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Abstract

In this paper, we extend the non-cooperative one-period game of Dutang et al. (2013) to model
a non-life insurance market over several periods by considering the repeated (one-period) game.
Using Markov chain methodology, we derive general properties of insurer portfolio sizes given a price
vector. In the case of a regulated market (identical premium), we are able to obtain convergence
measures of long run market shares. We also investigate the consequences of the deviation of one
player from this regulated market. Finally, we provide some insights of long-term patterns of the
repeated game as well as numerical illustrations of leadership and ruin probabilities.

keywords: game theory, non-cooperative game, consumers’ price sensitivity, solvency constraint,
Markov chains
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1 Introduction

In the insurance world, determining an appropriate and attractive premium is always an important
issue because of the strong competition between the different insurers. This is particularly true for
non-life retail insurance mass markets, such as motor insurance and household insurance, where a
substantial number of insurance companies and mutuals compete. Policyholders are looking for the
best deal at a low price and thus tend to migrate to firms displaying advantageous insurance premiums.

The pricing of insurance contracts is a classical research topic. In practice, insurance companies
use various approaches including general principles of premium calculation, based on the expected
claim expenses or its higher moments (e.g. standard deviation), credibility theory and generalized
linear models (GLM), see for instance Kaas et al. (2008). However, in a highly competitive market
that is dominated by a relatively small number of firms, insurance pricing is not limited to computing
technical premiums: each insurer attempts to predict customers’ behavior in order to gain market
shares. The actuarial premium is thus tuned by the marketing and management departments for
several reasons, such as the customers’ loyalty and the market conditions.

As a consequence, game theory concepts are suitable to evaluate the strategic choices of insurers
in the presence of competition. The use of game theory in actuarial science is not new. The first
attempts go back to Borch (1962, 1974), Bühlmann (1980, 1984), and Lemaire (1984, 1991), who
applied cooperative games in order to model risk transfer between insurers and/or reinsurers (see also
Aase (1993), Brockett & Xiaohua (1997), Tsanakas & Christofides (2006), Boonen (2016), Asimit
et al. (2021)). Regarding non-cooperative games, two types of models have been considered in non-life
insurance markets: a) the Cournot oligopoly where insurers’ strategies are based on the choice of
business volume (see Powers & Shubik (1998), Powers et al. (1998)) and b) the Bertrand oligopoly
where insurers set premiums (see Polborn (1998), Rees et al. (1999)).

Several single-optimization models have been proposed in the literature: in discrete-time by Taylor
(1986, 1987) and Pantelous & Passalidou (2013, 2015, 2016); and in continuous-time by Kliger &
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§Université de Lausanne and Swiss Finance Institute, S-1015 Lausanne

1



Levikson (1998), Emms et al. (2007), Moreno-Codina & Gomez-Alvado (2008). Concerning non-
cooperative games to model non-life insurance markets, in a static framework Dutang et al. (2013)
and Mourdoukoutas et al. (2021) study one-period stochastic games to determine the optimal premium
levels. In continuous time, Emms (2012) and Li et al. (2021) propose N -player differential games in
a deterministic framework, Boonen et al. (2018) propose a N -player differential game by considering
competition among each pair of insurers, based on a static concept proposed by Wu & Pantelous
(2017). Asmussen et al. (2019a,b) propose two-player differential games, where the premiums result
from Nash or Stackelberg equilibria.

We focus our analysis on consequences of the customers’ price sensitivity (that is, customers’
inertia), as well as consequences of solvency constraints on price equilibrium, market shares and the
resulting profits. The model developed in Dutang et al. (2013) is the most appropriate starting point
for the purpose of the present paper, since it includes a lapse model, an aggregate loss model as well
as a solvency constraint function for insurers.

The consideration of a stochastic lapse behavior through a lapse probability as a function of the
premiums offered by all insurers is a natural way to model consumers’ inertia and to avoid the Bertrand
paradox. Because of the strong regulation of the insurance market, it is essential to consider a solvency
constraint in the insurer’s decision-making strategies, which will affect both the premium level and
the long run market patterns.

Other extensions of Dutang et al. (2013) have been proposed by Albrecher & Daily-Amir (2017),
who consider a Bayesian framework in order to investigate the effects of asymmetric information as well
as (Daily-Amir 2019, Chap. 4), which considers different objective functions to model market shares
in health insurance studied in Daily-Amir et al. (2019). Moreover, Battulga et al. (2018) consider an
m-period version of the objective function but still investigates the premium equilibrium in a static
framework.

For the consideration of reinsurance aspects in this context we refer to Zeng (2010), Jin et al. (2013)
who propose a zero-sum two-player dynamic reinsurance game, and Chen & Shen (2018), Chen et al.
(2020) where transactions between reinsurance buyers and sellers are formulated through Stackelberg
games.

In this paper we consider a repeated one-period game. We investigate convergence properties of
the market using a Markov chain approach and also emphasize links of the lapse model with closed
Markovian networks, see e.g. Boucherie & van Dijk (2011).

The rest of the paper is organized as follows. Section 2 recalls the one-period game based on Dutang
et al. (2013). Section 3 presents general properties of the lapse and loss models given a price vector
value. Section 4 focuses on properties of the repeated game in the case of a strongly regulated market,
while Section 5 studies a deviation from this situation. In Section 6, we analytically investigate some
asymptotic properties of the repeated game, and we present numerical computations of the leadership
and the ruins probabilities, illustrating long-run pattern of the repeated game. Finally, a conclusion
and perspectives for future research are given in Section 7.

2 Description of the repeated game

Consider J insurance companies competing on the price in a market of N policyholders with one-year
policies, where N is considered constant across periods. In the sequel, a subscript j ∈ {1, . . . , J}
will always denote a player index (i.e. an insurer) whereas a subscript i ∈ {1, . . . , N} denotes an
insured index. Vectors will be bolded. The “game” for each insurer j ∈ {1, ..., J} consists in defining
a premium xj,t at the beginning of each year t, in order to maximize the profit by selling identical
policies to the insured market of size N . Let xt = (x1,t, . . . , xJ,t) ∈ RJ be the insurers’ price vector,
with xj,t representing premium of Insurer j for year t. We denote by x−j,t others’ player action, i.e.,
x−j,t = (x1,t, . . . , xj−1,t, xj+1,t, . . . , xJ,t) the vector xt without the jth component. In this section, we
first describe the sequence of the repeated game and then explain each component in detail.
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2.1 Game overview

Let us assume that the pricing is done at the beginning of the year, after an update of past year observa-
tions such as loss level, market share and capital value. In this paper we consider the Nash equilibrium
(interpreted as a point at which each player, given the strategies of others players, has no incentive
to change the strategy) and refrain from studying the Stackelberg equilibrium (see e.g. Osborne &
Rubinstein (2006)). In the majority of insurance markets (particularly in retail-mass markets), it is
indeed not realistic to assume that the same insurer always takes its decision before all others.

Definition 1. For a static game with J players, payoff functions Oj and constraint functions gj, a
Nash equilibrium is a vector x? = (x?1, . . . , x

?
J), such that for all j = 1, . . . , J , x?j solves the subproblem

max
xj∈[x,x]

Oj(xj ,x
?
−j) s.t. gj(xj) ≥ 0.

Here, Oj(xj ,x
?
−j) denotes the objective function of Player j at Player j’s action xj given the other

players’ equilibrium x?−j, while x and x are exogenous finite lower and upper bounds (on the premium).
gj(xj) ≥ 0 is the inequality for the (solvency) constraint.

Note that the constraint function only depends on player j’s action xj and not on the other
players’ strategies x−j (otherwise this would lead to a generalized Nash equilibrium, with very different
properties, see, e.g., Facchinei & Kanzow (2010)).

We define the repeated game as the iteration of one-period games over T years, where Kj,t stands
for the capital of Insurer j at time t, Jt for the set of active insurers and Sj,t for the aggregate claim
amount of Insurer j.

Repeated game. At time t = 0, initiate J0 = {1, . . . , J}, positive capital levels Kj,0 and (positive)
portfolio sizes n0. For period t = 1, . . . , T , repeat

1. The insurers among Jt maximize their objective function subject to the solvency constraint:

sup
xj,t∈[x,x]

Oj,t(xj,t,x−j,t) s.t. gj,t(xj,t) ≥ 0.

2. Once the premium equilibrium vector x?t is determined, customers randomly lapse or renew. We
get a realization n?j,t of the random portfolio size Nj,t(x

?
t ).

3. Aggregate claim amounts Sj,t are randomly drawn according to the chosen loss model and the
portfolio size n?j,t.

4. The underwriting result for Insurer j is computed by UWj,t = n?j,t× x?j,t× (1− ej,t)−Sj,t, where
ej,t corresponds to the rate of handling costs of Insurer j at time t.

5. The capital is updated via Kj,t+1 = Kj,t + UWj,t.
6. The set of competitors Jt+1 is updated by removing bankrupted insurers, tiny insurers and insol-

vent insurers.

