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The aim of the present work is to use a metric intersection formula to estimate the subdifferential of the marginal function in the convex setting. This intersection formula includes many interesting situations in parametric convex programming, including the polyhedral one. It is expressed in terms of the objective function and the constrained multivalued mapping which govern the parametric program.

Introduction

Intersection formulas play an important role in optimization and variational and nonsmooth analysis. For example it allows to obtain the relationship between normal cone to set intersections and normal cone to each set in the intersection, to get chain rules for subdifferentials, and to estimate the subdifferential of the marginal function (see [START_REF] Jourani | Intersection formulae and the marginal function in Banach spaces[END_REF]).

To be concrete, we say that two closed sets C and D of a normed space X satisfy the intersection formula at x 0 ∈ C ∩ D if there exist two real numbers a > 0 and r > 0 such that

d(x, C ∩ D) ≤ a(d(x, C) + d(x, D)) ∀x ∈ B(x 0 , r), (1) 
where x → d(x, B) denotes the distance function to a set B ⊂ X.

Normal cones to the intersection. Condition (1) ensures the following inclusion

N (x 0 ; C ∩ D) ⊂ N (x 0 ; C) + N (x 0 ; D),
where N denotes either the Fenchel cone in the sense of convex analysis with C and D being closed convex sets or the limiting Fréchet normal cone (see [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation[END_REF]) whenever X is a Asplund space or the nucleus normal cone (see [START_REF] Ioffe | Approximate subdifferentials and applications III: The metric theory[END_REF]) whenever X is any Banach space.

Unfortunately, the intersection formula [START_REF] An | Further results on differential stability of convex optimization problems[END_REF] is not sufficient to guarantee the same chain rule for Clarke's normal cone. However, for the latter one, we obtain

N (x 0 ; C ∩ D) ⊂ cl * [N (x 0 ; C) + N (x 0 ; D)],
where cl * (A) denotes the weak-star closedness of A ⊂ X * and X * is the dual space of X.

Subdifferential calculus. Consider the sets

S 1 = {(x, α, β) ∈ X × R × R : f 1 (x) ≤ α},
and

S 2 = {(x, α, β) ∈ X × R × R : f 2 (x) ≤ β},
for extended real-valued functions f 1 and f 2 on X. We say that f 1 and f 2 satisfy the intersection formula at x 0 if there exist r > 0 and a > 0 such that d((x, α, β), S 1 ∩ S 2 ) ≤ a[d((x, α, β), S 1 ) + d((x, α, β), S 2 )]

for all x ∈ x 0 + rB X , α ∈ f 1 (x 0 ) + rB R and β ∈ f 2 (x 0 ) + rB R . Condition (2) leads to the following chain rule

∂(f 1 + f 2 )(x 0 ) ⊂ ∂f 1 (x 0 ) + ∂f 2 (x 0 ),
where ∂ denotes either the Fenchel subdifferential with f 1 and f 2 being convex functions or the limiting Fréchet subdifferential (see [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation[END_REF]) whenever X is a Asplund space or the nucleus subdifferential (see [START_REF] Ioffe | Approximate subdifferentials and applications III: The metric theory[END_REF]) whenever X is any Banach space.

The study of the behavior of the marginal (or value) function is known to be very important in variational analysis and optimization theory; see, e.g., [START_REF] An | Further results on differential stability of convex optimization problems[END_REF][START_REF] An | Differential stability of convex optimization problems under inclusion constraints[END_REF][START_REF] Aubin | Optima and Equilibria, An Introduction to Nonlinear Analysis[END_REF][START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF][START_REF] Gauvin | Differential properties of the marginal function in mathematical programming[END_REF][START_REF] Gollan | On the marginal function in nonlinear programming[END_REF][START_REF] Jourani | Intersection formulae and the marginal function in Banach spaces[END_REF][START_REF] Mordukhovich | Subgradients of marginal functions in parametric mathematical programming[END_REF][START_REF] Thibault | On subdifferentials of optimal value functions[END_REF][START_REF] Zȃnlinescu | Convex Analysis in General Vector Spaces[END_REF] and the references therein.

