells us by passing to the limit in (5.15) as k →∞ that the sweeping

inclusion (5.13) holds for (û(t), b̂(t), x̂(t)). The verification of the latter involves
the usage of the aforementioned Mazur theorem and the outer semicontinuity
(closed-graph) property of the convex normal cone (1.3) with respect to point-
wise perturbations of the moving polyhedron C(u,b) in (5.13).

All the above shows that the limiting triple (û, b̂, x̂) is a feasible solution to
problem (P ) while satisfying the ε-localization condition (5.4). Passing finally
to the limit in (Pk) with taking into account the assumed continuity of ϕ and
remembering the value σ > 0 of the chosen limiting point of the sequence in
(5.12), we get that ϕ(x̂(T )) < ϕ(x̄(T )). This contradicts the imposed local
optimality of (ū, b̄) in (P ) and hence completes the proof of theorem. �

6. Optimality conditions via discrete approximations
sec:optim-disc

The results of the previous section show that optimal solutions to the finite-
dimensional discrete-time problem (Pk) are approximating suboptimal solutions
to the original sweeping control problem (P ) of infinite-dimensional dynamic op-
timization. Therefore, necessary optimality conditions for solutions to problems
(Pk), when k ∈ IN is sufficiently large, can be viewed as (necessary) subopti-
mality conditions for the prescribed intermediate local minimizers of (P ). This
observation allows us to justify solving the original sweeping control problem
by applying appropriate numerical techniques based on necessary optimality
conditions for the discrete approximations.

Each discrete-time problem (Pk) can be reduced to a nondynamic problem
of mathematical programming in finite-dimensional spaces. As we see, problems
(Pk) contain constraints of special types, the most challenging of which are
given by increasingly many inclusions in (5.6) that come from the sweeping
dynamics. The latter constraints of the graphical type require appropriate tools
of generalized differentiation to deal with. In particular, Clarke’s nonsmooth
analysis cannot be apply here, since his normal cone is usually too large for
graphical sets associated with velocity mappings in (1.2) and (5.6). In fact, the
only (known to us) machinery of generalized differentiation suitable for these
purposes is the one introduced by the third author and then developed by many
researchers; see, e.g., the books [22, 23, 29] and the references therein. We now
briefly review what is needed in this paper.

Given a set Θ ⊂ Rn locally closed around z̄ ∈ Θ, the (Mordukhovich ba-
sic/limiting) normal cone to Θ at z̄ is defined by

N(z̄; Θ) = NΘ(z̄) := (6.1) nor_con{
v ∈ Rn

∣∣ ∃ zk → z̄, wk ∈ Π(zk; Ω), αk ≥ 0 with αk(zk − wk)→ v
}
,

where Π(z; Θ) := {w ∈ Θ | ‖z − w‖ = d(z,Θ)} is the Euclidean projector of
z ∈ Rn onto Θ. While for convex sets Θ the normal cone (6.1) agrees with the
classical one (1.3), in general the set of normals (6.1) may be nonconvex even for
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simple sets as, e.g., the graph of the absolute value function |·| at z̄ = (0, 0) ∈ R2.
Nevertheless, the normal cone (6.1) for sets, as well as the coderivatives of set-
valued mappings and (first-order and second-order) subdifferentials of extended-
real-valued functions generated by (6.1), enjoy comprehensive calculus rules that
are based on variational and extremal principles of variational analysis.

