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Abstract

Exponentially weighted moving average (EWMA) type charts are very popular and

efficient in monitoring various kind of statistics. Much researches have been done on

the EWMA X̄ chart with known process parameters. But, in practice, the process

parameters used to set the control chart limits are often unknown and they need to

be estimated from different Phase I samples. Moreover, because the shape of the run

length distribution for the EWMA X̄ chart changes with the mean shift, the median
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run length (MRL) can serve as a good alternative to evaluate the performance of the

EWMA X̄ chart. In this article, we will investigate the conditional properties of the

EWMA X̄ chart with unknown process parameters based on theMRLmetric. In order

to investigate the chart’s properties, the average MRL (AMRL) and the standard

deviation of MRL (SDMRL) will be used together when the process parameters are

unknown. To prevent too many lower in-control MRL values, the adjusted control

limits of theMRL based EWMA chart are obtained by using a bootstrap type approach

and the results show that the adjusted control limits can give a good tradeoff between

the in-control and out-of-control MRL performances.

Keywords: EWMA X̄ chart; median run length; estimated parameters; average median

run length; standard deviation of median run length.

1 Introduction

Control charts in statistical process control (SPC) are usually used to achieve process sta-

bility through the detection of the process variability. Among all types of control charts, a

traditional one is the Shewhart type chart. This memoryless type chart is easy to implement

and it is efficient to detect large changes in a process. But, for small or moderate changes, it

is not as efficient compared to some memory type charts, like exponentially weighted moving

average (EWMA) or cumulative sum (CUSUM) type charts. The EWMA type charts are

popular for their efficiency in detecting small or moderate shifts in a process (Montgomery

(2009)).

Since Roberts (1959) first recognized the application of the EWMA approach for moni-

toring processes, much researches have been conducted. Lucas and Saccucci (1990) evaluated

the RL distribution of the EWMA control chart using a Markov chain method. When the
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process observations are correlated, Lu and Reynolds (1999) proposed an EWMA chart to

monitor the residuals from the forecast values of the correlated model. Borror et al. (1999)

investigated the properties of the EWMA X̄ chart when observations are non-normal, and

they showed that the EWMA chart is a robust alternative when the normality assumption

cannot be guaranteed. Knoth (2015) evaluated the quantile performance of EWMA control

charts with variance adjusted control limits and with FIR (fast initial response) features.

Maravelakis et al. (2017) investigated the Run Rules EWMA chart’s properties using inte-

gral equations and the results show that the Run Rules feature can improve the performance

of the EWMA chart. These researches are all focused on EWMA type charts with known

process parameters.

In practice, in the implementation of control charts, the process parameters are usually

unknown and they need to be estimated from in-control observations. Generally two phases

(Phase I and Phase II) are applied in the implementation of control charts. In Phase I, an

in-control reference sample is collected to estimate the process parameters, which are then

used to set the control limits of a Phase II control chart. In Phase II, samples collected from

the process are prospectively plotted on the control chart for the detection of assignable

cause(s). For simplicity, a Phase II control chart’s performance is usually investigated based

on the assumption of known process parameters. Since different practitioners use different

Phase I samples to estimate the process parameters, this causes a variability in these esti-

mated process parameters. Thus, the control chart’s performance will vary among different

practitioners, causing the so called between-practitioners variability effect in the properties

of control charts (Saleh et al. (2015b)).

Numerous researches have been conducted on EWMA type charts with unknown pro-

cess parameters. Jones (2002) developed design procedures for the EWMA X̄ chart with
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estimated parameters. Castagliola et al. (2016) investigated the properties of the EWMA

median chart with estimated process parameters and they suggested dedicated chart pa-

rameters for different amount of Phase I samples. Considering the between practitioners

variability, Saleh et al. (2015a) investigated the conditional performance of the EWMA X̄

chart and suggested to use a bootstrap approach to adjust the control chart parameters.

For a comprehensive literature review involving parameter estimation, readers may refer to

Jensen et al. (2006) and Psarakis et al. (2014).

A Phase II control chart’s property is generally measured by the average run length

(ARL), which is defined as the average number of samples required until the chart gives an

out-of-control signal. As pointed in Montgomery (2009), the shape of the run length (RL)

distribution of control charts changes for different mean shift sizes, i.e. from highly right

skewed in the in-control state to nearly symmetric when the shift size in the out-of-control

state is large. Therefore, the interpretation based on the ARL for highly skewed and nearly

symmetric RL distributions are certainly different. For example, the EWMA X̄ chart with

appropriate parameters can have an in-control ARL of 1000, but with a median run length

(MRL) value equals to 695, which means half of the RLs are smaller than 695. When there

is one standard deviation shift in the process mean, the ARL is 11.7 and half of the RLs,

i.e. MRL, are smaller than 10 (Gan (1993)).

Recently, the only use of the ARL to measure the performance of control charts has been

criticized by many researchers, to name a few, see Gan (1993), Gan (1994), Jones et al.

(2004), Chakraborti (2007) and Tang et al. (2018). All these researches pointed out the

disadvantage of the interpretation based only on the ARL, because the shape of the RL

distribution changes with the mean shift. On the other hand, the MRL does not have this

interpretation problem. For this advantage, some researchers recommended the usage of the
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MRL as an efficiency measure for control charts. Gan (1993, 1994) have investigated the

properties of the EWMA and CUSUM X̄ charts based on MRL. Khoo et al. (2012, 2011)

have also investigated the properties of the univariate and multivariate synthetic charts

based on the MRL. For other more researches on the design of MRL based charts, readers

may refer to Teoh et al. (2016a) for variable sample size chart, Tang et al. (2018) for the

adaptive EWMA chart, and Lee and Khoo (2017) for the the synthetic np attribute chart.