In [START_REF] Jourani | Intersection formulae and the marginal function in Banach spaces[END_REF], the author has proposed the method by using intersection formulas to evaluate the G-subdifferentials of the marginal functions of parametric programming problems under inclusion constraints in Banach spaces. Recently, by using the Moreau-Rockafellar theorem and appropriate regularity conditions, An and Yen [START_REF] An | Differential stability of convex optimization problems under inclusion constraints[END_REF], An and Yao [START_REF] An | Further results on differential stability of convex optimization problems[END_REF] have obtained formulas for computing subdifferentials of the marginal functions for convex optimization problems under inclusion constraints on infinite dimensional spaces.

The primary goal of this paper is to use intersection formulas for estimating subdifferentials of the marginal functions of convex parametric programming problems under inclusion constraints in Banach spaces. Thus, on one hand, our results have the origin in the study of [START_REF] Jourani | Intersection formulae and the marginal function in Banach spaces[END_REF]. On the other hand, they are the results of deepening that study for the case of convex programming problems.

The contents of the remaining sections are as follows. Section 2 recalls several definitions from [START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF] and [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]. Intersection formulas are analyzed in Section 3. Section 4 presents formulas for computing the subdifferential and the singular subdifferential of the marginal functions of convex optimization problems under inclusion constraints on Banach spaces.

Section 5 compares our results with some known results. Several conclusions are given in the final section.

Preliminaries

Let X and Y be Banach spaces whose duals are denoted, respectively, by X * and Y * . We 

dom ϕ := {x ∈ X : ϕ(x) < +∞}
is nonempty, and if ϕ(x) > -∞ for all x ∈ X. The function ϕ is convex if and only if its

epigraph epi ϕ := {(x, α) ∈ X × R : α ≥ ϕ(x)} is a convex subset of X × R. If epi ϕ is a closed subset of X × R, ϕ is said to be a closed function.
Denoting the set of all the neighborhoods of x by N (x), one says that ϕ is lower semicontinuous (l.s.c.) at x ∈ X if for every ε > 0 there exists U ∈ N (x) such that ϕ(x ) ≥ ϕ(x) -ε for any x ∈ U. If ϕ is l.s.c. at every x ∈ X, ϕ is said to be l.s.c. on X.

It is convenient to denote the set of all proper l.s.c. convex functions on X by Γ 0 (X).

Let ϕ be an extended-real valued convex function on X and x ∈ dom ϕ. The subdifferential of ϕ at x is the set

∂ϕ(x) = {x * ∈ X * : x * , x -x ≤ ϕ(x) -ϕ(x), ∀x ∈ X}.
If f ∈ Γ 0 (X), then ∂ϕ(x) is nonempty for every x ∈ int(dom) ϕ (see [START_REF] Ioffe | Theory of Extremal Problems[END_REF]).

For a convex set Ω ⊂ X, the normal cone of Ω at x ∈ Ω is given by

N (x; Ω) = {x * ∈ X * : x * , x -x ≤ 0, ∀x ∈ Ω}.
The singular subdifferential of a convex function ϕ at x ∈ dom ϕ is defined by

∂ ∞ ϕ(x) = {x * ∈ X * : (x * , 0) ∈ N ((x, ϕ(x)); epi ϕ)}.
For any x / ∈ dom ϕ, we put ∂ϕ(x) = ∅ and

∂ ∞ ϕ(x) = ∅.
It is not difficult to show that x * ∈ ∂ϕ(x) if and only if x * , x -x -(α -ϕ(x)) ≤ 0 for all (x, α) ∈ epi ϕ or, equivalently, (x * , -1) ∈ N ((x, ϕ(x)); epi ϕ). Interestingly, for any convex function ϕ, one has ∂ ∞ ϕ(x) = N (x; dom ϕ); see e.g., [START_REF] An | Differential stability of convex optimization problems under inclusion constraints[END_REF].

Let F : X ⇒ Y be a multivalued function. The graph and the domain of F are defined by

Gr F := {(x, y) ∈ X × Y : y ∈ F (x)} and dom F := {x ∈ X : F (x) = ∅}.
One says that a multivalued function F is closed (resp., convex) if Gr F is closed (resp., convex). In addition, if dom F = ∅, F is called proper. The product space X × Y will be endowed with the norm ||(x, y)|| = ||x|| + ||y|| for any (x, y) ∈ X × Y .