Given further a set-valued mapping F : Rn ⇒ Rm with the graph gphF :=
{(x, y) ∈ Rn × Rm | y ∈ F(x)} locally closed around (x̄, ȳ) ∈ gphF , the
coderivative of F at (x̄, ȳ) is defined by

D∗F(x̄, ȳ)(u) :=
{
v ∈ Rn

∣∣ (v,−u) ∈ N
(
(x̄, ȳ); gphF

)}
, u ∈ Rm. (6.2) coderivative

Given finally an extended-real-valued function f : Rn → R := (−∞,∞] lower
semicontinuous around x̄ with f(x̄) < ∞ and the epigraph epi f := {(x, α) ∈
Rn+1 | α ≥ f(x)}, the (first-order) subdifferential of f at x̄ can be defined
geometrically via the normal cone (6.1) as

∂f(x̄) :=
{
v ∈ Rn

∣∣ (v,−1) ∈ N
(
(x̄, f(x̄)); epi f

)}
, (6.3) sub

while it admits various analytic descriptions that can be found in the aforemen-
tioned books. Observe that the normal cone (6.1) is the subdifferential (6.3) of
the indicator function δΘ(x) of Θ, which equals 0 for x ∈ Θ and ∞ otherwise.
The second-order subdifferential of f at x̄ relative to x̄ ∈ ∂f(x̄) is defined as the
coderivative of the first-order subdifferential mapping by

∂2f(x̄, v̄)(d) :=
(
D∗∂f

)
(x̄, v̄)(d), d ∈ Rn. (6.4) 2nd

This construction naturally arises in optimal control of sweeping processes of
type (1.2), where the right-hand side is described by the normal cone mapping.
We look for second-order evaluations of the coderivative in (6.4) applied to
the normal cone mapping F in (5.2) generated by the control-dependent convex
polyhedron C(u, b) in the sweeping process (1.2). The result needed in this paper
follows from [13, Theorem 4.3], where it was derived by using calculations in [24]
and Robinson’s theorem of the calmness property of polyhedral multifunctions
[28]. To formulate the required result, consider the matrix

A := [uij ] (i = 1, . . . ,m; j = 1, . . . , n)

with the vector columns ui as well as the transpose matrix AT . As usual, the
symbol ⊥ indicates the orthogonal complement of a vector in the corresponding
space. Having the controlled polyhedron C(u, b) in (5.2), take its active indices
at (u, b, x) with x ∈ C(u, b) denoted by

I(u, b, x) :=
{
i ∈ {1, . . . ,m}

∣∣ 〈ui, x〉 = bi
}
.

The positive linear independence constraint qualification (PLICQ) at (u, b, x) is[ ∑
i∈I(x,u,b)

αiui = 0, αi ≥ 0

]
=⇒

[
αi = 0 for all i ∈ I(x, u, b)

]
. (6.5) PLICQ
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This condition is significantly weaker than the classical linear independence con-
straint qualification (LICQ), which corresponds to (6.5) with αi ∈ R while not
being used in this paper. Considering the moving polyhedron as in (1.1), it is
not hard to check that our basic uniform Slater condition from (2.11) is equiva-
lent to the fulfillment of PLICQ along the feasible triple (x(t), u(t), b(t)) for all
t ∈ [0, T ]; see [9] for more discussions on this topic.

Given x ∈ C(u, b) and v ∈ N(x;C(u, b)), define the sets

Q(p) :=

{
qi = 0 for all i with either 〈ui, x〉 < bi or pi = 0, or 〈ui, y〉 < 0,
qi ≥ 0 for all i such that 〈ui, x〉 = bi, pi = 0, and 〈ui, y〉 > 0,

P (y) :=
{
p ∈ NRm− (Ax− b)

∣∣ AT p = v
}

for y ∈
⋂

{i | pi>0}

u⊥i ,

where the normal cone to the nonpositive orthant Rm− is easy to compute.
Now we are ready to present the required evaluation of the coderivative of

the normal cone mapping F (x, u, b) generated by the controlled polyhedron in
(5.2). The following lemma is a slight modification of [13, Theorem 4.3].

cod-eval Lemma 4. Taking F and C(u, b) from (5.2), suppose that the active vector
columns {ui | i ∈ I(u, b, x)} are positively linearly independent for any (u, b, x)
with x ∈ C(u, b). Then for all such (u, b, x), all v ∈ N(x;C(u, b)), and all
y ∈ ∩{i | pi>0}u

⊥
i we have the coderivative upper estimate

D∗F (u, b, x, v)(y) ⊂
⋃

p∈P (y)
q∈Q(p)




AT q

p1y + q1x
...

pmy + qmx
−q




. (6.6) cod_inclusion

Note that imposing the LICQ condition instead of PLICQ ensures that the
set P (y) is a singleton and that the inclusion in (6.6) holds as equality; see [13,
Theorem 4.3]. However, for the purpose of this paper it is sufficient to have the
inclusion in (6.6) under the less restrictive PLICQ.