Since the regulator asks insurers to be solvent, insurers are removed from the market when they
have a negative capital level Kj,t < 0 (bankrupted insurers). We also remove small insurers with a
market share below 0.1%, n?j,t < 0.1%N , assuming that in such a case an insurer will not be able to face
future losses and handling costs. Indeed, such an insurer will not benefit from mutualisation concepts,
essential for the insurance market and thus will decide to run-off the business. Finally, we remove
players from the game when the capital is below the minimum capital requirement (MCR), whereas
we keep them if capital is between MCR and solvency capital requirement (SCR). As a reminder,
MCR can be defined as a percentage of the SCR computed in the solvency constraint. In general, in
the non-life insurance retail market MCR is between 25% and 45% of the SCR.

For the present paper, we add the following simplifying assumptions: (i) the pricing procedure is
done once a year (on January 1), (ii) all policies start at the beginning of the year, (iii) all premiums
are collected on January 1, (iv) every claim is (fully) paid on December 31, (v) there is no inflation
and (vi) there is no stock/bond market to invest premium.
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In practice, these assumptions do not hold: (i) pricing by actuarial and marketing departments
can be done more frequently, e.g. every 6 months, (ii) policies start and are renewed all over the year,
(iii) premium is collected all over the year, (iv) claims are settled every day and there are reserves for
incurred-but-not-reported claims, (v) there is inflation on both claims and premiums, (vi) the time
between the premium payment and a possible claim payment is used to invest in stock/bond markets.
The above assumptions will allow for a more tractable model and are not expected to change the
premium equilibria drastically yet it will introduce more randomness on loss and premium.

Our game has four components: a lapse model, a loss model, an objective function and a solvency
constraint function. We will follow again the choice made in Dutang et al. (2013) and briefly describe
it in the sequel.

2.2 Components of the game for policyholders

2.2.1 The lapse model

Assuming Markovian behavior of policyholders, we assume that the probability to move from Insurer
j to Insurer k at time t is P (Ci,t = k | Ci,t−1 = j) = pj→k(xt) with the multinomial logit assumption

pj→k(x) =


1

1+
∑
l 6=j

efj(xj,xl)
if j = k,

efj(xj,xk)

1+
∑
l 6=j

efj(xj,xl)
if j 6= k.

(1)

We could have chosen the multinomial probit model, but then we would have lost a tractable pj→k,
yet the shape of the lapse function would have been very similar, see, e.g., McFadden (1981) for
the random utility maximization setting. Here the sum is taken over the set {1, . . . , J} and fj is a
price sensitivity function. We consider a premium ratio function and premium difference function,
respectively,

f̄j(x, y) = µj + αj
x

y
and f̃j(x, y) = µ̃j + α̃j(x− y), (2)

where µj ∈ R and αj > 0. Let pj→(xt) = (pj→1(xt), . . . , pj→J(xt)). The following assumptions on
customers are made

• A1: Customer behavior is identical across the market and over time, i.e. (Ci,t)t are identically
distributed for period t per insurer but depends on x.

• A2: Customers are independent, i.e. (Ci,t)i are independent.
• A3: The customer choice of insurer at time t depends only on the previous choice at time t− 1

and Ci,t ∼MJ(1,pj→(xt))
1.

• A4: No customer can enter or exit the market, the total market size N is constant.
In fact, the random choice (Ci,t)t of Policyholder i is governed by a (discrete-time) Markov chain

with transition matrix

P→(xt)
4
=

p1→1(xt) . . . p1→J(xt)
. . .

pJ→1(xt) . . . pJ→J(xt)

 .

In general, the Markov chain is time-inhomogeneous, as P→ depends on the price vector xt which
evolves over time. Note that using Markov chains to study customer behavior was also done in Marker
(1998), where a special case is considered: the duopolistic situation of one insurer versus the market.

From an insurer point of view, we are interested in the number of policyholders at time t. Let
nj,t−1 be the portfolio size at the previous period t − 1. We define Cj,t = (Cj,1,t, . . . , Cj,J,t) as the
random assignment of customers of Insurer j at time t, where Cj,k,t denotes the (random) number of
policyholders moving from Insurer j to Insurer k.

1Md(n,p) denotes the multinomial distribution of dimension d with trial number parameter n and event probability
parameter p ∈ [0, 1]d.
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Based on A1, A2, A3, policyholders of Insurer j will choose insurers according to a multinomial
distribution Cj,t ∼ MJ(nj,t−1,pj→(xt)) given the portfolio size nj,t−1. Let N t be the vector of
(random) portfolio sizes at time t. They are obtained by summing the (independent) choices of each
Insurers’ customers

N t =
J∑
j=1

Cj,t =

C1,1,t
...

C1,J,t

+ · · ·+

CJ,1,t...

CJ,J,t

 =

N1,t
...

NJ,t

 .

We denote by nt =
(
n1,t, . . . , nJ,t

)
the realizations of the random vector.

For Insurer j, his portfolio size Nj,t is a sum of independent variables. It is important to note that
the insurers’ portfolio sizes are not independent, since the total market size remains constant (A4).

Finally, the process (N t)t is a J-dimensional discrete-time Markov process (cf. Proposition 3 later).
The process (N t)t takes values in the set of portfolio sizes

Sms =

n ∈ NJ ,
J∑
j=1

nj = N

 , (3)

which has
(
N+J−1

N

)
elements, see e.g. Breuer & Baum (2005).

The lapse/renewal process of policyholders at each point in time can be seen as a closed Markovian
network of discrete-time queues with batch services (see e.g. (Boucherie & van Dijk 2011, Chap. 6)), for
which the service time corresponds to the number of years a policyholder stays with the same insurer.
In that context, pj→k are called routing probabilities, an insurer is a server and a policyholder is a
customer.

2.2.2 The loss model

Let Yi,t be the aggregate loss of policy i during the period t. We assume
• A5: There is no adverse selection, i.e. Yi,t are independent and identically distributed (i.i.d.)

random variables, ∀i = 1, . . . , N .
• A6: Catastrophic events are excluded and Yi follows a frequency – average severity loss model

Yi,t =

Mi,t∑
l=1

Zi,l,t, (4)

where the claim number Mi,t is independent of the claim severity Zi,l,t.
• A7: The insurance business is short-tailed, i.e. the loss Yi is paid in total on December 31 of

each year.
Assumption A5 allows us to simplify the simulation process because the i.i.d. assumption implies that
individual losses Yi,t do not need to be simulated. The aggregate claim amount for Insurer j is

Sj,t(xt) =

Nj,t(xt)∑
i=1

Yi,t, (5)

where Nj,t(xt) is the portfolio size of Insurer j given the price vector xt.
In the sequel, we assume that the claim frequency distribution belongs to the (a, b, 0) class (cf.

Klugman et al. (2012)). Table 1 displays the three well known members of this class, where the last
column gives the scale parameter of the distribution, which will play an important role below. Using
the (a, b, 0) class assumption, Proposition 5 derives the distribution of Sj,t(xt) in a general setting and
Proposition 8 derives the distribution of Sj,t(xt) for an invariant measure µ. Obtaining a compound
distribution for Sj,t(xt) also allows to easily carry out numerical illustrations, as we do not need to
simulate insurance losses by customer but by insurer.

Regarding the claim severity distribution, we assume a light-tailed distribution so that the moment-
generating function exists for some positive arguments. Assumption A6 can be summarized as
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Distribution Symbol a b m.p.f. at 0 scale param.

Poisson P(λ) 0 λ exp(−λ) λ

binomial B(r, q) − q
1−q

q(r+1)
1−q (1− q)r r

negative binomial NB(r, q) 1− q (r − 1)(1− q) qr r

Table 1: The (a, b, 0) class

• Mj,t
i.i.d.∼ M with M in the (a, b, 0) class,

• (Zj,l,t)l
i.i.d.∼ Z with GMZ (α) := E(eαZ) <∞ for some α > 0.

2.3 Components of the game for insurers

2.3.1 Objective function

Insurers have a history of past premium levels x?j,t, gross written premium GWPj,t, portfolio size nj,t
and capital Kj,t at the beginning of year t. Let d be the past number of years considered for which
economic variables (e.g. market premium) are computed and available for making decisions.

We define the estimated mean of overall costs including handling costs and claims of Insurer j as

πj,t = ωj āj,t−1 + (1− ωj)mt−1, (6)

where ωj ∈ [0, 1] is the credibility factor of Insurer j and the average market premium is determined,
available e.g. via rating agencies or through insurer associations, as

mt−1 =
1

d

d∑
u=1

mt−u, with mt−u =

∑
j∈Jt

GWPj,t−u × x?j,t−u∑
j∈Jt

GWPj,t−u
,

which is the mean of last d market premiums. Insurer j computes its actuarially based premium as
the empirical mean of individual loss averages

āj,t−1 =
1

1− ej,t
1

d

d∑
u=1

Sj,t−u
nj,t−u

,

where Sj,t denotes the observed aggregate loss of Insurer j during year t and ej,t denotes the expense
rate as a percentage of gross written premium. Note that the claim amount is not adjusted against
large claims (i.e. yi,t are not capped). We choose the demand function as

Dj,t(xt) =
nj,t−1

N

(
1− βj

(
xj,t

mj(xt)
− 1

))
, (7)

where βj > 0 is the elasticity parameter and mj(x) is a market premium proxy. Indeed, we assume
that the insurance product is a normal product where price elasticity of consumers is negative. In this
form, Dj(xt) approximates the expected market share E(Nj,t(xt))/N presented in Section 2.2.1.