The coderivative D * F (x, ȳ) : Y * ⇒ X * of a convex multifunction F between X and Y at (x, ȳ) ∈ Gr F is the multivalued function defined by

D * F (x, ȳ)(y * ) := {x * ∈ X * : (x * , -y * ) ∈ N ((x, ȳ); Gr F )} , ∀y * ∈ Y * . If (x, ȳ) / ∈ Gr F , one puts D * F (x, ȳ)(y * ) = ∅ for any y * ∈ Y * .
Let C be a nonempty subset of X. The distance function of C is defined by

d(x, C) = inf u∈C ||x -u||.
Clearly, the distance function d(•, C) is Lipschitz continuous with modulus one, and convex provided that C is convex. It is obvious that for any convex set Ω ⊂ X containing x, we have

N (x; Ω) = N (x; clΩ) and ∂d(x, Ω) = ∂d(x, clΩ). (3) 
We will need some properties of the subdifferential of d(•, C). Assertion (i) of the following proposition has been observed in different places, e.g., [START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF]Example 2.130] and [8, Theorem 1]. Assertion (ii) is well known when C is convex as it corresponds to [START_REF] Clarke | A new approach to Lagrange multipliers[END_REF]Proposition 11]. We present a direct proof for the reader's convenience.

Proposition 2.1. Let C be a nonempty convex subset of X. Then for every x ∈ C, one has

(i) ∂d(x, C) = B X * ∩ N (x; C), where B X * is the closed unit ball in X * ; (ii) N (x; C) = λ>0 λ∂d(x, C).
Proof. We only need to prove assertion (i) beacause (ii) immediately follows from the first one. Indeed, by the definition of the subdifferential, one has x * ∈ ∂d(x, C) if and only if

x * , u -x ≤ d(u, C) -d(x, C), ∀u ∈ X. (4) 
Since d(•, C) is Lipschitz continuous modulus one, from (4) one has

x * , u -x ≤ d(u, C) -d(x, C) ≤ ||u -x||, ∀u ∈ X.
It follows that ||x * || ≤ 1. Hence ∂d(x, C) ⊂ B X * . Moreover, for all u ∈ C, from (4) we get

x * , u -x ≤ 0. In other words,

x * ∈ N (x; C). Therefore x * ∈ B X * ∩ N (x; C).
Conversely, suppose that x * belongs to B X * ∩ N (x; C). For any u ∈ X and ε > 0, we can

find u ∈ C such that d(u, C) ≥ ||u -u || -ε. As ||x * || ≤ 1 and x * ∈ N (x; C), the latter implies that d(u, C) ≥ x * , u -u -ε = x * , u -x + x * , x -u -ε ≥ x * , u -x -ε. (5) 
Since ε > 0 is arbitrary and x ∈ C, we obtain

d(u, C) ≥ x * , u -x = x * , u -x + d(x, C) ∀u ∈ X
which shows that x * ∈ ∂d(x, C).

Intersection formulas

Let C and D be subsets of X with x 0 ∈ C ∩ D. One says that C and D satisfy the intersection formula at x 0 if there exist two real numbers a > 0 and r > 0 such that inequality (1) is satisfied. In the case where C and D are closed and convex, we obtain (see [START_REF] Jourani | Error bound characterizations of Guignard's constraint qualification in convex programming[END_REF]) the following characterization. 

u ε ∈ C ∩ D, x * ε ∈ X * and b * ε ∈ B * such that i) u ε -u ≤ d(u, C ∩ D) + ε 2 , ii) x * ε + εb * ε ∈ (1 + ε)∂d(u ε , C ∩ D), iii) x * ε , u -u ε = u ε -u . Note that u ε ∈ C ∩ D ∩ B(x 0 , s)
. By 2. and ii), we have

x * ε + εb * ε ∈ a(1 + ε) ∂d(u ε , C) + ∂d(u ε , D) = a(1 + ε)∂(d(•, C) + d(•, D))(u ε )
and hence

x * ε + εb * ε , u -u ε ≤ a(1 + ε)(d(u, C) + d(u, D)).
Using iii), we get

u -u ε (1 -ε) ≤ a(1 + ε)(d(u, C) + d(u, D))(because b * ε ≤ 1)
which in turns implies that

d(u, C ∩ D)(1 -ε) ≤ a(1 + ε)(d(u, C) + d(u, D))
and as ε is arbitrary, we obtain the desired result by putting r = s 2 .

