
HAL Id: hal-03448278
https://hal.science/hal-03448278

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-resolution Graph Neural Networks for PDE
Approximation

Wenzhuo Liu, Mouadh Yagoubi, Marc Schoenauer

To cite this version:
Wenzhuo Liu, Mouadh Yagoubi, Marc Schoenauer. Multi-resolution Graph Neural Networks for PDE
Approximation. ICANN 2021 - 30th International Conference on Artificial Neural Networks, Sep 2021,
Bratislava, Slovakia. pp.151-163, �10.1007/978-3-030-86365-4_13�. �hal-03448278�

https://hal.science/hal-03448278
https://hal.archives-ouvertes.fr


Multi-resolution Graph Neural Networks for PDE
approximation

Wenzhuo Liu1,2, Mouadh Yagoubi1, and Marc Schoenauer2

1 IRT SystemX, Orsay, France FirstName.LastName@irt-systemx.fr
2 INRIA TAU, LISN CNRS & U. Paris-Saclay, ORsay, France

Abstract. Deep Learning algorithms have recently received a growing
interest to learn from examples of existing solutions and some accurate
approximations of the solution of complex physical problems, in particu-
lar relying on Graph Neural Networks applied on a mesh of the domain
at hand. On the other hand, state-of-the-art deep approaches of image
processing use different resolutions to better handle the different scales
of the images, thanks to pooling and up-scaling operations. But no such
operators can be easily defined for Graph Convolutional Neural Net-
works (GCNN). This paper defines such operators based on meshes of
different granularities. Multi-resolution GCNNs can then be defined. We
propose the MGMI approach, as well as an architecture based on the
famed U-Net. These approaches are experimentally validated on a diffu-
sion problem, compared with projected CNN approach and the experi-
ments witness their efficiency, as well as their generalization capabilities.

Keywords: Graph Neural Networks · PDEs · Multi-resolution GNNs.

1 Introduction

Numerical simulation techniques are widely used to predict the behavior of com-
plex systems in the real world. Partial differential equations (PDEs) are typically
used to model the physical problem, and their solutions are approximated by nu-
merical techniques such as the finite element (FEM) and finite volume (FVM)
methods. Such typical approaches discretize the domain into meshes and com-
pute the approximated values of the quantities of interest on each node of the
mesh. These approaches can predict the physical behavior of the systems accu-
rately, however, at a high computational cost for complex systems.

In recent years, there has been a rapid rise in the use of machine learn-
ing algorithms to solve problems from different domains where the conventional
mathematical models are hard to build or expensive to compute. Deep neural
networks have become the most popular approach due to the ability to solve
complex tasks such as computer vision and natural language processing, out-
performing existing algorithms when large-scale data are available. The great
success of deep learning has naturally encouraged researchers to investigate its
use of learning numerical solutions of PDEs for the purpose of reducing simu-
lation time. Indeed, with the wide applications of numerical simulations, a high



2 W. Liu et al.

volume of data has been accumulated. Many scientists have proposed data-driven
methods, making full use of such data [19, 5, 11, 3]. The first approaches [19, 5]
applied convolutional neural networks(CNNs) to construct deep learning models,
due to their tremendous successes for image analysis, thanks to their capacity
to capture spatial features. However, when it comes to PDEs simulations, com-
plex geometries and the construction of unstructured meshes are inevitable. In
such cases, data generated from numerical simulations is not similar to an image
with regular pixels. A visible solution is to embed the complex domain into a
regular rectangle domain and use interpolation, so that CNNs can be applied
directly. However, in the real world, physical problems have complex geometric
domains, and such CNN approach can lead to a significant interpolation error, in
particular on the boundary of an actual domain. Furthermore, such an approach
can hardly take into account the necessary mesh refinements that are frequently
needed for a good approximation of the solution of the PDE at hand.

Graph Neural Networks (GNNs) are ML methods that handle data that live
on graphs. Convolutional GNNs aim at reproducing the locality properties of
CNNs, but one drawback is the lack of a recognized approach to down-sampling
(aka pooling) and up-sampling that allow GNNs to extract local features.