The market proxy used in Equation (7) is the mean of other competitors’ premium

mj,t(x) =
1

Jt − 1

∑
k∈Jt\{j}

xk. (8)

The market proxy aims to assess other insurers’ premiums.
Consequently, Insurer j typically does not target the cheapest, the most expensive or the leader.

From a mathematical point of view, we would lose the continuity of the demand function if chose
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the cheapest premium mink 6=j xk. Furthermore, the term
xj

mj(x) − 1 in the demand function is closely

related to the average of the relative premium differences since

1

Jt − 1

∑
k∈Jt\{j}

(
xk
xj
− 1) =

1

xj

1

Jt − 1

∑
k∈Jt\{j}

xk −
Jt − 1

Jt − 1
=
mj,t(x)

xj
− 1.

Consider now an alternative market proxy value, where firms do not attribute the same weight to each
competitor, and we assume here that firms put more importance on the biggest competitors’ price. In
the following, we analyze the following market proxy (a weighted mean of other competitors’ prices)

mj,t(x,n) =
1

N − nj

∑
k∈Jt\{j}

nkxk. (9)

Assuming a positive price elasticity, we state the objective function defined as the product of a demand
function and an expected profit per policy representing a company-wide expected profit

Oj,t(xt) =
nj,t
N

(
1− βj

(
xj,t

mj,t(xt,nt)
− 1

))
(xj,t − πj,t) , (10)

where πj,t is the break-even premium j in (6) and mj,t(xt,nt) is either (8) or (9).

2.3.2 Constraint function

Based on the Solvency II framework, we choose the tractable solvency constraint function

g1
j,t(xj,t) =

Kj,t−1 + nj,t−1(xj,t − πj,t)
k995σ(Y )

√
nj,t−1

− 1, (11)

where k995 = 3 is the solvency coefficient approximating the 99.5% quantile level, see Dutang et al.
(2013) for details. Two constraints functions g2

j and g3
j are considered to ensure xj,t ∈ [x, x].

When the capital level of an insurer is between the MCR and SCR, the regulator will completely
monitor it. If the capital drops below the MCR, then the regulator will demand the company to
run-off their business (cf. Section 2.1).

3 Properties of insurer portfolio sizes given a price vector

3.1 Properties of the lapse model

In this first subsection, we study the theoretical properties of the lapse model at both policyholder
level and insurer level given a series of (bounded) price vector xt. We derive a proposition for the
process (Ci,t)t of Policyholder i as well as a proposition for the process (Cj,t)t and (Nj,t)t of Insurer
j. All proofs are postponed to Appendix A.1.

For a single Policyholder i, the following result shows that the choice sequence (Ci,t)t follows a
time-inhomogeneous Markov chain.

Proposition 1. The choice (Ci,t)t of Customer i at time t is a time-inhomo-geneous Markov chain

with transition matrix P
(t)
→ = P→(x1) × · · · × P→(xt). The Markov chain (Ci,t)t has an invariant

measure.
The choice vector (C1,t, . . . , CN,t)t of all customers at time t is a time-inhomogeneous Markov

chain with transition matrix P→(xt)⊗n (the n-times Kronecker product of the matrix P→(xt)).

Hence, the distribution of policyholders for Insurer j can be obtained.

Proposition 2. For all t ∈ N?, Cj,t ∼ MJ(nj,0, p̃j) given Nj,0 = nj,0 where p̃j is the jth row of the

matrix P
(t)
→ . In particular, Cj,t ∼MJ(nj,t−1,pj→(xt)) given Nj,t−1 = nj,t−1.
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Following Propositions 1 and 2, we show that insurer portfolio sizes (N t)t constitute a (multidimen-
sional) Markov chain in the set of all possible portfolio sizes Sms defined in (3). We also characterize
the conditional distribution N t | N t−1 = n which in the limit is a multinomial distribution:

Proposition 3. The insurer portfolio size vector (N t)t is a time-inhomogeneous Markov chain with
state space Sms. The probability generating function of N t | N t−1 = n is given by

GPN t|N t−1=n(z) =
(
zTp1→(xt)

)n1 × · · · ×
(
zTpJ→(xt)

)nJ
,

where z ∈ RJ and T denotes the matrix transpose.
Let µ be the invariant measure of (Ci,t)t. N t | N0 = n tends to a multinomial distribution

MJ(N,µ) and the invariant measure of (N t)t is the vector with all probabilities of that multinomial
distribution MJ(N,µ).

Remark 1. Note that N t | N t−1 = n is a sum of multinomial random variables, and not a multi-
nomial random variable (unless the rows of P→(xt) are identical). The probability mass function of
N t | N t−1 = n is given in Appendix A.

Next, we establish the conditional distribution of a particular portfolio size Nj,t = mj |N t−1 = n of
Insurer j. It is difficult to derive other general properties of the distribution of a sum of multinomial or
binomial variables with different probabilities pi→j , except when the size parameters nj are reasonably
large, in which case the normal approximation is appropriate.

Proposition 4. The distribution of Nj,t = mj |N t−1 = n has probability generating function

GPNj,t|N t−1=n(z) =

J∏
k=1

(1− pk→j(xt) + pk→j(xt)z)
nk . (12)

That is, Nj,t = mj |N t−1 = n is a sum of binomial random variables.

Remark 2. The probability mass function of Nj,t = mj |N t−1 = n is given in Appendix A. In
particular, E(Nj,t|N t−1 = n) = nj × pj→j(xt) +

∑
l 6=j nl × pl→j(xt).

3.2 Properties of aggregate loss distributions

We now focus on the loss distribution of a given insurer.

Proposition 5. Under Assumptions A5-A7, the moment generating function of the aggregate claim
amount per insurer Sj,t at period t is given by

GMSj,t(z) = GPNj,t

(
GP
M̃j,t

(
GMZ (z)

))
,

where GP stands for the probability generating function and GM for the moment generating function.
In particular, the insurer’s aggregate claim amount Sj,t(xt) given that Nj,t = nj,t is a compound
distribution of the same kind as the individual loss amount Yi,t

Sj,t(xt) =

M̃j,t∑
l=1

Zi,l,

where (Zi,l)i,l are i.i.d. claim amounts and M̃j,t is given in Table 2.

In particular, the expectation is E(Sj,t) = E(Ni,t)E(Mi,t)E(Z). A general formula for higher order
moments is given in Appendix A.2.
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Distribution Mi,t M̃j,t

Poisson P(λ) P(λnj,t)

binomial B(r, q) B(nj,tr, q)

negative binomial NB(r, q) NB(nj,tr, q)

Table 2: Correspondence for compound distributions

4 Properties for a one-price market

Insurance price regulation has important consequences on competition, capital and thus on insurers’
solvability (Klein et al. (2002)). Using a convergence measure, we investigate the long-run market share
distribution among insurers benefiting from different consumer demand patterns. We first consider
a special case for which tractable convergence measures can be derived, namely when there is no
competition between insurers or when there is a strict regulation. That is, for all t > 0,xt = (x, . . . , x),
or the regulator sets the price from one year to another, i.e. x1 = (x, . . . , x), x2 = (y, . . . , y),
x3 = (z, . . . , z), etc. Since premiums are the same for all insurers, the price sensitivity functions
remain the same (f j(xj , xl) = µj + αj and f̃j(xj , xl) = µ̃j from (2)) and the premium level does not
have consequences on our lapse model.

In this section, we therefore omit time dependence on t. pj→k then simplifies to

pj→k(x) =


1

1+(J−1)efj
if j = k,

efj

1+(J−1)efj
if j 6= k,

=

{
pj→j if j = k,
pj 6= if j 6= k,

(13)

Note that this expression is only a function of j (and not of k). Since
∑

k pj→k = 1, we get pj 6= =
(1− pj→j)/(J − 1).

The two following results are directly derived from Propositions 3 and 4.

Proposition 6. N t|N t−1 = n has the following transition probabilities

P (N t = m|N t−1 = n) =
∑

0≤c11,...,c1J≤N,
s.t.

∑
l
c1l=n1

. . .
∑

0≤cJ1,...,cJJ≤N,
s.t.

∑
l
cJl=nJ

J∏
j=1,∑

k
ckj=mj

nj !

cj1! . . . cjJ !
(pj→j)

cjj (pj 6=)nj−cjj , (14)

where pj→j and pj 6= are given in (13).

Proposition 7. Assuming identical lapse probabilities pj→j = p= and pj 6= = p 6=, Nj,t|N t−1 = n is a

sum of two binomially distributed random variables B(nj , pj→j) and B(n− nj , 1−pj→j
J−1 ). In particular,

given N t−1 = n, the probability generating function is

P (Nj,t = mj |N t−1 = n) =

n−j∑
k=0+

(
nj
k

)
(p=)k(1− p=)nj−k(

n− nj
mj − k

)
(p 6=)mj−k (1− p 6=)n−nj−mj+k , (15)

where 0+ = max(0, (mj − (n− nj)) and n−j = min(nj ,mj).