Following Borwein and Strojwas [START_REF] Borwein | Tangential approximations[END_REF], we call a set C ⊂ X compactly epi-Lipschitzian (CEL) at x 0 ∈ C if there exist a norm-compact set K and a scalar r > 0 such that

C ∩ (x 0 + rB X ) + τ rB X ⊂ C -τ K ∀τ ∈ [0, r].
This class includes all finite dimensional sets. It is worth to note that in infinite dimensional spaces, there is no relationship between compact sets and CEL sets (because these later are never compact in infinite dimensional spaces). This also implies that the CEL sets are useful only in infinite dimensional spaces; see ( [START_REF] Borwein | Compactly epi-Lipschitzian convex sets and functions in normed spaces[END_REF], [START_REF] Jourani | On a class of compactly epi-Lipschitzian sets[END_REF]).

In [START_REF] Henrion | Subdifferential conditions for calmness of convex constraints[END_REF], it is shown that a boundary condition ensures the intersection formula. More 

Then there exist r > 0 and a > 0 satisfying relation [START_REF] An | Further results on differential stability of convex optimization problems[END_REF]. Here "bd (A)" denotes the boundary of the set A ⊂ X * with respect to the norm on X * .

Remark 3.1. Note that the reverse implication is not true. We mean that relation [START_REF] An | Further results on differential stability of convex optimization problems[END_REF] does not implies [START_REF] Borwein | Compactly epi-Lipschitzian convex sets and functions in normed spaces[END_REF]. To see this, take

C := {(x 1 , x 2 ) ∈ R 2 : x 1 ≤ 0, x 2 ≤ 0, x 2 ≤ x 1 }, D = R 2
+ and x 0 = (0, 0). It can be verified that relation [START_REF] An | Further results on differential stability of convex optimization problems[END_REF] is valid for a = 1 and for any r > 0, meanwhile bd N (x 0 ; C) ∩ -bd N (x 0 ; D) = R + × {0}.

Main results

We define the marginal function (also called value function) m : X → R by

m(x) := inf{f (x, y) : y ∈ F (x)}, ( 7 
)
where f is an extended-real-valued convex lower semicontinuous function on X × Y and F is a multivalued function from X to Y with closed graph. By the convention inf ∅ = +∞, we have m(x) = +∞ for all x / ∈ dom F. Corresponding to each data pair F, f we have one optimization problem depending on a parameter x:

min {f (x, y) : y ∈ F (x)}. ( 8 
)
For every x ∈ dom m, we consider the set of minimizers

M (x) = {y ∈ F (x) : m(x) = f (x, y)}. (9) 
We are looking for formulas to estimate/compute subdifferentials of m.

The following proposition gives the continuity of m under some conditions. Proof. We consider the unconstrained problem min {ϕ(x, y) :

y ∈ Y }, (10) 
with the objective function ϕ(x, y) being ϕ(x, y) = f (x, y) + δ Gr F (x, y). Obviously, the marginal function of problem ( 10) is also the function m given in [START_REF] Borwein | Tangential approximations[END_REF] Put

C 1 = epi f and C 2 = Gr F × R.
We need some auxiliary results.

Lemma 4.1. Let y 0 ∈ M (x 0 ). Then, we have (x * , β) ∈ N ((x 0 , m(x 0 )); epi m) if and only if

(x * , 0, β) ∈ N ((x 0 , y 0 , f (x 0 , y 0 )); C 1 ∩ C 2 ).
Proof. Let (x * , β) ∈ N ((x 0 , m(x 0 )), epi m). Then,

x * , x -x 0 + β(r -m(x 0 )) ≤ 0, ∀(x, r) ∈ epi m, (11) 
because (x 0 , λ + m(x 0 )) ∈ epi m for every λ ≥ 0. So β must be negative number. Keeping in mind that y 0 ∈ M (x 0 ), ( 11) one has

x * , x -x 0 ≤ -β(r -m(x 0 )), ∀(x, r) ∈ epi m, ≤ -β(m(x) -f (x 0 , y 0 )), ∀x ∈ dom m
≤ -β(f (x, y) -f (x 0 , y 0 )), ∀(x, y) ∈ dom f and (x, y) ∈ Gr F ≤ -β(r -f (x 0 , y 0 )), ∀(x, y, r) ∈ epi f and (x, y) ∈ Gr F, or, equivalently, (x * , 0), (x, y) -(x 0 , y 0 ) + β(r -f (x 0 , y 0 )) ≤ 0, ∀(x, y, r) ∈ epi f and (x, y) ∈ Gr F.