In such context, the overall goal of the present work is to learn from examples
a model for the numerical solution of a PDE using GNNs and to preserve locality,
such that solving the same PDE with different source or on different domains can
be done at a much lower computational cost than with the classical numerical
approaches (e.g., FEM) while giving a good approximation of the solution. To
this end, the contributions of this work are twofold. First, we propose generic
up- and down-sampling procedures for Convolutional GNNs taking advantage
of meshes of different granularities; from thereon, inspired by the multi-grid
methods in the numerical field [6], we introduce two such architectures for GNNs
in the context of PDE simulations: the Multi-Grid U-Net (MG-UNet), based on
the famous U-Net [17] proposed for image segmentation, and the novel Multi-
Grid Multi-Input (MGMI). Second, we validate experimentally these multi-grid
approaches against the CNN approaches (based on projections on a regular grid).

The paper is organized as follows: Section 2 briefly surveys the state-of-the-
art in terms of Machine Learning approaches to PDE solving, as well as the use
of GNNs in such context. Section 3 introduces, based on a hierarchy of meshes
on the domain of the PDE, the multi-grid architectures MGMI and MG-UNet.
Section 4 describes the experiments (solving a nonlinear diffusion equation on
different types of domains), while Section 5 discusses the results that validate
the proposed approach in the case of irregular domains.

2 Related Works

2.1 Machine Learning for PDEs

Using machine learning algorithms to solve PDEs has received special atten-
tion in the last few years. Current numerical solutions on PDEs are inefficient



Multi-resolution Graph Neural Networks for PDE approximation 3

for problems with high dimensions or on complex geometry. A major difficulty
for such problems is meshing. On the one hand, forming a mesh is costly for
complex geometric problems; on the other hand, it becomes infeasible in high
dimensional space. Some scientists proposed mesh-free methods based on un-
supervised learning to avoid mesh construction. These algorithms train a deep
neural network to approximate PDE solution by satisfying the differential oper-
ator, initial conditions and boundary conditions for a specific PDE. By entering
a variable x0, the network will predict the value u(x0). [4] used fully connected
layers to approximate the solution on complex geometry. [16, 18] discussed the
possibility to solve high dimensional problems by neural networks. The authors
of [18] proved that the neural network converges to the PDE as the number of
hidden units increases. However, the proposed algorithms has been applied on
only one physical problem, and every slightly change on the PDE may require
to re-investigate the proposed architecture.

Other approaches are based on data-driven methods. Similar to our work,
the model learned from mesh data simulated by numerical solvers(eg: FEM,
FVM) predicts solutions for unseen inputs. [19] construct a convolutional model
to approximate electromagnetic problems by solving Poisson’s equation on a
squared domain. Training data is generated by finite differential solver, making
it in Euclidean space, which ensures the feasibility of applying CNN layers. A U-
Net model is proposed by [5] to solve Reynolds Averaged Navier-Stokes (RANS)
flow problems on airfoil shapes. The generated data on the unstructured mesh
is first projected on structured grids as images before training. Comparing with
traditional methods, the CNN models can reduce computational time. Since
these models apply CNN layers on structured grids, they are less adaptable for
problems with complex domains, which we will discuss in this paper.

In recent years, many attempts have been made to construct a deep learn-
ing model that can be applied directly on mesh data instead of projection into
structured grids. [11] discussed fluid flow fields problems on different irregular
geometries. It considers CFD data as a set of points (called point clouds) and
applies the PointNet[14] architecture specially designed for such data type. [3]
combines graph neural networks with traditional CFD solver (run on a coarse
mesh) to accelerate fluid flow prediction on a much finer mesh. Although this
combination allows improving prediction on new situations from the same family
with the studied problems(i.e., without any change in the geometry), the gen-
eralization to new problems with different geometries/meshes is not confirmed.
Unlike these methods, that apply GNNs directly on a fin mesh, we proposed a
hierarchical structure aiming at extracting both global and local features from
mesh data.

2.2 Graph Neural Networks

An increasing number of studies have focused on data from non-Euclidean space
such as graphs, meshes, and manifolds where CNN is no longer suited. The graph
neural networks(GNNs) generalize deep learning models on non-Euclidean space.



