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Abstract. The aim of the present work is to use a metric intersection formula to estimate

the subdifferential of the marginal function in the convex setting. This intersection formula

includes many interesting situations in parametric convex programming, including the

polyhedral one. It is expressed in terms of the objective function and the constrained

multivalued mapping which govern the parametric program.
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1 Introduction

Intersection formulas play an important role in optimization and variational and nons-

mooth analysis. For example it allows to obtain the relationship between normal cone to

set intersections and normal cone to each set in the intersection, to get chain rules for

subdifferentials, and to estimate the subdifferential of the marginal function (see [16]).

To be concrete, we say that two closed sets C and D of a normed space X satisfy the

intersection formula at x0 ∈ C ∩D if there exist two real numbers a > 0 and r > 0 such

that

d(x,C ∩D) ≤ a(d(x,C) + d(x,D)) ∀x ∈ B(x0, r), (1)

where x 7→ d(x,B) denotes the distance function to a set B ⊂ X.

Normal cones to the intersection. Condition (1) ensures the following inclusion

N(x0;C ∩D) ⊂ N(x0;C) +N(x0;D),

where N denotes either the Fenchel cone in the sense of convex analysis with C and D

being closed convex sets or the limiting Fréchet normal cone (see [18]) whenever X is a

Asplund space or the nucleus normal cone (see [14]) whenever X is any Banach space.

Unfortunately, the intersection formula (1) is not sufficient to guarantee the same chain

rule for Clarke’s normal cone. However, for the latter one, we obtain

N(x0;C ∩D) ⊂ cl∗[N(x0;C) +N(x0;D)],

where cl∗(A) denotes the weak-star closedness of A ⊂ X∗ and X∗ is the dual space of X.

Subdifferential calculus. Consider the sets

S1 = {(x, α, β) ∈ X × R× R : f1(x) ≤ α},

and

S2 = {(x, α, β) ∈ X × R× R : f2(x) ≤ β},
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for extended real-valued functions f1 and f2 on X. We say that f1 and f2 satisfy the

intersection formula at x0 if there exist r > 0 and a > 0 such that

d((x, α, β), S1 ∩ S2) ≤ a[d((x, α, β), S1) + d((x, α, β), S2)] (2)

for all x ∈ x0 + rBX , α ∈ f1(x0) + rBR and β ∈ f2(x0) + rBR. Condition (2) leads to the

following chain rule

∂(f1 + f2)(x0) ⊂ ∂f1(x0) + ∂f2(x0),

where ∂ denotes either the Fenchel subdifferential with f1 and f2 being convex functions

or the limiting Fréchet subdifferential (see [18]) whenever X is a Asplund space or the

nucleus subdifferential (see [14]) whenever X is any Banach space.

The study of the behavior of the marginal (or value) function is known to be very important

in variational analysis and optimization theory; see, e.g., [1, 2, 3, 5, 11, 12, 16, 19, 20, 21]

and the references therein.

In [16], the author has proposed the method by using intersection formulas to evaluate the

G-subdifferentials of the marginal functions of parametric programming problems under

inclusion constraints in Banach spaces. Recently, by using the Moreau-Rockafellar theorem

and appropriate regularity conditions, An and Yen [2], An and Yao [1] have obtained

formulas for computing subdifferentials of the marginal functions for convex optimization

problems under inclusion constraints on infinite dimensional spaces.

The primary goal of this paper is to use intersection formulas for estimating subdifferentials

of the marginal functions of convex parametric programming problems under inclusion

constraints in Banach spaces. Thus, on one hand, our results have the origin in the study

of [16]. On the other hand, they are the results of deepening that study for the case of

convex programming problems.

The contents of the remaining sections are as follows. Section 2 recalls several definitions

from [5] and [10]. Intersection formulas are analyzed in Section 3. Section 4 presents

formulas for computing the subdifferential and the singular subdifferential of the marginal
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functions of convex optimization problems under inclusion constraints on Banach spaces.