All the researches based on the MRL, referenced above, assume that the chart parameters

are all known. For the unknown process parameters case, the properties of MRL based

control charts with estimated parameters have also been investigated by some researchers,

see Chakraborti (2007), Teoh et al. (2015), Teoh et al. (2016b) and You et al. (2016). These

researches only focused on the marginal MRL performance of control charts with estimated

parameters. When the process parameters are estimated from different Phase I samples, the

MRL based charts will also have the “between-practitioners variability” problem.

Considering the between-practitioners variability, on one hand, much researches have

been conducted on the ARL based control charts for different type charts, see Saleh et al.

(2015b), Saleh et al. (2015a), Faraz et al. (2015), Hu and Castagliola (2017), Keefe et al.

(2015), Aly et al. (2015), Aly et al. (2016), Geodhart et al. (2017a) and Geodhart et al.

(2017b). These researches recommended to use the average ARL (AARL), combined with

the standard deviation of ARL (SDARL) to give a more complete picture of control charts’

properties. On the other hand, for the MRL based control charts, it is also important to

investigate the between-practitioners variability.

Although numerous researches have been done on EWMA type charts, as far as we

know, considering the between-practitioners variability, no research has been conducted on

the MRL based EWMA X̄ chart with unknown process parameters. Since the between-
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practitioners variability causes a large variation in the in-control and out-of-control perfor-

mances of control charts, this suggests us that the MRL based EWMA X̄ chart also needs

to be investigated based on the average (AMRL) and the standard deviation (SDMRL) of

the MRL.

The rest of this paper is organized as follows: First, Section 2 presents the run length

properties of the EWMA X̄ chart with unknown process parameters using the Markov chain

approach. Based on the average, the standard deviation, and several percentiles of the MRL

distribution, we investigate in Section 3 the MRL performance of the EWMA X̄ chart with

unknown process parameters. In Section 4, the bootstrap adjustment of the control limits

and the corresponding in-control and out-of-control performances of the EWMA X̄ chart are

discussed. Finally, some conclusions and recommendations are made in Section 5.

In addition, an online supplement is provided to discuss the following: (i) a brief back-

ground of the MRL based EWMA X̄ chart; (ii) an example introduced in Montgomery

(2009) is given to illustrate the use of the MRL based EWMA X̄ chart.

2 The run length properties of the EWMA X̄ chart

with unknown process parameters

2.1 Model standardization

Suppose that the subgroups {Yi,1, Yi,2, . . . , Yi,n} of size n, at sampling time i are consecutively

collected. We assume that there is independence within and between these subgroups and,

Y follows a normal distribution Y ∼ N(µ0 + δσ0, σ0), where µ0 and σ0 are the in-control
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mean and standard deviation, respectively, and δ is the magnitude of the standardized mean

shift. The process is considered to be in-control when δ = 0. Otherwise (δ 6= 0), the process

is out-of-control. The EWMA chart statistic Z ′
i, at sampling time i, is defined as

Z ′
i = λȲi + (1− λ)Z ′

i−1 (1)

where Ȳi =
1
n

∑n
j=1 Yi,j is the sample mean of subgroup i and λ (0 < λ ≤ 1) is a smoothing

constant. The initial value Z ′
0 is usually set to be the target value of a process, i.e. Z ′

0 = µ0.

When the process parameters µ0 and σ0 are known, the lower control limit (LCL′) and

the upper control limit (UCL′) of the EWMA X̄ chart are equal to,

LCL′ = µ0 −K

√
λ

2− λ

σ0√
n
, (2)

UCL′ = µ0 +K

√
λ

2− λ

σ0√
n
. (3)

where K is a constant chosen to satisfy the desired in-control performance of the control

chart. The EWMA X̄ chart signals when the statistic Z ′
i fall outside the control limits in

(2) and (3).

In order to investigate the properties of the EWMA X̄ chart, this article adopts the

standardized form of the EWMA statistic (see Jones (2002) and Saleh et al. (2015a)):

Zi = λWi + (1− λ)Zi−1 (4)

with

Wi =
Ȳi − µ0

σ0/
√
n
. (5)
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and the initial value of the EWMA statistic W0 is 0.

When the process parameters µ0 and σ0 are unknown, they need to be estimated from a

Phase I data set, composed of i = 1, 2, . . . , m subgroups {Xi,1, . . . , Xi,n} of size n, where X

is assumed to be a N(µ0, σ0) random variable. A natural estimator µ̂0 of µ0 is

µ̂0 =
1

m

m∑

i=1

X̄i, (6)

and a pooled estimator σ̂0 for σ0 (Jensen et al. (2006)) is,

σ̂0 =

√√√√ 1

m(n− 1)

m∑

i=1

n∑

j=1

(Xi,j − X̄i)2, (7)

where X̄i =
1
n

∑n
j=1Xi,j is the ith sample mean.

By substituting µ0 and σ0 with the corresponding estimators in (6) and (7), the stan-

dardized form of the EWMA statistic with estimated parameters is,

Ẑi = λŴi + (1− λ)Ẑi−1 (8)

with

Ŵi =
Ȳi − µ̂0

σ̂0/
√
n

(9)

After some manipulations, we can re-rewrite (9) as follows:

Ŵi = (Wi − U)

√
n

V
(10)

where Wi =
Ȳi−µ0

σ0/
√
n
, U = (µ̂0 − µ0)

√
n

σ0

and V = σ̂0

σ0

√
n.
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Under the standardized case, the control limits of the EWMA X̄ chart become,

LCL = −K

√
λ

2− λ
, (11)

UCL = +K

√
λ

2− λ
. (12)

It must be noted that these control limits remain the same no matter if the chart parameters

µ0 and σ0 are known or estimated.