So (x * , 0, β) ∈ N ((x 0 , y 0 , f (x 0 , y 0 )); C 1 ∩ C 2 ), with C 1 = epi f and C 2 = Gr F × R.
Conversely, take (x * , 0, β) ∈ N ((x 0 , y 0 , f (x 0 , y 0 ));

C 1 ∩ C 2 )
. By the definition of the normal cone, we have

x * , x -x 0 + β(r -f (x 0 , y 0 )) ≤ 0, ∀(x, y, r) ∈ C 1 ∩ C 2 . (12) 
Similarly, one has β ≤ 0. By the definition of the infimum, for all ε ≥ 0, we can find

y ∈ F (x) such that m(x) ≥ f (x, y) -ε. Put r = ε + m(x), we have (x, y, r) ∈ C 1 ∩ C 2 .
From [START_REF] Gollan | On the marginal function in nonlinear programming[END_REF], we obtain

x * , x -x 0 ≤ -β(ε + m(x) -f (x 0 , y 0 )) = -β(ε + m(x) -m(x 0 )), ∀x ∈ dom m.
The last inequality implies that

x * , x -x 0 ≤ -β(m(x) -m(x 0 )), ∀x ∈ dom m ≤ -β(r -m(x 0 )), ∀(x, r) ∈ epi m.
In other words, (x * , β) ∈ N ((x 0 , m(x 0 )); epi m). 2

Lemma 4.2. Let y 0 ∈ M (x 0 ). Then one has

(x * , β) ∈ ∂d((x 0 , m(x 0 )), epi m)
if and only if

(x * , 0, β) ∈ ∂d((x 0 , y 0 , f (x 0 , y 0 )), C 1 ∩ C 2 ).
Proof. According to Propostion 2.1(i), one has

∂d((x 0 , m(x 0 )), epi m) = B X * ×R ∩ N ((x 0 , m(x 0 )); epi m).
Then, (x * , β) ∈ ∂d((x 0 , m(x 0 )); epi m) if and only if ||(x * , β)|| ≤ 1 and (x * , β) ∈ N ((x 0 , m(x 0 )); epi m).

By Lemma 4.1, (x * , β) ∈ N ((x 0 , m(x 0 )); epi m) if and only if

(x * , 0, β) ∈ N ((x 0 , y 0 , f (x 0 , y 0 )); C 1 ∩ C 2 ).
Combining with ||(x * , 0, β)|| ≤ 1, we obtain (x * , β) ∈ ∂d((x 0 , m(x 0 )), epi m) if and only if

(x * , 0, β) ∈ ∂d((x 0 , y 0 , f (x 0 , y 0 )), C 1 ∩ C 2 ). 2 
The first main result of this section reads as follows.

Theorem 4.1. Suppose that C 1 and C 2 satisfy the intersection formula at (x 0 , y 0 , f (x 0 , y 0 )),

with y 0 ∈ M (x 0 ). Then ∂m(x 0 ) = (x * ,y * )∈∂f (x 0 ,y 0 ) {x * + D * F (x 0 , y 0 )(y * )} . ( 13 
)
Proof. Pick u * from the right hand side of ( 13), then there exists (x * , y * ) ∈ ∂f (x 0 , y 0 ) such that

u * ∈ x * + D * F (x 0 , y 0 )(y * ).
It gives us (u * -x * , -y * ) ∈ N ((x 0 , y 0 ); Gr F ). By the definition of the normal cone, we have

u * -x * , x -x 0 -y * , y -y 0 ≤ 0, ∀ (x, y) ∈ Gr F,
which shows that whenever y ∈ F (x), we have

u * , x -x 0 ≤ x * , x -x 0 + y * , y -y 0 ≤ f (x, y) -f (x 0 , y 0 ) ≤ f (x, y) -m(x 0 ).
The latter implies

u * , x -x 0 ≤ inf y∈F (x) f (x, y) -m(x 0 ) = m(x) -m(x 0 ), ∀y ∈ F (x).
Therefore u * ∈ ∂m(x 0 ).