4 W. Liu et al.

Inspired by the great success of CNN on images, there are plenty of studies
searching for a method to define convolutional operators on non-Euclidean data.

The first spectral-based convolution operator is proposed by [7]. It defines
the operator on graph Laplacian spectrum space. After graph Fourier transfor-
mation, the convolution can be defined as the multiplier on Fourier space which
enables the construction of a graphical convolutional layer. Since then, several
works [9, 12] improved spectral-based graph networks. In the meantime, some
scientists attempt to construct the convolution on the spatial space. These ap-
proaches, such as [2, 20], aggregate the feature information from its neighbors.
The MoNet layer [13], used in this paper, is also a spatial based method where
edge features are trained to decide aggregation weights.

There are several kinds of research made to solve problems with a set of
points(point clouds). The PointNet [14] is the first neural network for point
clouds. The basic idea is that each point feature is encoded and then aggre-
gated to a global vector by a symmetric function. PointNet++ [15] improved
the PointNet by introducing hierarchical structures to capture local features.

3 Multi-Grid Graph Neural Networks

3.1 Graph Convolutional Neural Networks

Rationale The Finite Element Method (FEM) is based on a variational for-
mulation of the PDE and an approximation space for the solution described by
basis vectors attached to the mesh at hand (e.g., a given basis vector is 1 at a
given node, and 0 on all other nodes). Applying the variational formulation to
each basis vector, in turn, gives a system of equations whose unknowns are the
coordinates of the solution (x1, . . . , xN ) on the chosen basis, and in which the
equation for unknown xi only involves neighbors xj of node i in the mesh. If the
PDE is linear (e.g., the linear Poisson equation), this system is a linear system
that is usually solved numerically using some iterative methods due to its size.
For instance, the Jacobi iterative method computes a sequence of vectors that
ultimately converges to the solution of the linear system, by

xk+1
i =

1

Aii
(bi −

∑
j

Aijx
k
j )

If the PDE is not linear, the system to be solved to compute (x1, . . . , xN ) is
nonlinear, and it is usually approximated by a sequence of linear systems that
are solved sequentially. The whole process can be considered as using Jacobi
iterative method multiple times with different Aij and bi. And this is exactly
what Graph Convolutional Neural Networks like MoNet [13] do.

The MoNet Architecture Consider a weighted graph G = (N,E,V, E), where
N is the number of nodes, E the set of edges, V ∈ RN×F are the node features
(to each of the N nodes, an F -dimensional feature vector is attached), and
E ∈ RE×D the edge features (D-dimensional vectors). Let xi ∈ RF be the



Multi-resolution Graph Neural Networks for PDE approximation 5

feature vector of node i, and eij ∈ RD be the feature of the edge i→ j defining
the set of neighbours N(i) of node i. The basic idea of MoNet is to define a
trainable function w that computes an edge weight wij from the edge feature
eij . MoNet then defines the convolutional operator on node i as:

x′i =
1

|N (i)|
∑

j∈N (i)

1

K

K∑
k=1

wk(eij)�Θkxj

where xj ∈ RN represents the feature on node j, K is the user-defined kernel size,
Θk ∈ RM×N stands for the trainable matrix applying a linear transformation
on the input data, � is the element-wise product, and wk, k = 1, . . . ,K are
trainable edge weights. Following [13], we chose Gaussian kernels defined as:

wk(eij) = exp(−1

2
(eij − µk)TΣ−1k (eij − µk))

Both µk and Σk are trainable variables representing the mean vector and co-
variance matrix of the Gaussian kernel.
MoNets for PDEs: Node and Edge Features Given a PDE defined on
some domain Ω (see Section 4) and a mesh of its domain of definition, this work
is concerned with training a MoNet-like Neural Network to approximate the
numerical solution of the PDE on the mesh.

A first node feature is the right-hand side of the PDE, defined on domain Ω,
that will be represented by its values on the nodes. Another node feature g is
used to describe whether the node is on the boundary (g = 1) or not (g = 0).
Finally, the 2-dimensional edge features are defined as eij = pj − pi, where
pk is the coordinates of node k. This ensures the translation-invariance of the
approach.