2.2 The Markov chain approach

Generally, three approaches can be used to obtain the run length distribution of the EWMA

type charts: (i) Integral equations; (ii) Markov chain approach; (iii) Monte-Carlo simula-

tions. Following some researches done on the EWMA type charts (see You et al. (2016),

Castagliola et al. (2016) and Saleh et al. (2015a)), this paper mainly focused on the Markov

chain approach. Using the Markov chain approach introduced in Brook and Evans (1972),

the run length properties of the EWMA X̄ chart can be obtained by dividing the interval

[LCL,UCL] into 2m + 1 subintervals (Hj − ∆, Hj + ∆), j = {−m, . . . , 0, . . . , m}, each of

width 2∆ = UCL−LCL
2m+1

. Let Hj =
LCL+UCL

2
+2j∆ represents the midpoint of the jth interval.

By dividing the interval [LCL,UCL] into a large number of subintervals, the statistic Ẑi is

said to be equal to Hj at time i, if Hj−∆ < Ẑi < Hj+∆, j = −m, . . . , 0, . . . , m. Otherwise,

if the statics falls outside the control limits, the Markov chain reached the absorbing state.

The transient states are referred to be as in-control states, and the absorbing state is referred

to be as the out-of-control state.
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The probability pj,k that the control statistic goes from state j to state k in one step is

equal to,

pj,k = P (Ẑi ∈ (Hk −∆, Hk +∆)|Ẑi−1 = Hj), (13)

Replacing Ẑi = λŴi + (1− λ)Ẑi−1 yields,

pj,k = P

(
Hk −∆− (1− λ)Hj

λ
≤ Ŵi ≤

Hk +∆− (1− λ)Hj

λ

)
,

= P

(
Hk −∆− (1− λ)Hj

λ

V√
n
+ U ≤ Wi

≤ Hk +∆− (1− λ)Hj

λ

V√
n
+ U

)
, (14)

Using the fact that Wi ∼ N(δ
√
n, 1), we can obtain

pj,k = FN

(
Hk +∆− (1− λ)Hj

λ

V√
n
+ U − δ

√
n

)

−FN

(
Hk −∆− (1− λ)Hj

λ

V√
n
+ U − δ

√
n

)
, (15)

where FN(·) is the c.d.f. (cumulative distribution function) of the standard normal N(0, 1)

distribution.

Let Q be the (2m+ 1, 2m+ 1) matrix of probabilities pj,k of moving from one transient
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state to another, i.e.

Q =




p−m,−m · · · p−m,−1 p−m,0 p−m,1 · · · p−m,m

...
...

...
...

...
...

...

p−1,−m · · · p−1,−1 p−1,0 p−1,1 · · · p−1,m

p0,−m · · · p0,−1 p0,0 p0,1 · · · p0,m

p1,−m · · · p1,−1 p1,0 p1,1 · · · p1,m
...

...
...

...
...

...
...

pm,−m · · · pm,−1 pm,0 pm,1 · · · pm,m




, (16)

The run length distribution of the EWMA X̄ chart is determined by the transition

probability matrix Q and the initial probability vector q, which can be represented by a

(2m+ 1, 1) vector q = (q−m, . . . , q−1, q0, q1, . . . , qm), where

qj =





0 if Z0 /∈ (Hj −∆, Hj +∆)

1 if Z0 ∈ (Hj −∆, Hj +∆)
(17)

Since the run length (RL) of the EWMA X̄ chart is a Discrete PHase-type (DPH) random

variable of parameters (Q,q) (see Neuts (1981) or Latouche and Ramaswami (1999)), the

p.m.f. (probability mass function) fRL(ℓ|Q,q) and the c.d.f. FRL(ℓ|Q,q) of the RL defined

for ℓ = {1, 2, 3, . . . } can easily be obtained as follows:

fRL(ℓ|Q,q) = q⊺Qℓ−1r, (18)

FRL(ℓ|Q,q) = 1− q⊺Qℓ1. (19)

where r = 1−Q1 (i.e. row probabilities must sum to 1) with 1 = (1, 1, . . . , 1)T .
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Moreover, the 100ξ (0 < ξ < 1) percentage point RLξ of the run length distribution is

determined as follows (Gan (1994)):

FRL(RLξ − 1) ≤ ξ and FRL(RLξ) > ξ. (20)

By setting ξ = 0.5, we can easily obtain the conditionalMRL (M̂RL) of the EWMA X̄ chart.

It is important to note that, the M̂RL computed using (20) is conditioned on U and V .

From the results in Zhang et al. (2011), we can note that the random variable U follows

a normal (0, 1√
m
) distribution with the p.d.f. fU(u|m) = fN

(
u
∣∣∣0, 1√

m

)
, where fN(·) is the

p.d.f. of a normal distribution and, the random variable V follows a gamma distribution with

the p.d.f. fV (v|m,n) = 2vfγ

(
v2

∣∣∣m(n−1)
2

, 2n
m(n−1)

)
, where fγ(·) is the p.d.f. of the gamma

distribution with parameters m(n−1)
2

and 2n
m(n−1)

.

Considering random variables U and V , the unconditional MRL, denoted as AMRL, of

the EWMA X̄ chart with unknown process parameters can be obtained as follows:

AMRL = E(M̂RL) =

∫ +∞

−∞

∫ +∞

0

M̂RL× fU(u|m)fV (v|m,n)dvdu,

(21)

and the standard deviation of M̂RL, denoted as SDMRL, is

SDMRL =

√
E(M̂RL

2
)− (E(M̂RL))2, (22)
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where

E(M̂RL
2
) =

∫ +∞

−∞

∫ +∞

0

M̂RL
2
× fU(u|m)fV (v|m,n)dvdu.

(23)

Since the integrals in (21) and (23) are difficult to compute directly, the Gauss–Legendre

quadrature is used in our article to obtain an approximation of these integrals.