Section 5 compares our results with some known results. Several conclusions are given in

the final section.

2 Preliminaries

Let X and Y be Banach spaces whose duals are denoted, respectively, by X∗ and Y ∗. We

use B(x, r) to denote the open ball centered at x with radius r > 0. Let BX (resp. BX∗)

denote the closed unit ball of X (resp. X∗) centered at the origin. The closure and the

interior of a set A are denoted by clA and intA, respectively.

Let ϕ : X → R be an extended real-valued function, where R := [−∞,+∞] = R∪{+∞}∪

{−∞}. One says that ϕ is proper if the domain

domϕ := {x ∈ X : ϕ(x) < +∞}

is nonempty, and if ϕ(x) > −∞ for all x ∈ X. The function ϕ is convex if and only if its

epigraph

epiϕ := {(x, α) ∈ X × R : α ≥ ϕ(x)}

is a convex subset of X × R. If epiϕ is a closed subset of X × R, ϕ is said to be a closed

function. Denoting the set of all the neighborhoods of x by N (x), one says that ϕ is

lower semicontinuous (l.s.c.) at x ∈ X if for every ε > 0 there exists U ∈ N (x) such that

ϕ(x′) ≥ ϕ(x)− ε for any x′ ∈ U. If ϕ is l.s.c. at every x ∈ X, ϕ is said to be l.s.c. on X.

It is convenient to denote the set of all proper l.s.c. convex functions on X by Γ0(X).

Let ϕ be an extended-real valued convex function on X and x̄ ∈ domϕ. The subdifferential

of ϕ at x̄ is the set

∂ϕ(x̄) = {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ ϕ(x)− ϕ(x̄), ∀x ∈ X}.

If f ∈ Γ0(X), then ∂ϕ(x̄) is nonempty for every x̄ ∈ int(dom)ϕ (see [15]).
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For a convex set Ω ⊂ X, the normal cone of Ω at x̄ ∈ Ω is given by

N(x̄; Ω) = {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ 0, ∀x ∈ Ω}.

The singular subdifferential of a convex function ϕ at x̄ ∈ domϕ is defined by

∂∞ϕ(x̄) = {x∗ ∈ X∗ : (x∗, 0) ∈ N((x̄, ϕ(x̄)); epiϕ)}.

For any x̄ /∈ domϕ, we put ∂ϕ(x̄) = ∅ and ∂∞ϕ(x̄) = ∅.

It is not difficult to show that x∗ ∈ ∂ϕ(x̄) if and only if 〈x∗, x − x̄〉 − (α − ϕ(x̄)) ≤ 0 for

all (x, α) ∈ epi ϕ or, equivalently, (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ). Interestingly, for any

convex function ϕ, one has ∂∞ϕ(x) = N(x; domϕ); see e.g., [2].

Let F : X ⇒ Y be a multivalued function. The graph and the domain of F are defined

by

GrF := {(x, y) ∈ X × Y : y ∈ F (x)} and domF := {x ∈ X : F (x) 6= ∅}.

One says that a multivalued function F is closed (resp., convex) if GrF is closed (resp.,

convex). In addition, if domF 6= ∅, F is called proper. The product space X × Y will be

endowed with the norm ||(x, y)|| = ||x||+ ||y|| for any (x, y) ∈ X × Y .

The coderivative D∗F (x̄, ȳ) : Y ∗ ⇒ X∗ of a convex multifunction F between X and Y at

(x̄, ȳ) ∈ GrF is the multivalued function defined by

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N((x̄, ȳ); GrF )} , ∀y∗ ∈ Y ∗.

If (x̄, ȳ) /∈ GrF , one puts D∗F (x̄, ȳ)(y∗) = ∅ for any y∗ ∈ Y ∗.

Let C be a nonempty subset of X. The distance function of C is defined by

d(x,C) = inf
u∈C
||x− u||.