In this particular setting, a tractable expression of the invariant measure is available:
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Theorem 1. The choice (Ci,t)t of Customer i at time t is a time-homogeneous Markov chain when

xt = x. In particular, P
(t)
→ = (P→(x))t. There exists a unique invariant measure µ for (Ci,t)t given

by

µ =
(

cΠ1
cΠ1 +···+cΠJ

, . . . ,
cΠJ

cΠ1 +···+cΠJ

)
with cΠ

i =
J∏

j=1,j 6=i
pj 6=. (16)

If in addition the choice probabilities pj→k are identical for all insurers, then µ = (1/J, . . . , 1/J).
The portfolio size vector (N t)t at time t is a time-homogeneous Markov chain with state space

Sms for which the invariant measure is the vector with all probabilities of that multinomial distribution
MJ(N,µ).

Remark 3. Similarly to Proposition 1, the choice vector (C1,t, . . . , CN,t)t is a time-homogeneous
Markov chain. The invariant measure is obtained by applying N times the Kronecker product of µ
defined in Equation (16). If, in addition, the choice probability pj→k are identical across insurers,
then µ⊗N = (1/JN , . . . , 1/JN ).

Remark 4. Similarly to Proposition 2, for all t ∈ N?, Cj,t ∼MJ(nj,0, p̃j) given Nj,0 = nj,0 where p̃j
is the jth row of the matrix (P→)t. In particular, Cj,t ∼MJ(nj,t−1,pj→(x)) given Nj,t−1 = nj,t−1.

Remark 5. Theorem 1 provides an invariant measure for the lapse model without any solvency con-
sideration. If Insurer k is bankrupted at time t, k /∈ Jt+1, Jt+2, . . . , then invariant measures can be
derived by putting pk→k = 0 and pk 6= = 1/(J − 1).

In other words, for a constant price vector x and a large t, the distribution of N t is independent
of N0, converges in distribution to MJ(N,µ) and for n ∈ Sms, the probability mass function is

P (N t = n) =
N !

n1! . . . nJ !
µn1

1 . . . µnJJ , (17)

with µ defined in (16).

Remark 6. The last equation is in line with the so-called product form solution of a closed Markovian
network of queues with batch services. In fact, Theorem 2 of Henderson et al. (1990) show a similar
form to (4), where the invariance condition µT = µTP→ is called the balance equation.

In the special case of identical choice probabilities pj→k leading to µj = 1/J , we simply obtain

P (N t = n) =
N !

n1! . . . nJ !

(
1

J

)N
, E(Ni,t) =

N

J
, V ar(Ni,t) =

N(J − 1)

J2
.

In the current setting, a tractable expression of the survival function of insurer loss Sj,t is given in
the following proposition.

Proposition 8. Consider the invariant measure µ given in (16). The survival function of the aggregate
claim amount is given by

P (Sj,t > s) =
∑

0≤m≤N

(
N

m

)
(µj)

m(1− µj)N−m

·
∑
0≤k

P
(
M̃j,t = k|Nj,t = m

)
P

(
k∑
l=1

Zl > s

)
,

where the distribution of the total claim number M̃j,t is given in Table 2.

Remark 7. The expression of the survival function of the aggregate claim amount can be further
expanded in some classic cases:

• if Z follows a gamma distribution G(µ1, σ1), then
∑k

l=1 Zl follows a gamma distribution G(kµ1, σ1),

• if Z follows an inverse Gaussian distribution IG(µ1, σ1), then
∑k

l=1 Zl follows an inverse Gaus-
sian distribution IG(kµ1, k

2σ1).
For other distributions, say a lognormal distribution, a large number of approximations exist, see
Asmussen et al. (2016) and the references therein.
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5 Properties when one insurer deviates from the one-price policy

We consider the case of a deviation from a regulated price or a market-accepted level by one insurer,
yet the other competitors remain at the same level. That is, we study xt = (x, ρx, . . . , ρx) with ρ > 0
a fixed parameter. Proofs are postponed in Appendix C.

Again, the dependence on time t is omitted. In that case using (2), we have three possible
exponents, see Table 3.

price ratio price difference notation

l ∈ {1, . . . , J} f1(x1, xl) = µ1 + α1
ρ f̃1(x1, xl) = µ1 + α1(1− ρ)x f1

l 6= 1 f j(xj , xl) = µj + αj f̃j(xj , xl) = µj fj

l = 1 f j(xj , x1) = µj + αjρ f̃j(xj , x1) = µj + αj(ρ− 1)x fj,ρ

.

Table 3: Price sensitivity functions

Therefore, pj→k is only a function of j and not of k, and simplifies to

p1→j(x) =

{
1

1+(J−1)ef1
if j = 1,

ef1

1+(J−1)ef1
if j 6= 1,

=

{
p1→1 if j = 1,
p16= if j 6= 1,

(18)

pj→l(x) =


1

1+(J−2)efj+efj,ρ
if j = l,

efj

1+(J−2)efj+efj,ρ
if j 6= l 6= 1,

efj,ρ

1+(J−2)efj+efj,ρ
if j 6= 1, l = 1,

=


pj→j if j = k,
pj 6= if j 6= l 6= 1,
pj→1 if j 6= 1, l = 1,

(19)

Now we are able to derive the invariant measure for the case xt = (x, ρx, . . . , ρx):

Theorem 2. The choice (Ci,t)t of Customer i at time t is a time-homogeneous Markov chain. There
exists a unique invariant measure µ for (Ci,t)t given by

µ1 =

dΠ
−1 −

J∑
j=2

dΠ
−1,−jpj 6=

dΠ
−1 +

J∑
j=2

dΠ
−1,−j(p16= − pj 6=)

,

µj =
dΠ
−1,−jp16=

dΠ
−1 +

J∑
j=2

dΠ
−1,−j(p16= − pj 6=)

, j = 2, . . . , J. (20)

with dl = (J − 1)pl 6= + pl→1 and

dΠ
−1,−j =

J∏
l=2,l 6=j

dl, d
Π
−1 =

J∏
l=2

dl.

The portfolio sizes (N t)t at time t is a time-homogeneous Markov chain with state space Sms for which
the invariant measure is the vector with all probabilities of that multinomial distribution MJ(N,µ).

Remark 8. In the special case of identical insurers, the invariant measure becomes µ1 = p2→1

p2→1+(J−1)p1 6=
, µj =

p1 6=
p2→1+(J−1)p1 6=

for j = 2, . . . , J .

Remark 9. Again, (N t)t converges in distribution to a multinomial distribution and an analogous
expression to Equation (17) is available with µ from (20).

Remark 10. Note that the case where xt = (x1, . . . , xJ) without assuming that some insurers propose
the same price is very complex and should be solved numerically. We cannot use the simplification of
transition probability pj→k in this case, yet the transition matrix P→ will be a circulant matrix.

11



Remark 11. When x = (x, ρx, . . . , ρx), we can also have an explicit expression of the asymptotic
distribution of Nj,t which will lead to an expression of the survival function of the aggregate loss similar
to Proposition 8.

Let us analyze the case ρ > 1, i.e. Insurer 1 is the cheapest insurer. From Table 3, we deduce that
fj < fj,ρ. Therefore, we can order the transition probabilities

efj < efj,ρ ⇒ ∀l, j 6= 1, pj 6= = pj→l < pj→1.

In order to easily compare transition probabilities, we further assume that insurers are identical, with
lapse parameters µj = µ1 and αj = α1. So f1 < f2 < f2,ρ yields{

ef2,ρ > ef1

ef1+f2,ρ > ef1+f2
⇒ ef2,ρ

1 + (J − 2)ef2 + ef2,ρ
>

ef1

1 + (J − 1)ef1
.

Since the invariant measure simplifies, we have µ1 > µj for j = 2, . . . , J .
We now study the stochastic ordering of the empirical average loss of insurers, see (Shaked &

Shanthikumar 2007, Chapter 3) for details on the convex order ≤cx.

Proposition 9. If Insurer 1 is the cheapest insurer with ρ > 1, then the loss average by policy of
Insurer 1, at any time t, is stochastically smaller than the one of the others in the following sense:

1

N1,t(x̃)

N1,t(x̃)∑
i=1

Yi ≤cx
1

Nk,t(x̃)

Nk,t(x̃)∑
i=1

Yi, ∀k 6= 1,

where x̃ = (x, ρx, . . . , ρx).

Remark 12. In particular, the convex order implies that

V ar

 1

N1,t(x̃)

N1,t(x̃)∑
i=1

Yi

 ≤ V ar
 1

Nk,t(x̃)

Nk,t(x̃)∑
i=1

Yi

 .

Proposition 9 is in line with results from Wang et al. (2010), where they find in a dynamic model
that larger firms experience less premium variation than smaller firms. Indeed, since premium equi-
librium is highly correlated to loss history, we can reasonably expect that, in the long run, the firm
proposing the lowest premium benefits from the largest market share. The loss average is therefore
less volatile, allowing insurers to be less constrained by solvency regulation and potential loss shocks
and leading, in a dynamic pattern, to a more stable premium. We analyze below the effect on the
underwriting result by policy using the increasing convex order ≤icx, see (Shaked & Shanthikumar
2007, Chapter 4).