3 The MRL performance of the EWMA X̄ chart with

unknown process parameters

MRL based control charts with unknown process parameters are often investigated solely

based on the unconditional MRL properties (see Teoh et al. (2015), You et al. (2016) and

Teoh et al. (2016b)). This approach does not unfortunately reflect the sampling variation

or the between-practitioners variability in control charts and unfortunately, it does neither

account for the variability in the conditional MRL values. If this variability is large, the

conditional MRL value of the EWMA X̄ chart corresponding to a specific practitioner can

be far away from the desired in-control MRL (denoted as MRL0).

To illustrate this variability in the conditional in-control MRL performances of the

EWMA X̄ chart, Table 1 displays the AMRL, SDMRL and several percentiles of the in-

controlMRL values of the EWMA X̄ chart for different combinations of λ ∈ {0.1, 0.2, 0.5, 1.0}

and m varying from 20 to 500, when MRL0 = 200 and n = 5. The parameters (λ,K) used

in Table 1 are selected to produce the desired MRL0 for the known parameters case and,

the in-control MRL values of the EWMA X̄ chart have been obtained by simulation using
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105 replications. Because the MRL is an integer, for each value of λ, there are generally

several values of K satisfying the desired MRL0. Without loss of generality, in this article,

we always choose the smallest K that satisfies the desired MRL0.

From Table 1, it can be noted that for small numbers (m ≤ 100) of Phase I samples,

the in-control MRL values are quite variable. For example, when (λ,K) = (0.1, 2.5986) and

m = 50, 50% of the in-control MRL values are smaller than 133 and 10% of the in-control

MRL values are larger than 236. It can be concluded that many MRL values are dispersed

from the desired MRL0 = 200. Even with a larger number of sample size (m = 500), there

is also a large variation in the in-control MRL values. For example, considering the same

example above but with m = 500, there are still 50% of the in-control MRL values smaller

than 187 and 10% of the in-control MRL values larger than 218. This fact shows that,

with a realistic amount of Phase I samples, the conditional in-control MRL values of the

EWMA X̄ chart can be still widely dispersed. Moreover, in order to emphasize this variation

intuitively, Figure 1 also shows the histograms of the in-control MRL values based on 105

simulated EWMA X̄ charts for m ∈ {50, 100, 200, 400} when (λ,K) = (0.1, 2.5986), n = 5

and MRL0 = 200. Percentiles of the conditional MRL values as well as the SDMRL value

are presented in the upper part of Table 1. For example, in Figure 1 (a), when m = 50

Phase I samples are used to estimate the process parameters, 5% of the in-control MRL

values are smaller than 47, 5% of the in-control MRL values are larger than 274 and, the

SDARL value equals to 71.63. In Figure 1 (d), even with m = 400 Phase I samples, a larger

variation of nearly SDMRL = 28.29 still exists.

For other combinations of (λ,K) in Table 1, we can observe a similar trend in the varia-

tion of the in-control MRL distributions. For simplicity, these histograms are not presented

here. Moreover, with the increase in the numberm of Phase I samples, most of the percentiles
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of the MRL values increase and, the extreme upper percentiles and the SDMRL decrease.

For example, when (λ,K) = (0.1, 2.5986), if we increase the number m of Phase I samples

from 50 to 400, the 10% and 50% percentiles of the MRL values increase from 60 up to 148

and from 133 up to 184, respectively. And the 90% percentiles decreases from 236 up to

219, and the SDMRL value decreases from 71.63 up to 28.29. It can also be noted that, for

fixed value of m, with the increase in λ, the corresponding SDMRL values of the EWMA X̄

chart increases. For example, when m = 50, the SDMRL value increases from 71.63 up to

108.09 when λ increases from 0.1 up to 1. Because the Shewhart X̄ chart is a specific case of

the EWMA X̄ chart with λ = 1, this fact shows that the between-practitioners variability in

theMRL performance of the Shewhart X̄ chart is larger than the one of the EWMA X̄ chart.

(Please Insert Table 1 Here)

(Please Insert Figure 1 Here)

The simulation results in Table 1 and Figure 1 show that, with a realistic amount of

Phase I samples, a larger variation exists in the in-control MRL values of the EWMA X̄

chart, especially for large values of λ. This variation is caused by the between-practitioners

variability. To account for the between-practitioners variability, the SDARL is suggested

as a measure for the ARL based control charts. A direct measure of this variability for the

MRL based EWMA X̄ chart is the standard deviation of the MRL (SDMRL).

In order to investigate the properties of the MRL based EWMA X̄ chart with unknown

process parameters, we do not have to only focus on the AMRL performance of the EWMA

X̄ chart, but we also need to focus on its SDMRL performance. Some researchers have con-

sidered SDARL values about 10% of the desired ARL0 as being small enough (see Zhang

et al. (2014) and Saleh et al. (2015a)). Similar to these researches conducted on the ARL
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based control charts, for the MRL based EWMA X̄ chart, we consider the SDMRL values

about 10% of the desired MRL0 as small enough in this article. Under this case, the specific

practitioner may have his(her) own control chart’s MRL value close to the desired MRL0.

Now we are wondering “How many Phase I samples are needed for the EWMA X̄ chart

to have an AMRL or an actual MRL value close to the desired MRL0?” To answer this

question, Tables 2 to 4 present the AMRL and SDMRL values for different combinations

of (λ,K), the desired MRL0 ∈ {100, 200, 500} and m ranging from 20 to 5000 when the

sample size n = 5. The smaller the SDMRL, the smaller the variability in the conditional

MRL values and, at the same time, an actual MRL corresponding to a specific practi-

tioner could be closer to the desired MRL0. Similar to Saleh et al. (2015a), several values of

λ ∈ {0.1, 0.2, 0.5, 1.0} are chosen and the parameter combinations (λ,K) are chosen to satisfy

the desired MRL0 of the EWMA X̄ chart with known process parameters. The SDMRL

values that are about 10% of the desired MRL0 are bolded in each table. Moreover, Table

5 also presents the relative difference between the in-control AMRL and the desired MRL0.