To establish the opposite inclusion, we note that

u * ∈ ∂m(x 0 ) ⇔ (u * , -1) ∈ N ((x 0 , m(x 0 )); epi m).
According to Proposition 2.1(ii), one gets

N ((x 0 , m(x 0 )); epi m) = λ≥0 λ∂d((x 0 , m(x 0 )); epi m).
In other words, there exist λ > 0 and (x * , β) ∈ ∂d((x 0 , m(x 0 )); epi m) such that u * = λx * and λβ = -1. By Lemma 4.2, the latter is equivalent to

(x * , 0, β) ∈ ∂d((x 0 , y 0 , f (x 0 , y 0 )), C 1 ∩ C 2 ). (14) 
Our assumptions guarantee the convexity and the closedness of the sets C 1 = epi f and

C 2 = Gr F × R.
Since C 1 and C 2 satisfy the intersection formula at (x 0 , y 0 , f (x 0 , y 0 )), Proposition 3.1 ensures the existence of a > 0 satisfying ∂d((x 0 , y 0 , f (x 0 , y 0 )),

C 1 ∩ C 2 ) ⊂ a[∂d((x 0 , y 0 , f (x 0 , y 0 )), C 1 ) + ∂d((x 0 , y 0 , f (x 0 , y 0 )), C 2 )]. (15) 
Therefore, from ( 14) and ( 15), we can find a vector (z * , y * , γ) ∈ ∂d((x 0 , y 0 , f (x 0 , y 0 )), epi f ), and (v * , p * ) ∈ ∂d((x 0 , y 0 ), Gr F ) satisfying

x * = a(z * + v * ), 0 = a(y * + p * ),
and β = aγ. Hence

u * = λx * = λa(z * + v * ), -1 = λβ = aλγ,
and λay * = -λap * . Thus (λaz * , λay * ) ∈ ∂f (x 0 , y 0 ), and u * ∈ λaz * + DF (x 0 , y 0 )(λay * ).

2 By Proposition 3.2, the next corollary follows directly from Theorem 4.1.

Corollary 4.1. Let y 0 ∈ M (x 0 ). Suppose that one of the following conditions is satisfied

(i) epi f is CEL at (x 0 , y 0 , f (x 0 , y 0 )) and N ((x 0 , y 0 , f (x 0 , y 0 )); C 1 ) ∩ [-N ((x 0 , y 0 , f (x 0 , y 0 )); C 2 )] = {(0 X * , 0 Y * , 0 R )}; (16) 
(ii) Gr F × R is CEL at (x 0 , y 0 , f (x 0 , y 0 )) and ( 16) holds.

Then the conclusion of Theorem 4.1 is valid.

The singular subdifferential of m can be computed as follows.

Theorem 4.2. Let y 0 ∈ M (x 0 ). Suppose that one of the following conditions is satisfied (i) dom f is CEL at (x 0 , y 0 , f (x 0 , y 0 )) and

N ((x 0 , y 0 ); dom f ) ∩ [-N ((x 0 , y 0 ); Gr F )] = {(0 X * , 0 Y * )}. (17) 
(ii) Gr F × R is CEL at (x 0 , y 0 , f (x 0 , y 0 )) and (17) holds. Then

∂ ∞ m(x 0 ) = (x * ,y * )∈∂ ∞ f (x 0 ,y 0 ) {x * + D * F (x 0 , y 0 )(y * )} . (18) 
Proof. We first observe that x ∈ dom m if and only if

m(x) = inf{f (x, y) : y ∈ F (x)} < +∞.
As the strict inequality holds if and only if there exists y ∈ F (x) with (x, y) ∈ dom F , we have

δ dom m (x) = inf {δ dom f (x, y) : y ∈ F (x)}.
Recall that δ C is the indicator function of the set C, i.e., δ C (x) = 0 if x ∈ C and + ∞, otherwise. On one hand, epi δ dom f = dom f × [0, +∞). If the condition (i) is satisfied, then epi δ dom f is CEL at (x 0 , y 0 , f (x 0 , y 0 )). On the other hand, [START_REF] Jourani | Intersection formulae and the marginal function in Banach spaces[END_REF] yields