3.2 Multi-grid Approaches

Many variants of multi-grid algorithms have been proposed in the context of
numerical simulations (see, e.g., Chapter 3 in [6]): the main idea is to compute
approximate solutions to the problem at hand on meshes of different resolution.
The steps on coarse meshes are fast and help to unveil global features of the
solution, while fine meshes refine the solutions, removing unwanted spatial os-
cillations. In order to extend this notion to the GNN framework, we assume in
the following having a hierarchy of meshesMi of the same domain, of increasing
complexity (# nodes).

As a matter of fact, the idea of multi-grid has already been used in the
neural network framework, in the context of image analysis and is based on
pooling and upsampling layers that merge or expand rectangle patches of the
image. Among well-known examples are the Autoencoders, and the famed U-
Net architecture [17] which adds to the reduction/reconstruction structure some
"horizontal" connection between downstream and upstream layers of the same
dimension.



6 W. Liu et al.

G
N
N
s

U
p
-S
am
p
le

Target Mesh

Concatenate

G
N
N
s

Output

G
N
N
s

U
p
-S
am
p
le

G
N
N
s

U
p
-S
am
p
le

Concatenate ConcatenateInput

Fig. 1: The MGMI architecture: Coarse-to-fine meshes are linked with up-sampling
operators, and the right-hand side is input to the NN at all different resolutions.

However, when it comes to Graph Neural Networks, no obvious down-sampling
(pooling) and up-sampling operators exist. Some operators have been proposed
in the context of graph or node classification on graphs [10], but they inevitably
destroy the graph structure and lose node connections. Moreover, to the best of
our knowledge, no explicit pooling operators for graphs with edge features have
yet been proposed. The situation here is different, thanks to the hierarchy of
meshes of increasing complexity over the same 2D-domain. It easily defines op-
erators that transform the features from one mesh to the next, up- or downward.
Sampling Operators The sampling operators from meshM1 to meshM2 use
the k-nearest interpolation proposed in PointNet++ [15]. Let y be a node from
M1, and assume its k nearest neighbors onM2 are (x1, . . . , xk). The interpolated
feature for y is defined from those of the xi’s as:

f(y) =

∑k
i=1 w(xi)f(xi)∑k

i=1 w(xi)
, where w(xi) =

1

||y − xi||2

Based on these operators, it is straightforward to define multi-grid architectures
in the context of PDE simulation.
The Multi-Grid U-Net achitecture First, we propose a simple adaptation
of the U-Net architecture proposed in [17], where each block is a MoNet block
(Section 3.1), followed by one sampling operator as described above. The "hori-
zontal" connections that characterize U-Net are added, the input f is provided
to the first layer, and the solution u of the PDE is the output of the last layer
(details in Section 5).
The Multi-Grid Multi-Input architecture Figure 1 displays the proposed
architecture (MGMI). Here, only upsampling operators are used: the model
starts from the coarsest mesh, and the input is the projection of f on this mesh.
After a GNN block, an upsampling operator adapts the output to the next mesh,
and a projection of f on the current mesh concatenated with the previous output
is again fed to the next GNN block. The process repeats until reaching the finest
mesh (4 different levels will be used throughout this paper). This should allow
the features of different granularities to be discovered gradually, from global to
local features.

This architecture takes advantage of the hierarchy of meshes from the input
perspective, feeding the different dimensions with ad hoc samples of the input f



Multi-resolution Graph Neural Networks for PDE approximation 7

as well. Note that a similar strategy with the U-Net architecture did not make
any significant difference.

4 Experimental Conditions

The Partial Differential Equation The case study in this paper is a nu-
merical simulation of the following nonlinear Poisson equation with constant
Dirichlet boundary condition, an elliptic PDE defined on some domain Ω ∈ R2:

−∇((1− u(x) + u(x)2) · ∇u(x)) = f(x) in Ω with u(x)|∂Ω = 1

The goal is to compute a numerical approximation of u(x), solution of problem
(1), for any continuous function f(x) defined on Ω. Note that any boundary
condition can be handled by the proposed approach (not shown here).