Here, the relative difference is defined as ∆ = |AMRL−MRL0|
MRL0

× 100%.

Some conclusions can be made as follows:

• Based on the AMRL metric, it can be noted from Table 5 that, when MRL0 = 100

and λ = 0.1, if a practitioner wants the relative difference ∆ smaller than 10%, it

requires about m ≃ 250 Phase I samples to estimate the process parameters and it

requires about m ≃ 600 Phase I samples to have a ∆ smaller than 5% (see column 2).

With the increase in the value of λ, the required number of Phase I samples to have

a ∆ smaller than the predetermined percentage decreases. For example, if λ increases

from 0.1 to 1, the required number of Phase I samples decreases from 600 to 20 to have
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a ∆ smaller than 5% (see columns 2 and 5). Moreover, for fixed value of λ, with the

increase in the desired MRL0, the required number of Phase I samples to have a ∆

smaller than the predetermined percentage increases. For example, when λ = 0.1, the

number of Phase I samples increases from 600 up to 1100 to have a ∆ smaller than 5%

when MRL0 increases from 100 up to 500 (see columns 2 and 10).

• Based on the SDMRL metric, it can be noted from Table 2 that: (1) About m ≃ 500

Phase I samples are needed for the EWMA X̄ chart to have an in-control SDMRL to be

about 10% of the desired MRL0 (see the bolded entry in column 3) when MRL0 = 100,

n = 5 and λ = 0.1; (2) For fixed values of m, with the increase in λ, the SDMRL

value also increases. For example, when m = 100, if λ increases from 0.1 up to 1,

the SDMRL values increases from 22.54 up to 29.94. This fact also shows that the

SDMRL values of the Shewhart X̄ chart is larger than the one of the EWMA X̄ chart

for fixed value of m.

• Through the results of Tables 2 to 5, it can be noted that, when MRL0 = 100 and

λ = 0.1, m ≃ 250 andm ≃ 600 Phase I samples are needed to have ∆ smaller than 10%

and 5%, respectively (see Table 5). While considering the SDMRL values in Table

2, it requires about m ≃ 500 Phase I samples to have a SDMRL value about 10%

of the desired MRL0 = 100 (SDMRL = 9.72) and about m ≃ 2000 Phase I samples

to have a SDMRL value about 5% of the desired MRL0 = 100 (SDMRL = 4.37).

We can note that much more Phase I samples are needed based on the SDMRL

metric compared to the AMRL metric. For larger values of λ, in order to have ∆ or

SDMRL values smaller than the predetermined percentage, the required number of

Phase I samples needed for the SDMRL metric are far more larger than the one for

the AMRL metric. For example, in Tables 2 and 5, when λ = 0.5, it requires about

m ≃ 150 Phase I samples (see column 4 in Table 5) to have a ∆ smaller than 5%.
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This number increases up to 3000 to have a SDMRL value about 5% of the desired

MRL0 = 100 (see column 7 in Table 2). Moreover, for fixed values of m and λ, it

can also be noted that the SDMRL value increases with the increase in the desired

MRL0. For example, when m = 200 and λ = 0.1, the SDMRL value increases from

16.19 up to 127.48 when the MRL0 value increases from 100 to 500 (see columns 3 in

Tables 2 and 4). This fact shows that if practitioners want a larger in-controlMRL0 for

the EWMA X̄ chart with unknown process parameters, they should be more cautious

about a large variability in the actual in-control MRL values.

(Please Insert Tables 2 to 5 Here)

Based on the results presented above, m ≃ 200 Phase I samples are large enough to have

∆ values smaller than 10%, except for the λ = 0.1 case. Even for the λ = 0.1 case, at most

m ≃ 400 Phase I samples can ensure that the ∆ value is smaller than 10% (see column 10

of Table 5). While at least m ≃ 500 Phase I samples are needed for the EWMA X̄ chart

to obtain an in-control SDMRL value about 10% of the desired MRL0 (see column 3 in

Table 2). However in practice, this large number of Phase I samples is sometimes hard and

too costly to collect. So with a realistic amount of Phase I samples, the practitioner has no

confidence that the in-control MRL value of the specific EWMA X̄ chart will be close to

the desired MRL0. As presented in Table 1, if λ = 0.1, n = 5 and the desired MRL0 = 200,

there are still 50% of the in-control MRL values smaller than 187 with m = 500 Phase I

samples. For this reason, in the next section, the control limits of the EWMA X̄ chart are

adjusted to avoid too many small in-control MRL values.
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4 Adjustments of the control limits of the MRL based

EWMA X̄ chart

With a realistic number of Phase I samples, the variability in the in-control MRL values of

the EWMA X̄ chart is large. The EWMA X̄ charts corresponding to many practitioners may

have MRL values smaller than the desired MRL0. This will cause a larger false alarm than

the one desired in the implementation of the MRL based EWMA X̄ chart. Therefore, there

is the need of having an alternative technique for controlling the in-control performances of

the MRL based EWMA X̄ chart.

In order to avoid many too small in-control MRL values for the EWMA X̄ chart, a

bootstrap type approach introduced in Gandy and Kvaloy (2013) is used here to adjust

the control limits to guarantee the conditional in-control MRL values to be larger than the

desired MRL0 with a high fixed probability. Recently, some researchers have applied this

approach to design ARL based control charts (see Saleh et al. (2015a), Faraz et al. (2015),

Hu and Castagliola (2017), Aly et al. (2015), Saleh et al. (2016), Faraz et al. (2017)). The

bootstrap approach was shown to balance the in-control and out-of-control performances of

control charts well. In this article, it will also be adopted to design the MRL based EWMA

X̄ chart with unknown process parameters. The steps for obtaining the adjusted control

limits of the MRL based EWMA X̄ chart are summarized as follows:

(1) Generate a Phase I data setXi,j composed of i = 1, 2, . . . , m samples {Xi,1, Xi,2, . . . , Xi,n}

of size n from the (assumed) true in-control distribution P = P (µ0, σ0) of Xi,j, and

compute the estimated parameters µ̂0 and σ̂0 as in (6) and (7).