N ((x 0 , y 0 , δ dom f (x 0 , y 0 )); epi δ dom f ) ∩ [-N ((x 0 , y 0 , δ dom f (x 0 , y 0 ));Gr F × R)] = {0 X * , 0 Y * , 0 R }.
Since f is convex, it follows that dom f is convex. Moreover, as f is lower semicontinuous, it follows that epi f and dom f are closed. Thus δ dom f (.) is a lower semincontinuous function. So all assumptions of Corollary 4.1 are satisfied. Thanks to Corollary 4.1, we have

∂δ dom m (x 0 ) = (x * ,y * )∈∂δ dom f (x 0 ,y 0 ) {x * + D * F (x 0 , y 0 )(y * )} . (19) 
As ∂δ dom m (x 0 ) = ∂ ∞ m(x 0 ) and ∂δ dom f (x 0 , y 0 ) = ∂ ∞ f (x 0 , y 0 ). So, we obtain ( 18) from [START_REF] Mordukhovich | Subgradients of marginal functions in parametric mathematical programming[END_REF].

5 Comparisons with some known results

By a different approach, the authors in [START_REF] An | Further results on differential stability of convex optimization problems[END_REF] and [START_REF] An | Differential stability of convex optimization problems under inclusion constraints[END_REF] have studied a problem similar to that considered in this paper. Namely, in our notation, by using some suitable sum rules for convex subdifferential, the authors have proved the following theorems. x * + D * F (x, ȳ)(y * ) and

∂ ∞ m(x) = (x * ,y * )∈∂ ∞ f (x,ȳ) x * + D * F (x, ȳ)(y * ) ,
where m(•) and M (•) are given respectively by [START_REF] Borwein | Tangential approximations[END_REF] and (9). 

(0, 0) ∈ int (dom f -Gr F ) (20) 
is satisfied, then for every x ∈ dom m with m(x) = -∞, and for any ȳ ∈ M (x), we have

∂m(x) = (x * ,y * )∈∂f (x,ȳ) x * + D * F (x, ȳ)(y * ) .
Suppose further that the set dom f is closed. Then

∂ ∞ m(x) = (x * ,y * )∈∂ ∞ f (x,ȳ)
x * + D * F (x, ȳ)(y * ) .

In [START_REF] An | Further results on differential stability of convex optimization problems[END_REF], the authors have shown the relationship between regularity conditions. Namely, the condition ( 20) is really weaker than both regularity assumptions (a) and (b) in Theorem 5.1

(see [START_REF] An | Further results on differential stability of convex optimization problems[END_REF]Section 4]).

We now give an analysis of regularity conditions. Let X be a finite dimensional space. It is a convenient way to consider the following problem

min {f (x) : x ∈ C}, (21) 
where f : X → R ∪ {+∞} is a closed, convex function and C ⊂ X is a closed, convex set.

First, we recall that all subsets of X are CEL (see [START_REF] Borwein | Tangential approximations[END_REF]Proposition 2.4]) and every convex function f defined on a finite dimensional space is continuous on int(dom f ) (see, e.g., [5, Corollary 2.109]). We have the following proposition.

Proposition 5.1. The regularity condition

0 ∈ (dom f -C) (22) 
implies

N ((x 0 , f (x 0 )); epi f ) ∩ [-N ((x 0 , f (x 0 )); C × R)] = {(0, 0)}. ( 23 
)
Proof. Take an arbitrary (x * , β) ∈ N ((x 0 , f (x 0 )); epi f ) ∩ [-N ((x 0 , f (x 0 )); C × R)]. We first observe that for every x 0 ∈ C with (x 0 , f (x 0 )) ∈ epi f, N ((x 0 , f (x 0 )); C × R) = N (x 0 ; C) × N (f (x 0 ); R) = N (x 0 ; C) × {0}.

Thus β = 0. Moreover, we have

x * , x -x 0 + 0.(r -f (x 0 )) ≤ 0, ∀(x, r) ∈ epi f,

and

-x * , x -x 0 ≤ 0, ∀x ∈ C. ( 25 
)
On one hand, from (24) one has x * , y -x 0 ≤ 0, ∀y ∈ dom f. Combining this with (25), we obtain x * , y -x ≤ 0, ∀y ∈ dom f, x ∈ C, or

x * , h ≤ 0, ∀h ∈ (dom f -C),

On the other hand, by the assumption 0 ∈ (dom f -C), we can find a neighborhood U of 0 such that x * , h ≤ 0, for all h ∈ U. The later yields x * = 0. Combining this with β = 0, we obtain (x * , β) = (0, 0). 