Proposition 10. If in addition to Insurer 1 being the cheapest, for all k 6= 1, x1(1− e1) ≤ xk(1− ek),
then the underwriting result by policy is ordered UW1,t ≤icx UWk,t, where UWj,t is the random variable

UWj,t = xj(1− ej)−
1

Nj,t(x)

Nj,t(x)∑
i=1

Yi,

where x̃ = (x, ρx, . . . , ρx).

Remark 13. If Insurer 1 is the most expensive insurer with 0 < ρ < 1, we obtain the reverse situation
for Propositions 9 and 10: Insurer 1’s empirical average loss and underwriting loss per policy will be
stochastically larger.

6 Properties of the repeated game

In this section, we investigate some long-run properties of the repeated game after ensuring the
existence and uniqueness of the premium equilibrium. All proofs are postponed to Appendix D.
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6.1 Asymptotic properties of the repeated game

We first show that the premium equilibrium of the repeated game admits a unique premium equilib-
rium.

Proposition 11. If there are at least two non-bankrupted insurers at time t, the repeated game with
objective function (10) and solvency constraint (11) admits a unique (Nash) premium equilibrium
x?. If in addition no constraint function is active, the premium equilibrium solves a linear system of
equations M1M2x

? = v with

M1 =


2b1/w1 −a1 . . .
−a2 2b2/w2 −a2 . . .

. . .

. . . −aJ 2bJ/wJ

 ,M2 =

w1 0 . . .
. . .

. . . 0 wJ

 , v =

b1c1
...

bJcJ

 ,

where wj = 1, bj = βj(J − 1) for arithmetic market proxy (8), and wj = nj, bj = βj(N − nj) for
weighted market proxy (9).

It is important to note that the linear system deduced in the previous proposition is not equivalent
to the original Nash equilibrium since it relies on the strong assumptions of non-active constraint
functions, see Appendix D. Nevertheless, it helps to understand the effect of some parameters on the
premium equilibrium in that particular case. Similarly to Proposition 2.2 of Dutang et al. (2013),
Table 4 presents the sensitivity analysis of parameters on the premium equilibrium.

x?j = x, x x?j solv. constr. no act. constraint

z z 7→ x?j (z) z 7→ x?j (z) z 7→ x?j (z) if (8) z 7→ x?j (z) if (9)

πj ↗ ↗ ↗
βj ↘ ↘
nj unknown ↗ if πj > 2, ↘ oth.

Kj ↘
σ(Y ) ↗

Table 4: Sensitivity analysis of premium x?j

Let us define the ruin and the leadership probabilities of Insurer j.

Definition 2 (Ruin probability). The ruin probability of Insurer j at time t is

ψj(kj , nj) = P (Kj,t < 0 ∪Nj,t ≤ 0.01%N | Kj,0 = k,Nj,0 = nj).

Definition 3 (Leadership probability). The leadership probability of Insurer j at time t is

φj(kj , nj) = P (∀k 6= j,Nj,tx
?
j,t ≥ Nk,tx

?
k,t | Kj,0 = k,Nj,0 = nj).

The following proposition gives the asymptotic value of the leadership probability under the special
case of the one-price vector of Section 4.

Proposition 12. If xt = x, then the leadership probability for large t is independent of initial condi-
tions and given by

φj(kj , nj) =
∑

n∈Sms

N !

n1! . . . nJ !
µn1

1 . . . µnJJ 11∀k 6=j,njxj≥nkxk ,

where µ is either (16) or (20).

Finally, one can show that the repeated game will necessarily end at some (large) time t.

Proposition 13. For the repeated insurance game, the probability that there are at least two non-
bankrupt insurers at time t decreases geometrically as t increases, that is

P (Card(Jt) > 1) <
(
1− ξ̄

)t
.

where ξ̄ is a positive probability minoring the one-period ruin probability of survived insurers.
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6.2 Numerical illustrations of a three-insurer market

We now provide some numerical computations of the ruin and leadership probabilities for the game
repeated over 10 periods.

We consider a game where three insurers fight for a market of N = 500 policyholders. Insurer
1 is the leader with more than one half of the market, whereas Insurer 2 is the challenger with
30% of policyholders and Insurer 3 the outsider with the last 10% of policyholders with objective
and constraint functions defined in Equations (10) and (11) with parameters given in Table 9 in
Appendix D. Policyholders face the loss model of Table 8 and follow a new multinomial logit model
with parameters given in Table 7 in Appendix D.

In Table 5, with market proxy (8), we observe that the leadership of Insurer 1 is greater than those
of his competitors, yet there is a decreasing trend over time. The longer the repeated game is, the
lower the probability is that Insurer 1 is the leader. In Table 5, the ruin probability is also computed:
having a lower initial solvency ratio, Insurer 3 is more exposed to the insolvency risk (13% against 1%
for Insurer 2 and 0% for Insurer 1).

Ruin probabilities Leadership probabilities
Period Insurer 1 Insurer 2 Insurer 3 Insurer 1 Insurer 2 Insurer 3

1 0.00 0.01 0.05 1.00 0.00 0.00
2 0.00 0.01 0.09 0.94 0.00 0.00
3 0.00 0.01 0.10 0.86 0.02 0.03
4 0.00 0.01 0.12 0.73 0.12 0.06
5 0.00 0.01 0.12 0.59 0.16 0.14
6 0.00 0.01 0.13 0.52 0.18 0.16
7 0.00 0.01 0.13 0.45 0.23 0.18
8 0.00 0.01 0.13 0.42 0.25 0.18
9 0.00 0.01 0.13 0.38 0.25 0.21

10 0.00 0.01 0.13 0.44 0.24 0.15

Table 5: Empirical probabilities of ruin and leadership over 100 runs, 3-player game with market proxy
(8)

Looking at Table 6, we observe similarly to Table 5 that Insurer 1 is the leader and is never ruined.
In contrast, Insurer 3 gets bankrupted more often as time evolves (from 2% to 14%) and has little
chance to become leader (around 10%). Finally Insurer 2 remains the best competitor of Insurer 1
with a significant probability of leadership.

Ruin probabilities Leadership probabilities
Period Insurer 1 Insurer 2 Insurer 3 Insurer 1 Insurer 2 Insurer 3

1 0.00 0.01 0.02 1.00 0.00 0.00
2 0.00 0.01 0.04 0.98 0.00 0.00
3 0.00 0.01 0.05 0.88 0.04 0.03
4 0.00 0.01 0.04 0.65 0.15 0.09
5 0.00 0.01 0.05 0.62 0.17 0.10
6 0.00 0.01 0.07 0.60 0.18 0.11
7 0.00 0.01 0.09 0.57 0.21 0.10
8 0.00 0.01 0.10 0.59 0.20 0.09
9 0.00 0.01 0.11 0.55 0.20 0.13

10 0.00 0.01 0.14 0.56 0.23 0.08

Table 6: Empirical probabilities of ruin and leadership over 100 runs, 3-player game with weighted
market proxy (9)
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7 Conclusion

The present paper proposes a repeated game based on the static game of Dutang et al. (2013). We
first analyze a situation where insurers do not compete on price and derive the asymptotic distribution
of insurer portfolio size and insurer aggregate loss. This situation could appear when the insurance
market is strictly regulated or where there is a collusion between insurers. Secondly, we show that
deviating from this situation by offering a lower premium leads to significant advantages in terms of
market shares, leadership probability and loss volatility. We also provide some insights on the effect
of competition in the repeated game.

The current work can be extended in many directions: considering a dividend rule when the
solvency ratio exceeds a certain threshold, adding a cost of capital in the objective function, and
taking into account adverse selection and moral hazard of policyholders, to name a few examples.
Also, it will be more realistic to take into account the asymmetry of information. For example,
assuming the insurer only observes its own claim history and receives a market signal through the
level of the market premium (price).
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A Proofs of Section 3

We prove below Propositions 1, 2, 3, 5 with standard probabilistic arguments. We recall that bolded
notation are reserved for vectors, GP and GM stand for the probability and the moment generating
functions, ⊗ the Kronecker product.

A.1 Properties of the lapse model

Proof of Prop. 1. By A3, (Ci,t)t is a Markov chain with transition matrix P→(xt) defined as

P→(xt) =

p1→1(xt) . . . p1→J(xt)
. . .

pJ→1(xt) . . . pJ→J(xt)

 .

In fact, P→ is a matrix function. By Proposition 14, the transition matrix has no null terms. It is
immediate that the transition from Ci,0 to Ci,t is the multiplication of the t matrices P→(x1),. . . ,
P→(xt). On the finite state space {1, . . . , J}, the Markov chain is both irreducible and aperiodic using
Proposition 14 in Appendix B.1. By (Norris 1997, p. 41), the process (C1,t, C2,t)t is still a Markov
chain on the space E2 = {1, . . . , J}2 with transition matrix P→(xt)⊗ P→(xt). Iterating N − 1 more
times leads to the result.