Clearly, the distance function d(·, C) is Lipschitz continuous with modulus one, and convex

provided that C is convex. It is obvious that for any convex set Ω ⊂ X containing x̄, we

have

N(x̄; Ω) = N(x̄; clΩ) and ∂d(x̄,Ω) = ∂d(x̄, clΩ). (3)
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We will need some properties of the subdifferential of d(·, C). Assertion (i) of the fol-

lowing proposition has been observed in different places, e.g., [5, Example 2.130] and [8,

Theorem 1]. Assertion (ii) is well known when C is convex as it corresponds to [9, Propo-

sition 11]. We present a direct proof for the reader’s convenience.

Proposition 2.1. Let C be a nonempty convex subset of X. Then for every x ∈ C, one

has

(i) ∂d(x,C) = BX∗ ∩N(x;C), where BX∗ is the closed unit ball in X∗;

(ii) N(x;C) =
⋃
λ>0

λ∂d(x,C).

Proof. We only need to prove assertion (i) beacause (ii) immediately follows from the first

one. Indeed, by the definition of the subdifferential, one has x∗ ∈ ∂d(x,C) if and only if

〈x∗, u− x〉 ≤ d(u,C)− d(x,C), ∀u ∈ X. (4)

Since d(·, C) is Lipschitz continuous modulus one, from (4) one has

〈x∗, u− x〉 ≤ d(u,C)− d(x,C) ≤ ||u− x||, ∀u ∈ X.

It follows that ||x∗|| ≤ 1. Hence ∂d(x,C) ⊂ BX∗ . Moreover, for all u ∈ C, from (4) we get

〈x∗, u− x〉 ≤ 0. In other words, x∗ ∈ N(x;C). Therefore x∗ ∈ BX∗ ∩N(x;C).

Conversely, suppose that x∗ belongs to BX∗ ∩N(x;C). For any u ∈ X and ε > 0, we can

find u′ ∈ C such that d(u,C) ≥ ||u − u′|| − ε. As ||x∗|| ≤ 1 and x∗ ∈ N(x;C), the latter

implies that

d(u,C) ≥ 〈x∗, u− u′〉 − ε = 〈x∗, u− x〉+ 〈x∗, x− u′〉 − ε

≥ 〈x∗, u− x〉 − ε. (5)

Since ε > 0 is arbitrary and x ∈ C, we obtain

d(u,C) ≥ 〈x∗, u− x〉 = 〈x∗, u− x〉+ d(x,C) ∀u ∈ X

which shows that x∗ ∈ ∂d(x,C).
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3 Intersection formulas

Let C and D be subsets of X with x0 ∈ C ∩ D. One says that C and D satisfy the

intersection formula at x0 if there exist two real numbers a > 0 and r > 0 such that

inequality (1) is satisfied. In the case where C and D are closed and convex, we obtain

(see [4]) the following characterization.

Proposition 3.1. Let C and D be closed and convex subset of X and a > 0. Then the

following assertions are equivalent

1. There exists r > 0 satisfying relation (1),

2. There exists s > 0 such that

∂d(x,C ∩D) ⊂ a∂d(x,C) + a∂d(x,D) ∀x ∈ C ∩D ∩ B(x0, s).

Proof. It is given for completeness. The implication 1.⇒ 2. is obvious. So let us establish

the reverse one. Let u ∈ B(x0,
s
2
)\C ∩D and ε ∈]0,

√
s

4
[. Then, by Lemma 2.1 in [4], there

exist uε ∈ C ∩D, x∗ε ∈ X∗ and b∗ε ∈ B∗ such that

i) ‖uε − u‖ ≤ d(u,C ∩D) + ε2,

ii) x∗ε + εb∗ε ∈ (1 + ε)∂d(uε, C ∩D),

iii) 〈x∗ε, u− uε〉 = ‖uε − u‖.