To proceed further, we need one more auxiliary result giving us necessary
optimality conditions for a finite-dimensional nondynamic problem of mathe-
matical programming with finitely many equality, inequality and inclusion (ge-
ometric) constraints. The next lemma is obtained by combining the necessary
optimality conditions from [23, Theorem 6.5] for mathematical programs con-
taining one geometric constraint and the intersection rule for limiting normals
taken from [23, Corollary 2.17]. Arguing in this way, we can derive necessary
optimality conditions for mathematical programs described by lower semicon-
tinuous cost and inequality constraint functions as well as continuous functions
describing equality constraints. However, we confine ourselves to considering
problems with just locally Lipschitzian functions for cost and inequality con-
straints and smooth functions for equality constraints, since only such func-
tional constraints appear in mathematical programs to which we reduce the
discrete-time sweeping control problems (Pk).
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math-prog Lemma 5. Consider the following problem of mathematical programming:
minimize f0(z) as z ∈ Rd subject to
fi(z) ≤ 0 for i = 1, . . . , s,
gj(z) = 0 for j = 0, . . . , r,
z ∈ Θj for j = 0, . . . , l,

(MP)

where all the functions fi and gj are real-valued. Given a local minimizer z̄
to (MP ), assume that the functions fi are locally Lipschitzian around z̄ for
i = 0, . . . , s, the functions gj are continuously differentiable around this point
for j = 0, . . . , r, and the sets Θj are locally closed around z̄ for all j = 0, . . . , l.
Then there exist nonnegative numbers λ0, . . . , λs, real numbers µ0, . . . , µr, and
vectors z∗j ∈ Rd for j = 0, . . . , l, not equal to zero simultaneously, such that

λifi(z̄) = 0 for i = 1, . . . , s,

z∗j ∈ N(z̄; Θj) for j = 0, . . . , l,

−
l∑

j=0

z∗j ∈
s∑
i=0

λi∂fi(z̄) +

r∑
j=0

µi∇gj(z̄),

Having Lemma 4 and Lemma 5 in hand, we are now in a position to es-
tablish necessary conditions for optimal solutions to problems (Pk) from (5.5)–
(5.10) whenever the approximation number k ∈ IN is sufficiently large. The
obtained relationships involve the given intermediate local minimizer for the
sweeping optimal control problem (P ) and thus present necessary suboptimal-
ity conditions for the original continuous-time problem due to Theorem 6. For
any x ∈ Rn, y = (y1, . . . , ym) ∈ Rnm with yi ∈ Rn (i = 1, . . . ,m), and
α = (α1, . . . , αm) ∈ Rm we use the symbols

repm(x) := (x, . . . , x) ∈ Rnm and [α, y] := (α1y1, . . . , αmym) ∈ Rnm.

nc-disc Theorem 7. Let (ū, b̄) be a canonical intermediate local minimizer of (P ) gen-
erated the trajectory x̄ = x̄(·) of the controlled polyhedral sweeping process (1.2)
such that the cost function ϕ is locally Lipschitzian around x̄(T ). Fix an optimal
triple (ūk, b̄k, x̄k) in problem (Pk) with the components