Conclusions

We have obtained exact formulas for the subdifferential and singular subdifferential of the marginal function for parametric convex programs by using intersection formulas and

  use B(x, r) to denote the open ball centered at x with radius r > 0. Let B X (resp. B X * ) denote the closed unit ball of X (resp. X * ) centered at the origin. The closure and the interior of a set A are denoted by clA and intA, respectively. Let ϕ : X → R be an extended real-valued function, where R := [-∞, +∞] = R∪{+∞}∪ {-∞}. One says that ϕ is proper if the domain

Proposition 3 . 1 .

 31 Let C and D be closed and convex subset of X and a > 0. Then the following assertions are equivalent 1. There exists r > 0 satisfying relation (1), 2. There exists s > 0 such that ∂d(x, C ∩ D) ⊂ a∂d(x, C) + a∂d(x, D) ∀x ∈ C ∩ D ∩ B(x 0 , s). Proof. It is given for completeness. The implication 1. ⇒ 2. is obvious. So let us establish the reverse one. Let u ∈ B(x 0 , s 2 )\C ∩ D and ε ∈]0, √ s 4 [. Then, by Lemma 2.1 in [4], there exist

precisely, one has Proposition 3 . 2 .

 32 Let C and D be closed convex subsets of X and x 0 ∈ C ∩ D. Suppose that one of the sets C or D is CEL at x 0 and bd N (x 0 ; C) ∩ [-bd N (x 0 ; D) ] = {0}.

Proposition 4 . 1 .

 41 The marginal function m(•) is convex. Moreover if m is finite at x 0 , m(•) is continuous at x 0 if and only if for every x in a neighborhood of x 0 , m(x) < +∞, i.e., x 0 ∈ int(dom m).

Theorem 5 . 1 .

 51 (see [2, Theorem 4.2]) Let X and Y be Hausdorff locally convex topological vector spaces. Consider the problem (8) with F : X ⇒ Y being a convex multivalued function and f : X × Y → R being a proper convex function. If at least one of the following regularity conditions is satisfied: (a) int(Gr F ) ∩ dom f = ∅, (b) f is continuous at a point (x 0 , y 0 ) ∈ Gr F, then, for any x ∈ dom m, with m(x) = -∞, and for any ȳ ∈ M (x) we have ∂m(x) = (x * ,y * )∈∂f (x,ȳ)

Theorem 5 . 2 .

 52 (see [1, Theorems 3.3 and 3.4]) Consider the problem (8) with F : X ⇒ Y being a convex multifunction whose graph is closed, and f : X × Y → R a proper, closed, convex function. If

2Example 5 . 1 .Remark 5 . 1 .

 5151 Let us consider an example to show that the regularity condition (22) is really stronger than (23). Let X = R 2 and C = {(x, y) ∈ R 2 : y = x, y ≥ 0}. Consider the function f given by f (x, y) = y = 0.For x 0 = y 0 = 0. On one hand, one has N ((x 0 , y 0 , f(x 0 .y 0 )); C × R) = {(0 R 2 , 0)}. So (23) is satisfied. On the other hand dom f = R × {0}. Then (0, 0) / ∈ (dom f -C).In other words, the regularity condition (23) does not imply (22).Let X, Y be finite dimensional spaces. Note that the convex programming problem considered in Section 4 is a particular case of problem[START_REF] Zȃnlinescu | Convex Analysis in General Vector Spaces[END_REF] with X = X × Y and C = Gr F .From Proposition 5.1 we obtain the following statement. Proposition 5.2. Let X, Y be finite dimensional spaces. The regularity conditions (i) and (ii) of Corollary 4.1 are weaker than (20). In the case X, Y are Banach spaces. It is still unclear to us whenever the regularity conditions (i) and (ii) of Corollary 4.1 are weaker than (20), or not? The assertions of Theorem 4.1 and 4.2 are similar to those in [16, Theorems 5.1]. By imposing the strong convexity requirement on (8), we obtain corresponding equalities.
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appropriate assumptions. Comparions with some known results have been given.