Note that uε ∈ C ∩D ∩ B(x0, s). By 2. and ii), we have

x∗ε + εb∗ε ∈ a(1 + ε)
[
∂d(uε, C) + ∂d(uε, D)

]
= a(1 + ε)∂(d(·, C) + d(·, D))(uε)

and hence

〈x∗ε + εb∗ε, u− uε〉 ≤ a(1 + ε)(d(u,C) + d(u,D)).
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Using iii), we get

‖u− uε‖(1− ε) ≤ a(1 + ε)(d(u,C) + d(u,D))(because ‖b∗ε‖ ≤ 1)

which in turns implies that

d(u,C ∩D)(1− ε) ≤ a(1 + ε)(d(u,C) + d(u,D))

and as ε is arbitrary, we obtain the desired result by putting r = s
2
.

Following Borwein and Strojwas [7], we call a set C ⊂ X compactly epi-Lipschitzian (CEL)

at x0 ∈ C if there exist a norm-compact set K and a scalar r > 0 such that

C ∩ (x0 + rBX) + τrBX ⊂ C − τK ∀τ ∈ [0, r].

This class includes all finite dimensional sets. It is worth to note that in infinite dimensional

spaces, there is no relationship between compact sets and CEL sets (because these later

are never compact in infinite dimensional spaces). This also implies that the CEL sets are

useful only in infinite dimensional spaces; see ([6], [17]).

In [13], it is shown that a boundary condition ensures the intersection formula. More

precisely, one has

Proposition 3.2. Let C and D be closed convex subsets of X and x0 ∈ C ∩D. Suppose

that one of the sets C or D is CEL at x0 and

bd
(
N(x0;C)

)
∩ [−bd

(
N(x0;D)

)
] = {0}. (6)

Then there exist r > 0 and a > 0 satisfying relation (1). Here “bd (A)” denotes the

boundary of the set A ⊂ X∗ with respect to the norm on X∗.

Remark 3.1. Note that the reverse implication is not true. We mean that relation (1)

does not implies (6). To see this, take

C := {(x1, x2) ∈ R2 : x1 ≤ 0, x2 ≤ 0, x2 ≤ x1},

D = R2
+ and x0 = (0, 0). It can be verified that relation (1) is valid for a = 1 and for any

r > 0, meanwhile

bdN(x0;C) ∩
[
− bdN(x0;D)

]
= R+ × {0}.
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4 Main results

We define the marginal function (also called value function) m : X → R by

m(x) := inf{f(x, y) : y ∈ F (x)}, (7)

where f is an extended-real-valued convex lower semicontinuous function on X×Y and F

is a multivalued function from X to Y with closed graph. By the convention inf ∅ = +∞,

we have m(x) = +∞ for all x /∈ dom F. Corresponding to each data pair F, f we have

one optimization problem depending on a parameter x:

min {f(x, y) : y ∈ F (x)}. (8)

For every x ∈ dom m, we consider the set of minimizers

M(x) = {y ∈ F (x) : m(x) = f(x, y)}. (9)

We are looking for formulas to estimate/compute subdifferentials of m.

The following proposition gives the continuity of m under some conditions.

Proposition 4.1. The marginal function m(·) is convex. Moreover if m is finite at x0,

m(·) is continuous at x0 if and only if for every x in a neighborhood of x0, m(x) < +∞,

i.e., x0 ∈ int(dom m).

Proof. We consider the unconstrained problem

min {ϕ(x, y) : y ∈ Y }, (10)

with the objective function ϕ(x, y) being ϕ(x, y) = f(x, y) + δGrF (x, y). Obviously, the

marginal function of problem (10) is also the function m given in (7). First, since F is a

convex multivalued function, it follows that GrF is a convex set. So δGrF (·) is a convex

function. Combining this with the convexity of f yields the function ϕ is convex. By [5,

Proposition 2.143], the marginal function m is convex. Moreover, since F is a proper closed

multivalued function, one has δGrF (·) is a proper lower semicontinuous function. Thus ϕ

is proper lower semicontinuous. Therefore the second part is obtained by applying [5,

Proposition 2.152].
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Put

C1 = epi f and C2 = Gr F × R.