(ūk, b̄k, x̄k) := (ūk0 , ū
k
1 , . . . , ū

k
ν(k), b̄

k
0 , b̄

k
1 , . . . , b̄

k
ν(k), x̄

k
0 , x̄

k
1 , . . . , x̄

k
ν(k))

and choose k ∈ IN to be sufficiently large. Denote the quantities

θukj :=

∫ tkj+1

tkj

(
ūkj+1 − ūkj

hkj
− ˙̄u(t)

)
dt, θbkj :=

∫ tkj+1

tkj

(
b̄kj+1 − b̄kj

hkj
− ˙̄b(t)

)
dt,

θxkj :=

∫ tkj+1

tkj

(
x̄kj+1 − x̄kj

hkj
− ˙̄x(t)

)
dt
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and define the set Ωk := Ω + ξkIB, where ξk is taken from the construction
of problem (Pk). Then there exist a multiplier λk ≥ 0, an adjoint triple pkj =

(pxkj , p
ak
j , p

bk
j ) ∈ Rn+mn+m (j = 0, . . . , ν(k)), as well as vectors ηk = (ηk0 , . . . , η

k
ν(k)

∈ Rm(ν(k)+1)
+ , α1k =

(
α1k

0 , . . . , α1k
ν(k)

)
∈ Rm(ν(k)+1)

+ , α2k = (α2k
0 , . . . , α2k

ν(k)) ∈

Rm(ν(k)+1)
+ , and γk = (γk0 , . . . , γ

k
ν(k)−1) ∈ Rmν(k) such that

λk +
∥∥α1k − α2k

∥∥+
∥∥∥ηkν(k)

∥∥∥+

ν(k)−1∑
j=0

∥∥pxkj ∥∥+
∥∥pak0

∥∥+
∥∥pbk0 ∥∥ 6= 0, (6.7) ntc0

λk +
∥∥α1k − α2k

∥∥+
∥∥γk∥∥+

∥∥∥pakν(k)

∥∥∥+
∥∥∥pbkν(k)

∥∥∥ 6= 0, (6.8) ntc1

and we have the following conditions:

• dynamic relationships, which are satisfied for all indices j = 0, . . . , ν(k)−1
and i = 1, . . . ,m :

−
x̄kj+1 − x̄kj

hkj
=

m∑
i=1

ηkij ū
k
ij , (6.9) 87

pukj+1 − pukj
hkj

− 2

hkj

[
α1k
j − α2k

j , ū
k
j

]
=
[
γkj , repm(x̄kj )

]
+

[
ηkj , repm

(
− 1

hkj
λkθxkj − λk + pxkj+1

)]
,

(6.10) cona

pbkj+1 − pbkj
hkj

= −γkj , (6.11) conb

pxkj+1 − pxkj
hkj

=

m∑
i=1

γkij ū
k
ij , (6.12) conx

where the components of the vectors γkj are such that

γkij = 0 if 〈ūkij , x̄kj 〉 < b̄kij or ηkij = 0,
〈
ūkij ,−

1

hkj
λkθxkj + pxkj+1

〉
< 0,

γkij ≥ 0 if 〈ūkij , x̄kj 〉 = b̄kij , η
k
ij = 0,

〈
ūkij ,−

1

hkj
λkθxkj + pxkj+1

〉
> 0,

γkij ∈ R if ηkij > 0,
〈
ūkij ,−

1

hkj
λkθxkj + pxkj+1

〉
= 0.

(6.13) congg1

• complementary slackness conditions:

α1k
ij

(∥∥ukij∥∥− (1 + δk)
)

= 0 (i = 1, . . . ,m, j = 0, . . . , ν(k)), (6.14) 71l1

α2k
ij

(∥∥ukij∥∥− (1− δk)
)

= 0 (i = 1, . . . ,m, j = 0, . . . , ν(k)), (6.15) 71l2[
〈ukij , x̄kj 〉 < b̄kij

]
=⇒ ηkij = 0 (i = 1, . . . ,m, j = 0, . . . , ν(k)− 1), (6.16) eta
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[
〈ūkiν(k), x̄

k
ν(k)〉 < b̄kiν(k)

]
=⇒ ηkiν(k) = 0 (i = 1, . . . ,m, j = 0, . . . , ν(k)− 1),

(6.17) eta1

ηkij > 0 =⇒

[〈
ūkij ,−

1

hkj
λkθxkj + pxkj+1

〉
= 0

]
(i = 1, . . . ,m, j = 0, . . . , ν(k)−1).