(2) Set the value of λ and compute the quantity K(P̂ , θ̂) that produces a desired in-control

MRL0, where P̂ = P (µ̂0, σ̂0) is the estimated in-control distribution and θ̂ = (µ̂0, σ̂0)
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is the estimated process parameters used to set the EWMA statistic in its standardized

form.

(3) Generate m samples each of size n from P̂ = P (µ̂0, σ̂0) and compute the estimated

process parameters θ̂∗b = (µ̂∗
b , σ̂

∗
b ).

(4) Find the quantity K(P̂ , θ̂∗b ) that produces the desired MRL0, where θ̂
∗
b is used to set the

EWMA statistic in its standardized form.

(5) Repeat Steps (3) to (4) B times and get the adjusted control limit Ka as the α∗ ordered

value of these control limits, where α∗ is the specified probability that the practitioner

expected the in-control MRL values larger than the desired MRL0.

(6) Set up the EWMA X̄ chart with the initial Phase I data set Xi,j and the adjusted control

limitKa. Compute the in-control and out-of-controlMRL values for the EWMA X̄ chart

with Phase II data from the (assumed) in-control distribution.

In the previous steps, we consider m = 50 Phase I samples, each with size n = 5 as

realistic and they are generated from the true in-control distribution P , which is assumed

to be a standard normal distribution. The desired in-control MRL0 is set to be 200. It is

also expected that the in-control MRL values will be larger than the desired MRL0 with a

specified probability α∗ = 0.9. By repeating 1000 times the steps (1)-(6), it is expected that

90% of the conditional in-control MRL values for the EWMA X̄ chart will be larger than

the desired MRL0 = 200. As a comparison, by setting λ = 1 in the EWMA X̄ chart, the

conditional performances for the Shewhart X̄ chart with unknown process parameters are

also simulated with the same parameter settings. Programs written in Matlab are used for

the simulations in this paper.
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Figures 2 and 3 show the boxplots of these in-control and out-of-control MRL values

for the EWMA and the Shewhart X̄ charts with the adjusted and unadjusted limits. The

control limits are denoted as “Adjusted Limits” when they are adjusted with the bootstrap

approach. Otherwise, they are denoted as “Unadjusted Limits”.

(Please Insert Figures 2 to 3 Here)

When the process is in-control, it can be noted from Figures 2 that the “Adjusted Lim-

its” can guarantee about 90% of the in-control MRL values for the EWMA and Shewhart

X̄ charts larger than the desired MRL0 = 200. While for the “Unadjusted Limits” cases,

about 50% of the EWMA X̄ charts have in-control MRL values smaller than 134 and about

90% of the EWMA X̄ charts have in-control MRL values only larger than 229. This fact

shows that many of the “Unadjusted Limits” EWMA X̄ charts have a higher false alarm

rate than the ones with the “Adjusted Limits”. Moreover, in the case of adjusted limit, it is

noted that most of the in-control MRL values for the EWMA X̄ charts are larger than the

ones for the Shewhart X̄ charts.

When the process is out-of-control, suppose there is a shift δ ∈ {0.2, 0.4, 0.6, 0.8} in the

process mean. The out-of-control MRL values for the EWMA and Shewhart X̄ charts with

the “Adjusted Limits” and “Unadjusted Limits” are presented in Figure 3. It can be noted

that for small shift size (δ ≤ 0.2), the out-of-control MRL values for the EWMA X̄ charts

with “Adjusted Limits” are obviously larger than the ones for the EWMA X̄ charts with

“Unadjusted Limits”. For example, in Figure 3 (a), when δ = 0.2, we have MRL = 47 for

the EWMA X̄ chart with “Adjusted Limits” which is larger than MRL = 24 for the EWMA

X̄ chart with “Unadjusted Limits”. For moderate to large shifts, the difference between the

out-of-control MRL values for the EWMA X̄ charts with adjusted or unadjusted limits are
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not so obvious. For example, in Figure 3 (c), when δ = 0.6, the median of the out-of-control

MRL values for the EWMA X̄ charts are about 8 and 6 for the “Adjusted Limits” and

“Unadjusted Limits” cases, respectively. Moreover, most of the out-of-control MRL values

for the Shewhart X̄ charts are larger than the ones for the EWMA X̄ charts, no matter if

the limits are adjusted or not, which shows the advantage of the MRL based EWMA X̄

chart over the MRL based Shewhart X̄ chart for the detection of process mean shifts.