Proof of Prop. 2. Let Nj be the set of customers of Insurer j at time 0. That is ∀i ∈ Nj , Ci,0 = j.
As (Ci,t)t is a Markov chain, the transition from Insurer j to Insurer k is governed by the jth row p̃j

of the matrix P
(t)
→ = P→(x1) × · · · × P→(xt), p̃j =

(
P

(t)
→,j,1, . . . , P

(t)
→,j,J

)
. Thus ∀i ∈ Nj , Ci,t | Ci,0 =

j ∼ MJ(1, p̃j). By A1 and A2, those policyholders of Insurer j will choose insurers according to a

multinomial distribution Cj,t ∼ MJ(nj,t−1, p̃j) given Nj,0 = nj,0. From period t − 1 to period t, the
transition matrix simplifies to P→(xt) and p̃j = pj→(xt).

Proof of Prop. 3. The portfolio sizes vector is the sum of choice vectors N t = C1,t + · · · + CJ,t. By
A2, Proposition 2 and given N t−1 = n, (Cj,t)j are independent multinomial vectors with parameters
MJ(nj ,pj→(xt)) for j = 1, . . . , J . Therefore, N t (obtained by summing over j) has a known distribu-
tion given N t−1 = n. Since (N t)t is a discrete-time process taking values in Sms, (N t)t is a Markov
chain. By recurrence, the number of elements of Sms is Card(Sms) =

(
N+J−1

N

)
. The transition matrix

of size Card(Sms) × Card(Sms) has a complex expression P t = (P (N t = m|N t−1 = n))n,m where
n,m ∈ Sms and

P (N t = m|N t−1 = n)

=
∑

0≤c11,...,c1J≤N,
s.t.

∑
l
c1l=n1

. . .
∑

0≤cJ1,...,cJJ≤N,
s.t.

∑
l
cJl=nJ

J∏
j=1,∑

k
ckj=mj

nj !

cj1! . . . cjJ !
(pj→1(xt))

cj1 . . . (pj→i(xt))
cjJ .
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The probability P (Cj,t = cj |Nj,t−1 = nj) depends on the price vector xt, and therefore is time
dependent. By A2, the probability generating function of N t|N t−1 = n is in constrast simpler

GPN t|N t−1=n(z) = GP
C1,t

(z)× · · · ×GP
CJ,t

(z) =
(
zT p1→(xt)

)n1 × · · · ×
(
zT pJ→(xt)

)nJ
,

where z ∈ RJ , T denotes the matrix transpose and GP (.) denotes the probability generating function.
Using Proposition 2, we have Cj,t | N j,0 = n follows a multinomial distribution with parameters

MJ(nj , p̃j). By similar arguments, GPN t|N0=n(z) = (P
(t)
→ × z)n. If µ is the invariant measure of

(Ci,t)t, then

P (t)
→ −→

t→+∞

 µ
. . .
µ

⇒ P (t)
→ × z =

µTz. . .
µTz

⇒ GPN t|N t−1=n(z) = (µTz)
∑
i ni .

In other words, the probability generating function of N t | N0 = n is the p.g.f. of a multinomial
distribution. Since we obtain a limiting distribution for the Markov chain (N t)t is also its invariant
measure, see, e.g., (Norris 1997, p. 33).

Proof of Prop. 4. By A4, the probability generating function of the sum constituting Nj,t is the prod-
uct of generating function of each binomially distributed random variables

GPNj,t|N t−1=n(z) =
J∏
k=1

(1− pk→j(xt) + pk→j(xt)z)
nk .

Differentiating with respect to z, we get

GPNj,t|N t−1=n
′(z)

=

J∑
k=1

nkpk→j(xt)(1− pk→j(xt) + pk→j(xt)z)
nk−1

∏
l 6=k

(1− pl→j(xt) + pl→j(xt)z)
nl .

Taking z = 1 leads to the result. The mass probability function of the portfolio size Nj,tis given by

P (Nj,t = mj |N t−1 = n) =
∑

0≤c1,...,cJ≤n
s.t.

∑
k
ck=mj

J∏
l=1

(
nl
cj

)
(pl→j(xt))

cj (1− pl→j(xt))nl−cj .

A.2 Properties of the loss model

Proof of Prop. 5. Using assumptions A5, A6, A7, the moment generating function of Sj,t given that
Nj,t = nj using (5) is

∀u,GMSj,t|Nj,t=nj (u) = E
(
euSj,t |Nj,t = nj

)
= E

( nj∏
i=1

euYi,t

)
=
(
GMYi,t(u)

)nj
.

Since Yi,t is a compound distribution by (4), we get GMYi,t(u) = GPMi,t
(GMZ (u)). As the claim frequency

belongs to the (a, b, 0) class, the resulting distribution for total claim number can be easily derived,
see Table 1. Again using assumptions A5, A6, A7, we have

∀u,GMSj,t(u) = E
(
E
(
euSj,t |Nj,t

))
= E

((
GMYi,t(u)

)Nj,t)
= GPNi,t(G

P
Mi,t

(GMZ (u))).
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Using Lemma 1, with f = GPNi,t g = GPMi,t
and h = GMZ , we set x = 0 in order to compute

moments so that h(j)(0) = (GMZ )(j)(0) = E(Zj), h(0) = 1, g(l)(1) = E(Mi,t . . . (Mi,t − l + 1)),
fm(1) = E(Ni,t . . . (Ni,t −m+ 1)). So we have

dnGMSj,t(0)

dxn
=

∑
mj∈N

n!E(Ni,t . . . (Ni,t −m. + 1))

m1! · · · mn!

n∏
j=1

∑
lj∈N

E(Mi,t . . . (Mi,t − l. + 1))

l1! · · · lj !

mj

j∏
k=1

(
E(Zj)

k!

)lkmj
,

with m. = m1+· · ·+mn and l. = l1+· · ·+lj where the multiple summation is a finite set of integers, see

Lemma 1. In particular, n = 1 leads to m1 = 1, l1 = 1. Hence E(Sj,t) =
E(Ni,t)

1!

(
E(Mi,t)

1!

)1 (
E(Z)

1!

)1
=

E(Ni,t)E(Mi,t)E(Z).

Using recursively the Faà di Bruno formula, we obtain the following lemma.

Lemma 1. Assuming f , g and h are nth-time differentiable, we have

dnf(g(h(x)))

dxn
=
∑
mj∈N

n!f (m1+···+mn)(g(h(x)))

m1!m2! · · · mn!

n∏
j=1

∑
lj∈N

g(l1+···+lj)(h(x))

l1! · · · lj !

mj j∏
k=1

(
h(j)(x)

k!

)lkmj
,

where the multiple summation is over integersmj ∈ N,
n∑
j=1

jmj = n

 ,

{
lk ∈ N,

j∑
k=1

klk = j

}
.

B Proofs of Section 4

B.1 Properties of the transition probability

Proposition 14. Transition probability pl→j(x) is a strictly decreasing function of xj given x−j and
verifies 0 < pl→j(x) < 1.

Proof. The expression of pj→k can be rewritten as

pj→k(x) = pj→j(x)
(
δjk + (1− δjk)efj(xj ,xk)

)
, pj→j(x) =

1

1 +
∑
l 6=j

efj(xj ,xl)
,

with δij denoting the Kronecker delta where the summation is over l ∈ {1, . . . , J} \ {j} and fj is
the price function. The price function fj goes from (t, u) ∈ R2 7→ fj(t, u) ∈ R. Partial derivatives

are denoted by
∂fj(t,u)
∂t = f ′j1(t, u) and

∂fj(t,u)
∂u = f ′j2(t, u). Derivatives of higher order use the same

notation principle. The pj→k(x) function has the good property to be infinitely differentiable. Since
we have

∂

∂xi

∑
l 6=j

efj(xj ,xl) = δji
∑
l 6=j

f ′j1(xj , xl)e
fj(xj ,xl) + (1− δji)f ′j2(xj , xl)e

fj(xj ,xi),

we deduce

∂pj→j(x)

∂xi
= −

∑
l 6=j

f ′j1(xj , xl) lglj(x)

 pi→j(x)δij − f ′j2(xj , xl)pj→i(x)pj→j(x)(1− δij).

20



Furthermore,

∂

∂xi

(
δjk + (1− δjk)efj(xj ,xk)

)
= (1− δjk)

(
δikf

′
j2(xj , xk)e

fj(xj ,xk) + δijf
′
j1(xj , xk)e

fj(xj ,xk)
)
.

Hence, we get

∂pj→k(x)

∂xi
= −δij

∑
l 6=j

f ′j1(xj , xl)pj→l(x)

 pj→k(x)− (1− δij)f ′j2(xj , xi)pj→i(x)pj→k(x)

+ (1− δjk)
[
δijf

′
j1(xj , xk)pj→k(x) + δikf

′
j2(xj , xk)pj→k(x)

]
.

Let φl be the family function xj 7→ pl→j(x) for l = 1, . . . , J . φj has the following derivative

φ′j(xj) = −

∑
l 6=j

f ′j1(xj , xl)pj→l(x)

 pj→j(x).