The Finite Element Library There are numerous FEM packages that can
solve problem (1): FEniCS [1] was used throughout this work. FEniCS includes
a mesh generator that generates a mesh from a user-defined criterion and dis-
cretization of the boundary of Ω, balancing the mesh so that all triangles are as
close as possible from the equilateral (to make a long story short). Hence, the
coarseness of the mesh can be roughly controlled by the user, allowing them to
reach a target number of nodes approximately.

The Input Functions The source terms f of Equation (1) are randomly gen-
erated as a linear combination of eight isotropic Gaussian functions sharing the
same standard deviation, resulting in 25 control parameters: the coordinates of
the means of the Gaussian functions, their weights in the linear combination
and the standard deviation. They are chosen uniformly in domain-dependent
intervals.

Ground Truth and Loss Function FEniCS also includes a FEM solver that
computes an approximated solution of the target PDE based on the decompo-
sition of the solution on a basis defined from a given mesh [8]. In all cases, the
solution provided by FEniCS on the finest mesh will be considered as the ground
truth. The loss function is defined by the Mean Absolute Error (MAE) be-
tween the network output and this ground truth. Note, however, that we will
report the Relative MAE(%) in Section 5, to allow a meaningful comparison
between the different experiments.

Algorithms Our ultimate goal is to validate the proposed multi-grid approaches
that use Graph NNs, MG-UNet and MGMI, i.e., to investigate the accuracy of
their results when predicting the solution of some unknown test case w.r.t the
ground truth given by FEniCS. The baseline algorithm here, called Direct, is a
simple MoNet-like GNN that works only on the finest mesh and directly predicts
the solution from the input. But another goal is to compare the mesh-based GNN
approach with the straightforward CNN-based more common approach. Hence
each of the three algorithms described above will be transposed in the CNN
framework, i.e., applied to a structured mesh and using the standard up- and



8 W. Liu et al.

down-sampling operators of deep image processing. In this framework, the Direct
algorithm is simply a plain CNN. In case the mesh is not on regular grid, the
data from the unstructured mesh is interpolated on the structured mesh where
the CNN model is applied, and the data is projected back on the unstructured
mesh, giving the approximate solution we are looking for.

Neural Networks Topology The multi-grid architectures (Figure 1) alternate
Graph Convolutional blocks with up- or down-sampling operators. Each block
is defined by 3 hyper-parameters: the number of layers, the kernel size, and the
number of channels. The Direct architecture only contains GCNN blocks with
the same parameters; the number of blocks is adjusted so that the order of
magnitude of the number of weights is similar to the Multi-Grid ones. For the
CNN architecture, the number of CNN layers is similarly adjusted.

After some preliminary experiments, the number of nearest neighbors in all
sampling operators was set to 6; The kernel size was set to 5 (see 3.1) for Graph-
based architectures; And the filter of CNN models is set to 3× 3. Other hyper-
parameters were adjusted using the validation set3.

Implementation is done in PyTorch using the PyTorch-Geometric for the
MoNet layers and the Adam optimizer, with batch size 100, with an exponentially
decaying learning rate and early stopping condition, based on the loss on the
validation set.

Domains Three different types of 2D domains will be considered: First, a simple
square domain that should favor the CNN approach; then a ’donut-like’ domain
to somehow penalize the CNN approach. In both cases, the domain and the
meshes will be fixed; only the right-hand side f of the PDE will be subject to
learning. Finally, the last experiment will also learn the domain itself: all samples
will have different domain shapes and different function f .