We need some auxiliary results.

Lemma 4.1. Let y0 ∈ M(x0). Then, we have (x∗, β) ∈ N((x0,m(x0)); epi m) if and only

if

(x∗, 0, β) ∈ N((x0, y0, f(x0, y0));C1 ∩ C2).

Proof. Let (x∗, β) ∈ N((x0,m(x0)), epi m). Then,

〈x∗, x− x0〉+ β(r −m(x0)) ≤ 0, ∀(x, r) ∈ epi m, (11)

because (x0, λ+m(x0)) ∈ epi m for every λ ≥ 0. So β must be negative number. Keeping

in mind that y0 ∈M(x0), from (11) one has

〈x∗, x− x0〉 ≤ −β(r −m(x0)), ∀(x, r) ∈ epi m,

≤ −β(m(x)− f(x0, y0)), ∀x ∈ dom m

≤ −β(f(x, y)− f(x0, y0)), ∀(x, y) ∈ dom f and (x, y) ∈ Gr F

≤ −β(r − f(x0, y0)), ∀(x, y, r) ∈ epi f and (x, y) ∈ Gr F,

or, equivalently,

〈(x∗, 0), (x, y)− (x0, y0)〉+ β(r − f(x0, y0)) ≤ 0, ∀(x, y, r) ∈ epi f and (x, y) ∈ Gr F.

So (x∗, 0, β) ∈ N((x0, y0, f(x0, y0));C1 ∩ C2), with C1 = epi f and C2 = Gr F × R.

Conversely, take (x∗, 0, β) ∈ N((x0, y0, f(x0, y0));C1∩C2). By the definition of the normal

cone, we have

〈x∗, x− x0〉+ β(r − f(x0, y0)) ≤ 0, ∀(x, y, r) ∈ C1 ∩ C2. (12)

Similarly, one has β ≤ 0. By the definition of the infimum, for all ε ≥ 0, we can find

y ∈ F (x) such that m(x) ≥ f(x, y) − ε. Put r = ε + m(x), we have (x, y, r) ∈ C1 ∩ C2.

From (12), we obtain

〈x∗, x− x0〉 ≤ −β(ε+m(x)− f(x0, y0)) = −β(ε+m(x)−m(x0)), ∀x ∈ dom m.
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The last inequality implies that

〈x∗, x− x0〉 ≤ −β(m(x)−m(x0)), ∀x ∈ dom m

≤ −β(r −m(x0)), ∀(x, r) ∈ epi m.

In other words, (x∗, β) ∈ N((x0,m(x0)); epi m). 2

Lemma 4.2. Let y0 ∈M(x0). Then one has

(x∗, β) ∈ ∂d((x0,m(x0)), epi m)

if and only if

(x∗, 0, β) ∈ ∂d((x0, y0, f(x0, y0)), C1 ∩ C2).

Proof. According to Propostion 2.1(i), one has

∂d((x0,m(x0)), epi m) = BX∗×R ∩N((x0,m(x0)); epi m).

Then, (x∗, β) ∈ ∂d((x0,m(x0)); epi m) if and only if ||(x∗, β)|| ≤ 1 and

(x∗, β) ∈ N((x0,m(x0)); epi m).

By Lemma 4.1, (x∗, β) ∈ N((x0,m(x0)); epi m) if and only if

(x∗, 0, β) ∈ N((x0, y0, f(x0, y0));C1 ∩ C2).

Combining with ||(x∗, 0, β)|| ≤ 1, we obtain (x∗, β) ∈ ∂d((x0,m(x0)), epi m) if and only if

(x∗, 0, β) ∈ ∂d((x0, y0, f(x0, y0)), C1 ∩ C2).