Since for the two considered price function, we have f̄ ′j1(xj , xl) = αj/xl > 0 and f̃ ′j1(xj , xl) = α̃j > 0,
then the function φj is strictly decreasing. For l 6= j, the function φl has the following deriva-
tive φ′l(xj) = f ′j2(xl, xj)pl→j(x)(1 − pl→j(x)). Again, for the two considered price function, we have

f ′j2(xj , xl) = −αjxj/x2
l < 0 and f̃ ′j2(xj , xl) = −α̃j < 0. So, the function φl is strictly decreasing.

Futhermore, the function φl decreases from 1 to 0 such that φl(xj) → 1 (resp. φl(xj) → 0) when
xj → −∞ (resp. xj → −∞). When i 6= j, functions xi 7→ pi→j(x) are also strictly increasing. Let

xj = (x, . . . , x, x, x, . . . , x) and xj = (x, . . . , x, x, x, . . . , x). We have

∀x ∈ [x, x]J , 0 < pi→j(x
j) < pi→j(x) < pi→j(xj) < 1.

B.2 Properties of a constant regulated price vector

Proof of Prop. 6. Using Proposition 3 and when x = (x, . . . , x) using (13), we have

P→ =



p1→1
1−p1→1

J−1 . . . . . . 1−p1→1

J−1
. . .

. . .
1−pj→j
J−1 pj→j

1−pj→j
J−1 . . .
. . .

1−pJ→J
J−1 . . . . . . 1−pJ→J

J−1 pJ→J

 ∈ RJ×J . (21)

We deduce that the probabilities appearing in the proof of Proposition 3 simplify to

nj !

cj1! . . . cjJ !
(pj→j)

cjj (pj 6=)cj1 . . . (pj 6=)cjJ =
nj !

cj1! . . . cjJ !
(pj→j)

cjj (pj 6=)nj−cjj .

We get the desired result by summing over appropriate indexes.

Proof of Prop. 7. For a constant price vector, identical players (pj→j = p= and pj 6= = p6=) and Propo-
sition 4, the probability generating function is

GPNj,t|N t−1=n(z) = (1− pj→j + pj→jz)
nj
∏
l 6=j

(1− p 6= + p6=z)
nl

= (1− pj→j + pj→jz)
nj (1− p6= + p 6=z)

N−nj .

Nj,t|N t−1 = n is a sum of two binomially distributed random variables B(nj , pj→j) and B(n−nj , pj 6=).
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Proof of Th. 1. When xt = x, (Ci,t)t is a Markov chain with a transition matrix P→(xt) = P→. When
x = (x, . . . , x) (13) leads to (21). Since the number of state is finite (J) and the Markov chain is
irreducible by Prop. 14, there exists a unique invariant measure µ, see e.g. Norris (1997).

Let us consider the general matrix M ∈ RJ×J with general term Mi,j = ai(1−δij)+(1−(J−1)ai)δij .
Note that the rows of M equal 1 and M has only two different terms by row. The reversibility
conditions for a measure µ are

µ1M1,2 = µ2M2,1

. . .
µ1M1,J = µJMJ,1

⇔


µ1a1/a2 = µ2

. . .
µ1a1/aJ = µJ .

Let aΠ
−i =

J∏
j=1,j 6=i

aj . Using µ1 + · · ·+ µJ = 1, we get by multiplying both sides by aΠ
−i

µ1 +
∑
i>2

µ1
a1

ai
= 1⇔ µ1 =

aΠ
−1

J∑
i=1

aΠ
−i

⇔ µ =

 aΠ
−1

J∑
i=1

aΠ
−i

, . . . ,
aΠ
−J

J∑
i=1

aΠ
−i

 .

The measure µ above is in detailed balance with M and also an invariant measure for M . Setting
aj = pj 6= leads to the desired result. In the special case where pj→j are identical across insurers,
pj 6= = p6= is constant. Hence for all j = 1, . . . , J

aΠ
−i =

∏
j 6=i

pj 6= = (p6=)J−1 ⇒ µi =
(p6=)J−1

J∑
l=1

(p 6=)J−1

=
(p6=)J−1

J × (p 6=)J−1
=

1

J
.

Proof of Prop. 8. Using (4) and Proposition 1, for large t, we have

P (N t = n) =
N !

(cΠ
1 + · · ·+ cΠ

J )N

J∏
j=1

(cΠ
j )nj

nj !
.

The asymptotic marginal distribution is binomial B(N,µj) with P (Nj,t = m) =
(
N
m

)
(µj)

m(1−µj)N−m.
This leads to the desired result for the aggregate claim amount.

C Proofs of Section 5

Proof of Th. 2. Since
∑

k pj→k = 1, we get pj 6= = (1− pj→j − pj→1)/(J − 2), and p16= = 1−p1→1

J−1 . We
use the following notation

P→ =


p1→1 p16= . . .
p2→1 p2→2 p26= . . .
p3→1 p36= p3→3 p36= . . .

. . .

pJ→1 pJ 6= . . . pJ 6= pJ→J

 =


a1 b1 . . .
b2 a2 c2 . . .
b3 c3 a3 c3 . . .

. . .

bJ cJ . . . cJ aJ

 . (22)

A first series of equation for the invariant measure is obtained from µ′ = µ′P→. Ignoring the first
equation and subtracting the second equation from all others, we get

µ2 = b1µ1 + a2µ2 + · · ·+ cJµJ
µ3 − µ2 = (c2 − a2)µ2 + (a3 − c3)µ3
...
µJ − µ2 = (c2 − a2)µ2 + (aJ − cJ)µJ

⇔


−b1µ1 = −µ2 + a2µ2 + c3µ3 + · · ·+ cJµJ
µ3(1− a3 + c3) = (c2 − a2 + 1)µ2
...
µJ(1− aJ + cJ) = (c2 − a2 + 1)µ2.
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The J − 2 equations give µj = µ2
c2−a2+1
cj−aj+1 , j > 2. Recalling that any row of M sums up to 1, ai + bi +

ci(J − 2) = 1 for i 6= 1, we have

∀j = 3, . . . , J, aj = 1− cj(J − 2)− bj ⇒ cj − aj + 1 = (J − 1)cj + bj =: dj .

For j = 3, . . . , J , µj = µ2
d2
dj

. The first equation for µ1 becomes

b1µ1 = µ2 − a2µ2 −
J∑
j=3

cjµ2
d2

dj
⇔ µ1 = µ2

b2
b1

+ µ2
d2

b1

J∑
j=3

(
c2

d2
− cj
dj

).

Using the condition
∑

i µi = 1 yields to µ2 =
(

1 + b2
b1

+ d2
b1

∑J
j=3( c2d2

− cj
dj

+ b1
dj

)
)−1

. Reintroducing the

product notation dΠ
−1,−j =

∏
l 6=1,j dl yields the following reformulation

µj =
dΠ
−1,−jb1

dΠ
−1 +

J∑
j=2

dΠ
−1,−j(b1 − cj)

, j > 2, µ1 =

dΠ
−1 +

J∑
j=2

dΠ
−1,−j(−cj)

dΠ
−1 +

J∑
j=2

dΠ
−1,−j(b1 − cj)

.

Let us go back to the original transition matrix (22) with a1 = p1→1, b1 = p16= = 1−p1→1

J−1 , ∀j > 1, aj =
pj→j , bj = pj→1, cj = pj 6=. With dj = (J −1)cj + bj = (J −1)pj 6= +pj→1, we obtain the desired result.
In the special case of identical insurers, we have ∀j 6= 1, pj 6= = p26= and pj→1 = p2→1. With dj = d2

⇒ dΠ
−1,−j = dJ−2

2 ⇒ dΠ
−1 = dJ−1

2 , we obtain the desired result.

Proof of Prop. 9. Consider Insurer j is the cheapest, i.e. xj < xk for all k 6= j. pk→j(x) > pk→l(x) for
l 6= j given the initial portfolio sizes nj ’s are constant, since the change probability pk→j (for k 6= j)
is a decreasing function (see Appendix B.1). Using the stochastic order (≤st), the convex order (≤cx),
the majorization order (≤m), see (Shaked & Shanthikumar 2007, resp. Chap. 1, Chap. 3, p. 2), we
can show a stochastic order of the portfolio size by applying the convolution property of the stochastic
order J times: Nk(x) ≤st Nj(x), ∀k 6= j.

Let us consider the empirical loss average of an insurer with portfolio size n A(n) = 1
n

∑n
i=1 Yi,

where Yi denotes the total claim amount for Policy i. For n < ñ, we define two policy numbers
an, bñ ∈ Rñ as

bñ =

(
1

ñ
, . . . ,

1

ñ

)
and an =

 1

n
, . . . ,

1

n︸ ︷︷ ︸
size n

, 0, . . . , 0︸ ︷︷ ︸
size ñ−n

 .

Since bñ ≤m an and (Yi)i’s are i.i.d. random variables, we have

∑
i

bñ,iYi ≤cx

∑
i

an,iYi ⇔
ñ∑
i=1

1

ñ
Yi ≤cx

n∑
i=1

1

n
Yi ⇔ A(ñ) ≤cx A(n).

Using Theorem 3.A.23 of Shaked & Shanthikumar (2007), except that for all φ convex, E(φ(A(n)))
is a decreasing function (rather an increasing function) of n and Nk(x) ≤st Nj(x), we can show
A(Nj(x)) ≤cx A(Nk(x)).