Methodology and Result Presentation For each type of domain, a training
set of 42 000 examples is generated. A 12-folds cross-validation is used to assess
the robustness of the approach, and we report the averages and standard devi-
ations of the relative MAE errors on the 12 hold-out test sets (labeled "Val").
For CNN algorithms, we also report the relative MAE errors computed on the
grid mesh (before projecting back onto the unstructured mesh), labeled "CNN
Error". Furthermore, as some of these 40000 samples have been used for hyper-
parameter tuning, we also report the errors on test sets that have never been used
during the tuning phase (row "Test"). Finally, in order to check the generaliza-
tion capabilities of all models, we compute some out-of-distribution errors (i.e.,
errors on test cases that do not belong to the same distribution as the training
samples), labeled "OoD". All reported error values are expressed in percentage
terms. We also report the GPU cost of training one epoch (inference CPU costs
are discussed in Section 5.3). Another interesting quantity is the average inter-
polation error, that is computed by projecting on the regular grid a solution u
defined on the unstructured mesh , and projecting it back onto the unstructured

3 Due to space limitation, all details cannot be included here. An INRIA Technical
Report will soon be available with details and many more experimental results.



Multi-resolution Graph Neural Networks for PDE approximation 9

Graph CNN
Models MGMI MG-UNet Direct MGMI U-Net Direct

GPU Cost(s) 63.98 61.58 138.12 23.58 23.61 44.72
Val. 0.61 ± 0.08 0.40 ± 0.04 4.00 ± 0.31 0.93 ± 0.01 1.00 ± 0.03 1.07 ± 0.05

CNN Error \ \ \ 0.25 ± 0.02 0.40 ± 0.05 0.53 ± 0.04
Test 0.61 ± 0.08 0.40 ± 0.04 4.02 ± 0.30 0.93 ± 0.01 1.01 ± 0.03 1.08 ± 0.05

OoD 1 1.46 ± 0.13 0.71 ± 0.07 6.76 ± 0.35 1.09 ± 0.01 1.31 ± 0.11 1.76 ± 0.07
OoD 2 1.50 ± 0.31 1.21 ± 0.31 4.46 ± 0.44 1.83 ± 0.92 2.73 ± 0.52 1.63 ± 0.19

Table 1: Relative MAE (%) results on Squared domain (see text for row details)

mesh. For each training set, we compute its relative MAE interpolation error to
better compare graph and CNN models.
Statistical significance For all pair-wise comparisons between test errors, we
performed a Wilcoxon signed-rank statistical test with 95% confidence on the
results of the 12 models obtained through the 12-fold procedure. As most differ-
ences are statistically significant, and because of space limitation, we will only
signal the non-statistically significant differences.

5 Experimental Results

5.1 Fixed Domains

A first experiment deals with examples in the same square domain Ω =
[0, 1] × [0, 1], that is meshed in 31 × 31 squares, or into unstructured meshes
with respectively 961, 249, 70, 23 nodes. In this case, the boundary, in particu-
lar, is exactly discretized by both the structured (regular grid) and unstructured
mesh. The average interpolation error is 0.91%± 0.25.

Table 1 shows the results of all algorithms. Multi-Grid models outperform
Direct models, especially in the context of Graph NNs. Furthermore, in the
Graph context, the training time of the Direct model is also larger. Hence we
will not consider these Direct models any further in this work.

Graph-based models clearly outperforms CNN-based ones. However, CNN
models have an excellent performance on the regular grid, and the discrepancy is
only due to the interpolation error. Final remark for the square domain: whereas
MG-UNet slightly outperform MGMI in the graph-based approaches, the reverse
is true for the CNN-based approaches.

Another fixed domain was also experimented with, some donut shape, for
which the boundary is ill-represented on the regular grid. As could be expected,
the performances of CNN-based approaches are much worse than on the square
domain, while those of the graph-based ones remain very similar.
Out-of-distribution Generalization All source terms up to now had been
drawn using the same distribution (see Section 5). The out-of-distribution gener-
alisation is assessed by two test datasets. "OoD 1 in Table 1 uses a larger standard
deviation (in U(40, 50) instead of U(10, 40)), while "OoD 2" uses larger weights
(U(20, 35) instead of U(−20, 20)). The results are very good compared to the
"Test" ones . And MG-UNet slightly, but significantly, outperforms MGMI.



10 W. Liu et al.

5.2 Variable Domains

Fig. 2: Comparison between ground
truth and prediction from MGMI.