(6.18) 96

• transversality relationships at the right end of the trajectory:

−pxkν(k) ∈ λ
k∂ϕ(x̄kν(k)) +N

(
x̄kν(k); Ωk) +

m∑
i=1

ηkiν(k)ū
k
iν(k), (6.19) nmutx

pukν(k) = −2
[
α1k
ν(k) − α

2k
ν(k), ū

k
ν(k)

]
−
[
ηkν(k), repm(x̄kν(k))

]
, (6.20) nmuta

pbkiν(k) = ηkiν(k) ≥ 0, 〈ūkiν(k), x̄
k
ν(k)〉 < b̄kiν(k) =⇒ pbkiν(k) = 0 (i = 1, . . . ,m).

(6.21) nmutb

Proof. To reduce problem (Pk) from (5.5)–(5.10) for each fixed k ∈ IN to
a mathematical program of type (MP ) formulated in Lemma 5, we form the
multidimensional vector

z :=
(
uk0 , . . . , u

k
ν(k), b

k
0 , . . . , b

k
ν(k), x

k
0 , . . . , x

k
ν(k), v

k
0 , . . . , v

k
ν(k)−1,

wk0 , . . . , w
k
ν(k)−1, y

k
0 , . . . , y

k
ν(k)−1

)
and consider the problem of minimizing the cost function

f0(z) := ϕ(xkν(k)) +
1

2

ν(k)−1∑
j=0

∫ tkj+1

tkj

∥∥(vkj − ˙̄u(t), wkj − ˙̄b(t), ykj − ˙̄x(t)
)∥∥2

dt

subject to the five groups of inequality constraints

f1(z) :=

ν(k)−1∑
j=0

∫ tkj+1

tkj

∥∥(ukj , bkj , xkj )− (ū(t), b̄(t), x̄(t)
)∥∥2

dt− ε

2
≤ 0,

f2(z) :=

ν(k)−1∑
j=0

∫ tkj+1

tkj

∥∥∥(vkj , wkj , ykj )− ( ˙̄u(t), ˙̄b(t), ˙̄x(t)
)∥∥∥2

dt− ε

2
≤ 0,

fij(z) := ‖ukij‖2 − (1 + δk)2 ≤ 0 for i = 1, . . . ,m, j = 0, . . . , ν(k),

f̃ij(z) := (1− δk)2 − ‖ukij‖2 ≤ 0, for i = 1, . . . ,m, j = 0, . . . , ν(k),

f̂i(z) :=
〈
ukiν(k), x

k
ν(k)

〉
− bkiν(k) ≤ 0 for i = 1, . . . ,m,

the three groups of equality constraints

guj (z) := ukj+1 − ukj − hkj vkj = 0 for j = 0, . . . , ν(k)− 1,
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gbj(z) := bkj+1 − bkj − hkjwkj = 0 for j = 0, . . . , ν(k)− 1,

gxj (z) := xkj+1 − xkj − hkj ykj = 0, for j = 0, . . . , ν(k)− 1,

and the two groups of inclusion constraints

z ∈ Θj :=
{
z
∣∣− ykj ∈ F (ukj , b

k
j , x

k
j )
}

for j = 0, . . . , ν(k)− 1,

z ∈ Θν(k) :=
{
z
∣∣ (uk0 , b

k
0 , x

k
0) are fixed, xkν(k) ∈ Ωk

}
,

where those for j = 0, . . . , ν(k) − 1 incorporate the constraints xkj ∈ C(ukj , b
k
j )

for such j due to the construction of F in (5.2).
As we see, the formulated nondynamic equivalent of problem (Pk) is written