Proof of Prop. 10. Using Prop. 9, we have
∑ñ

i=1
1
ñYi ≤cx

∑n
i=1

1
nYi. For all increasing convex functions

φ, the function x 7→ φ(x+ a) is still increasing and convex. Thus for all random variables X,Y such
that X ≤icx Y and real numbers a, b, a ≤ b, we have

E(φ(X + a)) ≤ E(φ(X + b)) ≤ E(φ(Y + b))⇔ a+X ≤icx b+ Y.

Consider Insurer j is the cheapest and xj(1 − ej) ≤ xk(1 − ek) and using the fact that X ≤cx Y is
equivalent to −X ≤cx −Y , we have uwj(x, ñ) ≤icx uwk(x, n),∀k 6= j. Using Theorem 3.A.23 of Shaked
& Shanthikumar (2007), except that for all φ convex, E(φ(uwj(x, n))) is a decreasing function of n
and Nk(x) ≤st Nj(x), we can show UWj = uwj(x, Nj(x)) ≤icx uwk(x, Nk(x)) = UWk.
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D Proofs of Section 6

Proof of Prop. 11. Assuming #Jt ≥ 2, since the strategy set is [x, x]Jt , it guarantees the market proxy
mj = mj(x) or mj = mj(x,n) to be positive. Given x−j,t, the function xj,t 7→ Oj(xt) is a quadratic
(hence concave) function. Given that the constraint functions (11) are linear, by Theorem 1 of Rosen
(1965), the existence of a premium equilibrium at time t is guaranteed. The proof of uniqueness is
exactly the same as in Dutang et al. (2013). Omitting the time index t, consider a generic objective
function

Oj(x) =

(
aj − bj

xj
mj(x)

)
(xj − cj),with mj(x) =

∑
i 6=j

wixi,

with known weights wi > 0 and positive constant aj , bj , cj > 0. In the case of no active constraint
functions. Similarly to Dutang et al. (2013), if x? is a Nash equilibrium, x? must verify

∀j,∇xjOj(x?) = 0⇔M1M2x = v,

with

M1 =


2b1/w1 −a1 . . .
−a2 2b2/w2 −a2 . . .

. . .

. . . −aJ 2bJ/wJ

 ,M2 =

w1 0 . . .
. . .

. . . 0 wJ

 , v =

b1c1
...

bJcJ

 .

NB: When the market proxy is the arithmetic mean (8), we set wj = 1 and bj = βj(J − 1). When the
market proxy is the weighted mean (9), we set wj = nj and bj = βj(N − nj).

Remark 14. Getting a linear system for the premium equilibrium, we are looking for a necessary
and sufficient condition. The linear system for the premium equilibrium has a solution when the
determinant of M is non null. Since det (M) = det (M1) det (M2), M2 being diagonal yields a positive
determinant det (M2) =

∏
iwi > 0 for the weights considered. So det (M0) = 0 is equivalent to

det (M1) = 0.
Using Lemma 2, we have with aj = 1 + βj and bj = βj

det (M1) =
2b1
w1

∏
k 6=1

(ak + 2bk/wk)−
J∑
j=2

aj
∏
k 6=j

(ak + 2bk/wk).

Using β̃j = 1 + βj + 2βjw
Σ
−j/wj, w

Σ
−j =

∑
k 6=j wk, β̃Π

−j =
∏
k 6=j β̃k,

det (M) = 0⇔ 2β1w
Σ
−1β̃1 = w1

J∑
j=2

(1 + βj)β̃j .

There are many solutions to this equation, but there is a unique solution when wj = w is constant and
βj’s are all identical. Say βj = β leading to β̃j = 1+β+2β(J−1). Hence det (M) = 0 yields to β = 1

A sufficient condition for the linear system to have a solution is M to be diagonally dominant.
That is ∀j = 1, . . . , J ,

|2bj | >
∑
k 6=j
| − ajwk| ⇔ 2bj > aj

∑
k 6=j

wk ⇔ 2bj > ajw
Σ
−j

In the case of objective function (10), we choose aj = 1+βj, bj = βjw
Σ
−j. So the sufficient condition is

2βjw
Σ
−j > (1 + βj)w

Σ
−j ⇔ βj > 1. In that case, one can check that the determinant det (M1) is strictly

positive. This fact was also seen in Dutang et al. (2013).

24



Lemma 2. Consider the following multi-diagonal matrix for n ≥ 2

Mn =


u1 v1 . . .
v2 u2 v2 . . .

. . .

. . . vn−1 un−1 vn−1

. . . vn un

 .

With w1 = u1 and wj = vj , ∀j = 2, . . . , n, the determinant is given by det (Mn) = (−1)n+1
∑n

j=1wj
∏
k 6=j(vk−

uk).

Proof. If det (Mn) = (−1)n+1
∑n

j=1wj
∏
k 6=j(vk − uk), then

det (Mn+1) = (un+1 − vn+1)det (Mn) + (−1)n+1(v1 − u1) . . . (vn − un)vn+1

= (un+1 − vn+1)(−1)n+1
n∑
j=1

wj
∏
k 6=j

(vk − uk) + (−1)n+1(v1 − u1) . . . (vn − un)vn+1

= (−1)n+2
n+1∑
j=1

wj
∏
k 6=j

(vk − uk).

For n = 2, det (M2) = u1u2 − v1v2 = (u2 − v2)u1 + (−1)2+1(v1 − u1)v2.

Proof of Prop. 13. Using Proposition 14, we have

0 < pi→j(x
j−) < pi→j(x) < pi→j(x

j
−) < 1,

for all x ∈ [x, x]J . Taking supremum and infimum on player j, we get 0 < p
l

= inf
j
pi→j(x

j−) and

sup
j
pi→j(x

j
−) = pl < 1. Using the proof of Th. 4 in Appendix A, we have

P (Nj,t(x) = mj |Nj,t−1 > 0,Card(Jt−1) > 1)

=
∑

m̃1,...,m̃Jt−1
≥0

s.t.
∑
l m̃l=mj

∏
l∈Jt−1

(
nl,t−1

m̃l

)
pi→j(x)m̃l (1− pi→j(x))nl,t−1−m̃j

>
∑

m̃1,...,m̃Jt−1
≥0

s.t.
∑
l m̃l=mj

∏
l∈Jt−1

(
nl,t−1

m̃l

)
pm̃l
l

(1− pl)nl,t−1−m̃j = ξ > 0.

Therefore,

P (Card(Jt) = 0|Card(Jt−1) > 1)

≥ P

∀j ∈ Jt−1, Nj,t(x) > 0,Kj,t−1 +Nj,t(x)x?j,t(1− ej) <
Nj,t(x)∑
i=1

Yi|Card(Jt−1) > 1


≥

N∑
mj=1

Pt (Nj,t(x) = mj |Card(Jt−1) > 1)P

(
Kj,t−1 +mjx

?
j,t(1− ej) <

mj∑
i=1

Yi

)

>

N∑
mj=1

ξP

(
Kj,t−1 +mjx

?
j,t(1− ej) <

mj∑
i=1

Yi

)
= ξ̄ > 0.

Thus, we have

P (Card(Jt) > 1|Card(Jt−1) > 1)

= 1− P (Card(Jt) = 0|Card(Jt−1) > 1)− P (Card(Jt) = 1|Card(Jt−1) > 1)

≤ 1− P (Card(Jt) = 0|Card(Jt−1) > 1)

< 1− ξ̄ < 1.
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By successive conditioning, we get

P (Card(Jt) > 1) = P (Card(J0) > 1)
t∏

s=1

P (Card(Js) > 1|Card(Js−1) > 1) <
(
1− ξ̄

)t
.

So, the probability P (Card(Jt) > 1) decreases geometrically as t increases.

Proof of Prop. 12. In a regulated market (x?j,t = xj), using Theorems 1 and 2, the asymptotic distri-
bution of N t is a multinomial distribution. Hence the leadership probability is independent of initial
condition φj(kj , nj) = φj . Using the probability mass function leads to the desired result.

Lapse MLN PD model
Policy of fj µj αj 1− pj→j((1, 1, 1)) 1− pj→j((1, 1.05, 1.05))

Insurer 1 f̃j -2.890372 7.401976 10% 15%

Insurer 2 f̃j -2.508437 5.844477 14% 19%

Insurer 3 f̃j -2.209495 4.928581 18% 23%

Table 7: Parameters of the lapse model

Loss frequency Loss severity
dist. λ dist. µ1 σ1

Policyholder Poisson 0.1 lognormal 1.931616 0.8613578
(Expec. & Var.) (E(M) = V ar(M) = 0.1) (E(Z) = 10, V ar(Z) = 110)

Table 8: Parameters of the loss model PLN

Objective and constraint param.
βj ωj ej πj,0 nj,0 Kj,0 solv. ratio

Insurer 1 3 1 30% 1.28494 300 317.49 133%.
Insurer 2 3 1 30% 1.28612 150 224.49 133%
Insurer 3 4 1 40% 1.48396 50 97.21 100%

x x N E(Y ) V ar(Y ) k95 d

Market 1 3 500 1 4.5826 3 3

Table 9: Parameters of insurers
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