2

The first main result of this section reads as follows.

Theorem 4.1. Suppose that C1 and C2 satisfy the intersection formula at (x0, y0, f(x0, y0)),

with y0 ∈M(x0). Then

∂m(x0) =
⋃

(x∗,y∗)∈∂f(x0,y0)

{x∗ +D∗F (x0, y0)(y∗)} . (13)
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Proof. Pick u∗ from the right hand side of (13), then there exists (x∗, y∗) ∈ ∂f(x0, y0)

such that

u∗ ∈ x∗ +D∗F (x0, y0)(y∗).

It gives us (u∗ − x∗,−y∗) ∈ N((x0, y0); Gr F ). By the definition of the normal cone,

we have

〈u∗ − x∗, x− x0〉 − 〈y∗, y − y0〉 ≤ 0,∀ (x, y) ∈ GrF,

which shows that whenever y ∈ F (x), we have

〈u∗, x− x0〉 ≤ 〈x∗, x− x0〉+ 〈y∗, y − y0〉

≤ f(x, y)− f(x0, y0)

≤ f(x, y)−m(x0).

The latter implies

〈u∗, x− x0〉 ≤ inf
y∈F (x)

f(x, y)−m(x0) = m(x)−m(x0), ∀y ∈ F (x).

Therefore u∗ ∈ ∂m(x0).

To establish the opposite inclusion, we note that

u∗ ∈ ∂m(x0)⇔ (u∗,−1) ∈ N((x0,m(x0)); epi m).

According to Proposition 2.1(ii), one gets

N((x0,m(x0)); epi m) =
⋃
λ≥0

λ∂d((x0,m(x0)); epi m).

In other words, there exist λ > 0 and (x∗, β) ∈ ∂d((x0,m(x0)); epi m) such that u∗ = λx∗

and λβ = −1. By Lemma 4.2, the latter is equivalent to

(x∗, 0, β) ∈ ∂d((x0, y0, f(x0, y0)), C1 ∩ C2). (14)

Our assumptions guarantee the convexity and the closedness of the sets C1 = epi f and

C2 = GrF × R. Since C1 and C2 satisfy the intersection formula at (x0, y0, f(x0, y0)),
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Proposition 3.1 ensures the existence of a > 0 satisfying

∂d((x0, y0, f(x0, y0)), C1 ∩ C2) ⊂ a[∂d((x0, y0, f(x0, y0)), C1) + ∂d((x0, y0, f(x0, y0)), C2)].

(15)

Therefore, from (14) and (15), we can find a vector (z∗, y∗, γ) ∈ ∂d((x0, y0, f(x0, y0)), epi f),

and (v∗, p∗) ∈ ∂d((x0, y0),Gr F ) satisfying

x∗ = a(z∗ + v∗),

0 = a(y∗ + p∗),

and β = aγ. Hence

u∗ = λx∗ = λa(z∗ + v∗),

− 1 = λβ = aλγ,

and λay∗ = −λap∗. Thus (λaz∗, λay∗) ∈ ∂f(x0, y0), and

u∗ ∈ λaz∗ +DF (x0, y0)(λay∗).

2

By Proposition 3.2, the next corollary follows directly from Theorem 4.1.

Corollary 4.1. Let y0 ∈M(x0). Suppose that one of the following conditions is satisfied

(i) epi f is CEL at (x0, y0, f(x0, y0)) and

N((x0, y0, f(x0, y0));C1) ∩ [−N((x0, y0, f(x0, y0));C2)] = {(0X∗ , 0Y ∗ , 0R)}; (16)

(ii) Gr F × R is CEL at (x0, y0, f(x0, y0)) and (16) holds.

Then the conclusion of Theorem 4.1 is valid.

The singular subdifferential of m can be computed as follows.