in the mathematical programming form (MP ) as in Lemma 5 with the fulfill-
ment all the assumptions imposed in the lemma. Thus we can readily apply
the conclusions of the lemma by taking into account the particular structure of
the functions and sets in the formulated equivalent of (Pk). Employing now the
necessary optimality conditions of Lemma 5 to the optimal solution

z̄ := z̄k =
(
ūk0 , . . . , ū

k
ν(k), b̄

k
0 , . . . , b̄

k
ν(k), x̄

k
0 , . . . , x̄

k
ν(k), v̄

k
0 , . . . , v̄

k
ν(k)−1,

w̄k0 , . . . , w̄
k
ν(k)−1, ȳ

k
0 , . . . , ȳ

k
ν(k)−1

)
of problem (MP ) ≡ (Pk), observe by Theorem 6 that the inequality constraints
defined by the functions f1 and f2 above are inactive at z̄ for sufficiently large k,
and thus the corresponding multipliers will not appear in optimality conditions.
Taking this into account, we find by Lemma 5 multipliers λk ≥ 0, (βk1 , . . . , β

k
m) ∈

Rm+ , pkj = (pukj , pbkj , p
xk
j ) ∈ Rmn+n+m for j = 1, . . . , ν(k), as well as vectors

z∗j :=
(
u∗0j , . . . , u

∗
ν(k)j , b

∗
0j , . . . , b

∗
ν(k)j , x

∗
0j , . . . , x

∗
ν(k)j , v

∗
0j , . . . , v

∗
(ν(k)−1)j ,

w∗0j , . . . , w
∗
(ν(k)−1)j , y

∗
0j , . . . , y

∗
(ν(k)−1)j

)
for j = 0, . . . , ν(k), α1k = (α1k

0 , . . . , α1k
ν(k)) ∈ Rν(k)+1

+ , α2k = (α2k
0 , . . . , α2k

ν(k)) ∈
Rν(k)+1
− such that the complementary slackness conditions (6.14), (6.15), and

βki
(〈
ūkiν(k), x̄

k
ν(k)

〉
− b̄kiν(k)

)
= 0 for i = 1, . . . ,m (6.22) 71+

hold together with the normal cone inclusions

z∗j ∈ N(z̄; Θj) for j = 0, . . . , ν(k) (6.23) nor-inc

and the generalized Lagrangian condition

−
ν(k)∑
j=0

z∗j ∈ λk∂f0(z̄) +

m∑
i=1

βkj∇f̂i(z̄) +

ν(k)−1∑
j=0

∇gj(z̄)T pkj+1

+

ν(k)∑
j=0

m∑
i=1

[
α1k
ij ∇fij(z̄) + α2k

ij ∇f̃ij(z̄)
]
,

(6.24) 70
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where gj = (guj , g
b
j , g

x
j ), and where the dual elements λk, βki , pkj , z∗j , α1k, and

α2k are not all zero simultaneously.
Looking at the graphical structure of the geometric constraints z ∈ Θj for

j = 0, . . . , ν(k)− 1, we readily deduce from (6.23) that

(u∗jj , b
∗
jj , x

∗
jj ,−y∗jj) ∈ N

((
ūkj , b̄

k
j , x̄

k
j ,−

x̄kj+1 − x̄kj
hkj

)
; gphF

)
(j = 0, . . . , ν(k)− 1)

with all the other components of z∗j equal to zero for these indices j. It follows
from the coderivative definition (6.2) that the obtained normal cone inclusion
can be equivalently written as

(u∗jj , b
∗
jj , x

∗
jj) ∈ D∗F

(
ūkj , b̄

k
j , x̄

k
j ,−

x̄kj+1 − x̄kj
hkj

)
(y∗jj) for j = 0, . . . , ν(k)− 1.