This case aims at checking the abil-
ity of different models to also gener-
alize w.r.t. the domain itself, as well
as the right-hand side f . Each train-
ing sample is defined on a different
polygonal domain (and hence a differ-
ent mesh), also involving a different f .
Domains are defined by n vertices ly-
ing at a normally-distributed distance
(with mean 1 and tunable variance)
from the origin (0, 0), at angular 2π

n ±ε
for some uniformly distributed ε (n = 30 here). This process ensures that all do-
mains have similar areas – see on Figure 2 a sample domain, and the solutions of
FEM (left) and MGMI (right). As before, 4 different meshes are created for each
domain, with the largest mesh size in [1000, 1200] (average in the dataset: 1037).
The regular meshes are defined on the [−2, 2]2 square with 73×73 discretization,
and the average number of grid points inside the polygon domains is 1023. The
average interpolation error is 1.63%± 0.57.

The top part of Table 3 shows the overall errors are greater than that in
the previous test cases – which was to be expected. However, graph models
largely outperform CNN models on unfixed meshes. Also, MGMI is slightly but
significantly better than MG-UNet on these problems with very different graph
structures.

Out-of-distribution Generalization Two out-of-distribution experiments are
presented here. 5000 examples are generated in each case, with random domains
and source terms f .

Mesh complexity The first experiment (second set of rows in Table 3) investigates
the influence of the number of nodes of the meshes. In the training set, the
finest meshes had from 1 000 to 1 200 nodes. Two test sets were generated,
with #nodes in [1200, 1600] and [1600, 2000] respectively. All performances nicely
degrade when departing from the training distribution. And the graph-based
approaches still perform much better than the CNN ones, with a slight but
significant advantage to MGMI over MG-UNet.

Domain shape Whereas the training set was made of polygons with 30 vertices,
this second OoD experiment concerned shapes made respectively with 5, 10,
and 20 vertices, keeping the number of mesh nodes approximately the same.
The bottom set of rows of Table 3 gives the results. Here again, the graph-
based approaches outperform the CNN ones, and MGMI slightly outperforms
MG-UNet (though not significantly in the case of 5 and 10 vertices). However,
more severely than expected, the performance degrades when going from 30
vertices (Test) down to 5 vertices: the learned models seem more sensitive to
the shape of the meshes than to their complexity. Further experiments (not
shown for space reasons) used a variable number of vertices during training. The



Multi-resolution Graph Neural Networks for PDE approximation 11

Graph CNN
Models MGMI MG-UNet MGMI MG-UNet

GPU cost(s) 169.52 170.46 71.54 71.23
Val. 2.19 ± 0.15 2.40 ± 0.20 6.09 ± 0.29 5.24 ± 0.19

CNN Error \ \ 1.62 ± 0.15 1.38 ± 0.07
Test 2.20 ± 0.16 2.41 ± 0.18 6.14 ± 0.26 5.24 ± 0.15

1200-1600 2.53 ± 0.17 2.73 ± 0.21 6.55 ± 0.32 5.90 ± 0.20
1600-2000 3.71 ± 0.25 4.05 ± 0.27 7.21 ± 0.41 6.52 ± 0.26

Test 5 vertices 5.29 ± 0.41 5.71 ± 0.60 6.40 ± 0.72 4.73 ± 0.46
Test 10 vertices 3.56 ± 0.31 3.73 ± 0.22 6.11 ± 0.54 4.13 ± 0.42
Test 20 vertices 2.39 ± 0.18 2.61 ± 0.13 5.72 ± 0.39 5.08 ± 1.26

Table 3: Relative MAE (%) Results on Polygonal Domains (see text for details)

training accuracy remained good with a relative error of 2.37% ± 0.34, while
the test on 20, 10 and 5 vertices were greatly improved (to 2.20, 2.44 and 2.94%
respectively). But of course, these test sets are not Out-of-Distribution anymore.