Theorem 4.2. Let y0 ∈M(x0). Suppose that one of the following conditions is satisfied

(i) dom f is CEL at (x0, y0, f(x0, y0)) and

N((x0, y0); dom f) ∩ [−N((x0, y0); Gr F )] = {(0X∗ , 0Y ∗)}. (17)
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(ii) Gr F × R is CEL at (x0, y0, f(x0, y0)) and (17) holds. Then

∂∞m(x0) =
⋃

(x∗,y∗)∈∂∞f(x0,y0)

{x∗ +D∗F (x0, y0)(y∗)} . (18)

Proof. We first observe that x ∈ domm if and only if

m(x) = inf{f(x, y) : y ∈ F (x)} < +∞.

As the strict inequality holds if and only if there exists y ∈ F (x) with (x, y) ∈ domF ,

we have

δdomm(x) = inf {δdom f (x, y) : y ∈ F (x)}.

Recall that δC is the indicator function of the set C, i.e., δC(x) = 0 if x ∈ C and + ∞,

otherwise. On one hand, epi δdom f = dom f × [0,+∞). If the condition (i) is satisfied,

then epi δdom f is CEL at (x0, y0, f(x0, y0)). On the other hand, (16) yields

N((x0, y0, δdom f (x0, y0)); epi δdom f ) ∩ [−N((x0, y0, δdom f (x0, y0));GrF × R)]

= {0X∗ , 0Y ∗ , 0R}.

Since f is convex, it follows that dom f is convex. Moreover, as f is lower semicontinuous,

it follows that epi f and dom f are closed. Thus δdom f (.) is a lower semincontinuous

function. So all assumptions of Corollary 4.1 are satisfied. Thanks to Corollary 4.1,

we have

∂δdomm(x0) =
⋃

(x∗,y∗)∈∂δdom f (x0,y0)

{x∗ +D∗F (x0, y0)(y∗)} . (19)

As ∂δdomm(x0) = ∂∞m(x0) and ∂δdom f (x0, y0) = ∂∞f(x0, y0). So, we obtain (18) from (19).

2

5 Comparisons with some known results

By a different approach, the authors in [1] and [2] have studied a problem similar to that

considered in this paper. Namely, in our notation, by using some suitable sum rules for

convex subdifferential, the authors have proved the following theorems.
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Theorem 5.1. (see [2, Theorem 4.2]) Let X and Y be Hausdorff locally convex topological

vector spaces. Consider the problem (8) with F : X ⇒ Y being a convex multivalued

function and f : X × Y → R being a proper convex function. If at least one of the

following regularity conditions is satisfied:

(a) int(GrF ) ∩ dom f 6= ∅,

(b) f is continuous at a point (x0, y0) ∈ GrF,

then, for any x̄ ∈ domm, with m(x̄) 6= −∞, and for any ȳ ∈M(x̄) we have

∂m(x̄) =
⋃

(x∗,y∗)∈∂f(x̄,ȳ)

{
x∗ +D∗F (x̄, ȳ)(y∗)

}
and

∂∞m(x̄) =
⋃

(x∗,y∗)∈∂∞f(x̄,ȳ)

{
x∗ +D∗F (x̄, ȳ)(y∗)

}
,

where m(·) and M(·) are given respectively by (7) and (9).

Theorem 5.2. (see [1, Theorems 3.3 and 3.4]) Consider the problem (8) with F : X ⇒ Y

being a convex multifunction whose graph is closed, and f : X × Y → R a proper, closed,

convex function. If

(0, 0) ∈ int (dom f −GrF ) (20)

is satisfied, then for every x̄ ∈ domm with m(x̄) 6= −∞, and for any ȳ ∈M(x̄), we have

∂m(x̄) =
⋃

(x∗,y∗)∈∂f(x̄,ȳ)

{
x∗ +D∗F (x̄, ȳ)(y∗)

}
.