5 Conclusions and recommendations

The researches on the EWMA X̄ chart with unknown process parameters done before are

mainly focused on the chart’s unconditional performance, thus ignoring the variability be-

tween practitioners. Considering this issue, in this article, the conditional performance of

the MRL based EWMA X̄ chart with unknown process parameters is investigated. The

MRL metric is used as the conditional measure for the highly skewed run length distribu-

tions of the EWMA X̄ chart. Some tables and figures have been presented to assess the

between-practitioners variability for the MRL based EWMA X̄ chart. General results show

that the number of Phase I samples to reduce the between-practitioners variability of the

EWMA X̄ chart up to an acceptable level is far larger than the one needed for Phase I

samples based on the unconditional MRL performances. With a realistic number of Phase I

samples, the specific practitioner has no confidence of his/her own EWMA X̄ chart’s MRL

performance. Thus, the bootstrap approach is recommended to adjust the control limits of

the MRL base EWMA X̄ chart and the results show that the adjusted control limits can

actually balance the in-control and out-of-control MRL performances well, except for some

small mean shifts. As this work is done for the univariate case, future works can be extended

to the multivariate control charts.
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Table 1: The distribution of the in-control MRL of the EWMA X̄ chart for different values
of (λ,K) and m when MRL0 = 200 and n = 5

m 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th AMRL SDMRL
(λ,K) = (0.1, 2.5986)

20 24 31 44 58 74 92 113 139 175 238 307 119.36 102.00
30 32 42 58 75 92 111 131 155 186 238 291 129.41 86.78
50 47 60 80 99 116 133 150 171 196 236 274 142.41 71.63
80 64 79 101 119 135 149 164 181 201 232 260 153.78 60.35
100 73 89 111 128 143 156 170 184 202 229 254 158.75 54.95
200 106 122 140 153 164 173 183 194 206 225 240 173.58 40.48
300 124 137 153 164 172 180 188 197 207 222 234 180.06 33.24
400 136 148 161 170 178 184 191 198 207 219 229 183.95 28.29
500 144 155 167 174 181 187 193 199 207 218 227 186.56 25.17

(λ,K) = (0.2, 2.7677)

20 27 36 52 68 85 105 128 157 202 281 371 140.11 127.75
30 38 50 69 86 104 123 145 171 208 272 337 147.35 103.32
50 56 71 92 109 126 143 162 184 214 261 307 157.78 80.72
80 76 92 113 129 144 158 174 192 215 252 286 166.86 65.28
100 87 102 122 138 151 165 179 195 216 248 278 171.42 59.25
200 118 131 147 159 169 179 189 201 215 236 255 182.01 41.86
300 134 145 159 168 177 185 193 203 214 231 246 186.85 34.04
400 144 154 165 174 181 188 196 203 213 228 240 189.64 29.33
500 151 159 170 177 184 190 196 204 212 225 236 191.17 25.94

(λ,K) = (0.5, 2.8966)

20 38 49 68 87 107 130 159 197 253 364 493 181.90 181.06
30 52 66 87 105 125 146 172 203 250 335 428 181.46 134.72
50 74 88 109 126 144 163 184 209 245 306 368 184.15 97.45
80 94 108 127 144 159 175 192 213 240 285 329 188.26 75.10
100 103 116 135 149 164 178 194 213 237 276 313 189.27 66.78
200 129 140 155 167 177 188 199 212 229 254 277 193.49 45.93
300 141 151 164 174 183 192 201 211 224 244 262 195.15 37.15
400 149 157 169 178 186 193 202 211 222 238 253 196.15 32.07
500 154 162 172 180 188 195 202 210 220 234 247 196.83 28.69

(λ,K) = (1.0, 2.9221)

m 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th AMRL SDMRL
20 50 64 86 107 131 158 192 237 304 434 592 220.80 220.45
30 66 81 103 124 146 171 199 235 289 385 493 211.55 155.52
50 86 101 122 141 160 180 204 233 272 338 407 205.29 108.09
80 103 117 137 154 170 187 206 228 258 306 353 202.49 80.95
100 111 125 144 159 174 189 206 226 251 294 335 201.75 70.86
200 133 145 160 172 183 194 206 220 237 264 289 200.39 48.42
300 144 154 167 177 187 196 206 217 231 251 270 199.97 39.00
400 150 159 171 180 189 197 205 214 226 244 259 199.73 33.50
500 155 164 174 183 190 197 205 213 224 239 253 199.77 29.96
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Table 2: In-Control AMRL and SDMRL for different combinations of (λ,K) and m when
n = 5 and MRL0 = 100

(λ,K) = (0.1, 2.3030) (λ,K) = (0.2, 2.5025) (λ,K) = (0.5, 2.6619) (λ,K) = (1, 2.6980)

m AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL
20 64.28 40.97 71.83 51.01 88.27 70.40 104.82 85.00
30 69.43 35.65 76.07 42.15 89.53 53.91 102.10 62.22
50 75.87 29.79 81.36 33.57 91.75 40.20 100.55 44.59
70 79.78 26.16 84.69 28.81 93.19 33.53 100.08 36.55
100 83.65 22.54 87.74 24.34 94.64 27.74 99.79 29.94
150 87.43 18.65 90.73 19.93 95.97 22.46 99.65 24.01
200 89.73 16.19 92.46 17.21 96.69 19.35 99.60 20.64
250 91.24 14.36 93.63 15.29 97.25 17.27 99.57 18.38
300 92.38 13.03 94.51 13.92 97.53 15.70 99.56 16.72
400 93.81 11.09 95.55 11.92 98.03 13.55 99.55 14.41
500 94.82 9.72 96.24 10.57 98.30 12.09 99.50 12.87
600 95.53 8.79 96.80 9.56 98.51 11.01 99.55 11.75
700 96.03 8.02 97.12 8.79 98.65 10.18 99.51 10.85
800 96.44 7.42 97.40 8.18 98.69 9.54 99.53 10.11
900 96.76 6.95 97.66 7.68 98.87 8.94 99.49 9.57

1000 97.00 6.51 97.81 7.28 98.92 8.50 99.57 9.04
1100 97.22 6.17 97.97 6.90 98.98 8.12 99.57 8.62
1300 97.54 5.61 98.20 6.34 99.05 7.43 99.46 7.86
1500 97.80 5.19 98.35 5.86 99.09 6.94 99.51 7.38
2000 98.18 4.37 98.63 5.04 99.20 5.98 99.55 6.39
2500 98.44 3.90 98.84 4.51 99.26 5.38 99.52 5.70
3000 98.65 3.51 98.88 4.04 99.28 4.90 99.54 5.18
5000 98.99 2.67 99.15 3.16 99.38 3.78 99.49 3.93
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Table 3: In-Control AMRL and SDMRL for different combinations of (λ,K) and m when
n = 5 and MRL0 = 200