(6.25) cod-inc

Since the mapping F is given in the particular form (5.2), we are able to use the
coderivative evaluation in (6.25) provided the fulfillment of PLICQ (6.5) along
the discrete optimal solutions for all k sufficiently large. As discussed above,
the assumed uniform Slater condition (2.11) for the given canonical intermediate
local minimizer (ū, b̄) of (P ) yields PLICQ at (ū, b̄, x̄). Since the latter condition
is robust with respect to perturbations of the initial triple and since the discrete
optimal solutions strongly converge to (ū(·), b̄(·), x̄(·)) by Theorem 6, we are in
a position to use Lemma 4 in the coderivative inclusion (6.25). Prior to this, let
us calculate the other terms in the generalized Lagrangian condition (6.24).

First observe that the summation term in the cost function is smooth. There-
fore, the usage of the subdifferential sum rule from [23, Proposition 1.30(ii)] gives
the precise calculation

∂f0(z̄) = ∂ϕ(x̄kν(k)) +

ν(k)−1∑
j=0

(
0, . . . , 0, θukj , θbkj , θ

xk
j

)
where zeros stands for the all components of z̄ till v̄kj , and where θukj , θbkj , θ

xk
j

are defined in the formulation of the theorem. Further, with the usage of our
notation presented before the formulation of this theorem, we easily get

m∑
i=1

βki ∇f̂i(z̄) =

(
m∑
i=1

βki ū
k
ik,
[
βk, repm(x̄kν(k))

]
,−βk

)
,

ν(k)−1∑
j=0

∇gj(z̄)T pkj+1


(uj ,bj ,xj)

=


−pk1 if j = 0

pkj − pkj+1 if j = 1, . . . , ν(k)− 1

pkν(k) if j = ν(k)

,

ν(k)−1∑
j=0

∇gj(z̄)T pkj+1


(vj ,wj ,yj)

=
(
−hk0puk1 ,−hk1puk2 , . . . ,−hkν(k)−1p

uk
ν(k),

−hk0pbk1 ,−hk1pbk2 , . . . ,−hkν(k)−1p
bk
ν(k),−h

k
0p
xk
1 ,−hk1pxk2 , . . . ,−hkν(k)−1p

xk
ν(k)

)
,
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ν(k)∑
j=0

m∑
i=1

α1k
ij ∇fij(z̄) = 2

[
α1k
j , ū

k
j

]
,

ν(k)∑
j=0

m∑
i=1

α2k
ij ∇f̃ij(z̄) = −2

[
α2k
j , ū

k
j

]
(j = 0, . . . , ν(k)).

To proceed with (6.24), it remains to express the dual element z∗ν(k) ∈ N(z̄; Θν(k))

in (6.23) corresponding the last geometric constraint z̄ν(k) ∈ Θν(k) in terms of
the data of (Pk). We directly conclude from the structure of Θν(k) that the

components of z∗ν(k) corresponding to (uk0 , b
k
0 , x

k
0) are free (i.e., just belong to

Rmn × Rm × Rn), that x∗ν(k)ν(k) ∈ N(x̄kν(k); Ωk), and that all the other compo-

nents are equal to zero. The fulfillment of PLICQ along (ūk, b̄k, x̄k)} for all k
sufficiently large allows us to find unique vectors ηkj ∈ Rm+ such that

m∑
i=1

ηkij ū
k
ij = −

x̄kj+1 − x̄kj
hkj

for j = 0, . . . , ν(k)− 1.

For the last index j = ν(k), we put ηkν(k) := βk ∈ Rm+ . Substituting all the above

into the Lagrangian inclusion (6.24) with taking into account the coderivative
upper estimate from Lemma 4 gives us the claimed necessary optimality condi-
tions (6.9)–(6.21). Finally, the nontriviality conditions in (6.7) and (6.8) follows
directly from (6.9)–(6.21) and the nontriviality of the dual elements in Lemma 5
for the mathematical program (MP ) equivalent to (Pk). Therefore, we complete
the proof of the theorem. �
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