5.3 Computational Costs

Time(s) Square Donut Polyg.
MGMI 0.912 0.643 7.336

MG-UNet 1.075 0.782 11.312
FEM 173.87 164.35 163.72

Table 2: Inference CPU cost

We use a batch size 100 to solve 5 000 un-
known PDEs on the different domain types,
and compare the forward computational cost
of the graph-based approaches on a single
GPU GTX 1080Ti with that of FEniCS
solver on Intel(R) Xeon(R) Silver 4108 CPU
(there is no GPU version of FEniCS).
For problems on fixed mesh, the computation time of neural networks is about
100 times faster than FEniCS, which cannot take advantage of the fixed mesh
on this nonlinear problem. When considering problems on variable polygon do-
mains, the sampling operators slow down the graph-based approaches, making
the computation time only one order of magnitude faster than FEniCS. Also,
MGMI has fewer down-sampling operators than MG-UNet and hence allows
slightly faster prediction. Finally, note that this work studied a simple problem,
though nonlinear, for which FEM solvers are relatively fast. The advantage of
graph-based inference for complex PDEs (e.g., 3D CFD) would be even more
significant.

6 Conclusion

This paper introduced multi-resolution graph-based approaches to learn PDE
solutions on unstructured meshes, addressing the up- and down-sampling issues
of GNNs spatially, based on a hierarchy of meshes of increasing complexity.
Bypassing the projection on a regular mesh and the use of standard CNNs,
these approaches thus avoid the resulting interpolation errors. Experiments have



12 W. Liu et al.

shown that these hierarchical models can improve the prediction accuracy on
test sets of different source terms and domain shapes, as well as the inference
time compared to the classical FEM computation. Furthermore, whereas Out-
of-Distribution generalization is satisfactory w.r.t. the source characteristics and
the mesh complexity, further work is needed to decrease the dependency w.r.t.
the domain shape outside the strict bounds of the training distribution. A short-
term perspective is to consider transfer learning approaches to deal with meshes
of different resolution on different domains. A longer-term perspective is to port
the proposed approaches on 3D problems, for which an unstructured mesh is far
more expressive than pixel-like grids.

References
1. Alnæs, M.S., Blechta, J., et al.: The FEniCS project version 1.5. Archive of Nu-

merical Software 3(100) (2015)
2. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks (2016)
3. de Avila Belbute-Peres, F., Economon, T.D., Kolter, J.Z.: Combining differentiable

PDE solvers and GNNs for fluid flow prediction. In: 37th ICML (2020)
4. Berg, J., Nyström, K.: A unified deep ANN approach to PDEs in complex geome-

tries. Neurocomputing 317, 28–41 (Nov 2018)
5. Bhatnagar, S., Afshar, Y., et al.: Prediction of aerodynamic flow fields using CNNs.

Computational Mechanics 64(2), 525–545 (2019)
6. Briggs, W., Henson, V., et al.: A Multigrid Tutorial, 2nd Edition. SIAM (2000)
7. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally

connected networks on graphs (2014)
8. Ciarlet, P.G.: Finite Element Method for Elliptic Problems. Society for Industrial

and Applied Mathematics, USA (2002)
9. Defferrard, M., Bresson, X., Vandergheynst, P.: CNNs on Graphs with Fast Local-

ized Spectral Filtering. In: NeurIPS (2017)
10. Gao, H., Ji, S.: Graph U-Nets. In: 36th ICML. PMLR (2019)
11. Kashefi, A., Rempe, D., Guibas, L.J.: A point-cloud deep learning framework for

prediction of fluid flow fields on irregular geometries (2020)
12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: 5th ICLR (2017)
13. Monti, F., Boscaini, D., et al.: Geometric deep learning on graphs and manifolds

using mixture model CNNs. In: CVPR (2016)
14. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for

3d classification and segmentation (2017)
15. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-

ing on point sets in a metric space (2017)
16. Raissi, M.: Deep hidden physics models: Deep learning of nonlinear partial differ-

ential equations. JMLR 19(1), 932–955 (2018)
17. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-

ical image segmentation. In: MICCAI. pp. 234–241. Springer LNCS 9351 (2015)
18. Sirignano, J., Spiliopoulos, K.: DGM: A deep learning algorithm for solving PDEs.

Journal of computational physics 375, 1339–1364 (2018)
19. Tang, W., Shan, T., et al.: Study on a poisson’s equation solver based on deep

learning technique. In: IEEE EDAPS. pp. 1–3 (2017)
20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph

attention networks. In: ICLR (2018)