(λ,K) = (0.1, 2.5986) (λ,K) = (0.2, 2.7677) (λ,K) = (0.5, 2.8966) (λ,K) = (1, 2.9221)

m AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL
20 119.08 100.74 140.20 129.91 182.05 182.97 222.06 221.26
30 128.90 86.08 147.40 103.75 181.58 134.44 211.69 155.58
50 142.05 71.82 157.77 81.29 184.32 97.40 205.31 107.86
70 150.55 63.45 164.57 69.65 186.74 80.42 203.08 87.28
100 159.13 55.23 171.28 58.98 189.32 66.25 201.73 70.81
150 167.93 46.42 178.02 48.52 191.88 53.43 200.78 56.46
200 173.45 40.56 182.09 42.02 193.48 45.92 200.42 48.34
250 177.24 36.33 184.87 37.47 194.45 40.90 200.19 42.96
300 180.09 33.10 186.85 34.09 195.20 37.21 200.04 39.05
400 184.00 28.36 189.55 29.26 196.21 32.08 199.90 33.63
500 186.56 25.06 191.23 25.99 196.83 28.62 199.82 29.96
600 188.39 22.60 192.47 23.54 197.25 26.07 199.74 27.30
700 189.78 20.73 193.42 21.68 197.53 24.07 199.70 25.24
800 190.79 19.16 194.07 20.18 197.76 22.50 199.72 23.57
900 191.70 17.90 194.70 18.93 197.95 21.22 199.67 22.22
1000 192.37 16.83 195.07 17.93 198.10 20.10 199.63 21.06
1100 193.01 15.93 195.53 17.07 198.21 19.19 199.64 20.08
1300 193.88 14.47 196.04 15.58 198.42 17.60 199.63 18.41
1500 194.58 13.32 196.49 14.44 198.58 16.35 199.61 17.14
2000 195.77 11.29 197.22 12.42 198.83 14.16 199.56 14.86
2500 196.49 9.94 197.68 11.04 198.98 12.66 199.61 13.24
3000 196.96 8.98 197.97 10.05 199.05 11.55 199.51 12.05
5000 198.00 6.80 198.57 7.72 199.28 8.94 199.50 9.40
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Table 4: In-Control AMRL and SDMRL for different combinations of (λ,K) and m when
n = 5 and MRL0 = 500

(λ,K) = (0.1, 2.9443) (λ,K) = (0.2, 3.0819) (λ,K) = (0.5, 3.1809) (λ,K) = (1, 3.1972)

m AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL
20 280.70 336.41 352.53 454.53 487.13 663.59 611.64 813.12
30 300.29 271.77 362.48 337.64 470.18 446.60 561.94 520.67
50 330.83 220.70 384.02 254.11 467.36 307.25 530.91 341.30
70 352.39 194.64 400.21 215.49 470.35 249.25 520.00 270.44
100 375.20 170.07 417.31 181.84 474.98 202.95 512.79 216.10
150 399.74 144.42 435.32 149.72 480.47 162.44 507.82 170.55
200 415.70 127.48 446.65 129.96 483.98 139.29 505.57 145.27
250 427.08 115.11 454.54 116.18 486.45 123.81 504.25 128.66
300 435.59 105.43 460.36 105.86 488.32 112.56 503.39 116.66
400 447.62 91.22 468.33 91.19 490.78 96.87 502.42 100.24
500 455.77 81.07 473.55 81.09 492.26 86.33 501.88 89.22
600 461.67 73.46 477.24 73.62 493.34 78.58 501.48 81.20
700 466.09 67.44 480.11 67.82 494.16 72.63 501.21 75.02
800 469.68 62.63 482.22 63.16 494.81 67.86 500.99 70.08
900 472.48 58.57 484.05 59.32 495.32 63.92 500.84 65.99
1000 474.85 55.13 485.39 56.10 495.71 60.53 500.73 62.51
1100 476.84 52.27 486.50 53.31 496.03 57.67 500.62 59.56
1200 478.49 49.70 487.63 50.96 496.33 55.20 500.50 56.97
1300 479.98 47.47 488.42 48.80 496.57 53.00 500.44 54.70
1400 481.23 45.50 489.17 46.91 496.79 51.04 500.43 52.67
1500 482.33 43.72 489.82 45.25 496.92 49.29 500.34 50.85
1600 483.24 42.10 490.34 43.73 497.15 47.72 500.33 49.26

2000 486.24 37.01 492.11 38.82 497.63 42.60 500.20 44.00
2500 488.77 32.61 493.50 34.56 498.00 38.10 500.05 39.30
3000 490.47 29.42 494.50 31.44 498.24 34.77 500.00 35.87
5000 493.99 22.08 496.47 24.15 498.75 26.88 499.87 27.74
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(a) (b)

(c) (d)

Figure 1: Histograms of the in-control MRL values for (a) m = 50, (b) m = 100, (c)
m = 200, (d) m = 400 when (λ,K) = (0.1, 2.5986), MRL0 = 200 and n = 5.(The red line
corresponds to the MRL0 = 200 on the horizontal axis)
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Figure 2: The boxplots of the in-control MRL values for the EWMA and Shewhart X̄ charts
with the adjusted and unadjusted limits.
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(a) δ = 0.2
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(b) δ = 0.4
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(c) δ = 0.6
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(d) δ = 0.8

Figure 3: The boxplots of the out-of-control MRL values for the EWMA and Shewhart X̄
charts with the adjusted and unadjusted limits for δ ∈ {0.2, 0.4, 0.6, 0.8}
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