Suppose further that the set dom f is closed. Then

∂∞m(x̄) =
⋃

(x∗,y∗)∈∂∞f(x̄,ȳ)

{
x∗ +D∗F (x̄, ȳ)(y∗)

}
.

In [1], the authors have shown the relationship between regularity conditions. Namely, the

condition (20) is really weaker than both regularity assumptions (a) and (b) in Theorem 5.1

(see [1, Section 4]).
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We now give an analysis of regularity conditions. Let X be a finite dimensional space. It

is a convenient way to consider the following problem

min {f(x) : x ∈ C}, (21)

where f : X → R∪ {+∞} is a closed, convex function and C ⊂ X is a closed, convex set.

First, we recall that all subsets of X are CEL (see [7, Proposition 2.4]) and every convex

function f defined on a finite dimensional space is continuous on int(dom f) (see, e.g., [5,

Corollary 2.109]). We have the following proposition.

Proposition 5.1. The regularity condition

0 ∈ (dom f − C) (22)

implies

N((x0, f(x0)); epi f) ∩ [−N((x0, f(x0));C × R)] = {(0, 0)}. (23)

Proof. Take an arbitrary (x∗, β) ∈ N((x0, f(x0)); epi f) ∩ [−N((x0, f(x0));C × R)]. We

first observe that for every x0 ∈ C with (x0, f(x0)) ∈ epi f,

N((x0, f(x0));C × R) = N(x0;C)×N(f(x0);R) = N(x0;C)× {0}.

Thus β = 0. Moreover, we have

〈x∗, x− x0〉+ 0.(r − f(x0)) ≤ 0, ∀(x, r) ∈ epi f, (24)

and

〈−x∗, x− x0〉 ≤ 0, ∀x ∈ C. (25)

On one hand, from (24) one has 〈x∗, y − x0〉 ≤ 0, ∀y ∈ dom f. Combining this with (25),

we obtain 〈x∗, y − x〉 ≤ 0, ∀y ∈ dom f, x ∈ C, or

〈x∗, h〉 ≤ 0, ∀h ∈ (dom f − C),
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On the other hand, by the assumption 0 ∈ (dom f − C), we can find a neighborhood U

of 0 such that 〈x∗, h〉 ≤ 0, for all h ∈ U. The later yields x∗ = 0. Combining this with

β = 0, we obtain (x∗, β) = (0, 0).

2

Let us consider an example to show that the regularity condition (22) is really stronger

than (23).

Example 5.1. Let X = R2 and C = {(x, y) ∈ R2 : y = x, y ≥ 0}. Consider the function

f given by

f(x, y) =

0, if y = 0

+∞, if y 6= 0.

For x0 = y0 = 0. On one hand, one has N((x0, y0, f(x0.y0));C × R) = {(0R2 , 0)}. So (23)

is satisfied. On the other hand dom f = R × {0}. Then (0, 0) /∈ (dom f − C). In other

words, the regularity condition (23) does not imply (22).

Let X, Y be finite dimensional spaces. Note that the convex programming problem con-

sidered in Section 4 is a particular case of problem (21) with X = X × Y and C = GrF .

From Proposition 5.1 we obtain the following statement.

Proposition 5.2. Let X, Y be finite dimensional spaces. The regularity conditions (i)

and (ii) of Corollary 4.1 are weaker than (20).

Remark 5.1. In the case X, Y are Banach spaces. It is still unclear to us whenever the

regularity conditions (i) and (ii) of Corollary 4.1 are weaker than (20), or not?

The assertions of Theorem 4.1 and 4.2 are similar to those in [16, Theorems 5.1]. By

imposing the strong convexity requirement on (8), we obtain corresponding equalities.

6 Conclusions

We have obtained exact formulas for the subdifferential and singular subdifferential of

the marginal function for parametric convex programs by using intersection formulas and
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appropriate assumptions. Comparions with some known results have been given.
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