Xuelong Hu 
  
Philippe Castagliola 
  
Anan Tang 
email: tanganan2@sina.com
  
Jianlan Zhong 
  
Guaranteed conditional performance of the median run length based EWMA X chart with unknown process parameters

Keywords: EWMA X chart, median run length, estimated parameters, average median run length, standard deviation of median run length

Exponentially weighted moving average (EWMA) type charts are very popular and efficient in monitoring various kind of statistics. Much researches have been done on the EWMA X chart with known process parameters. But, in practice, the process parameters used to set the control chart limits are often unknown and they need to be estimated from different Phase I samples. Moreover, because the shape of the run length distribution for the EWMA X chart changes with the mean shift, the median 1 run length (M RL) can serve as a good alternative to evaluate the performance of the EWMA X chart. In this article, we will investigate the conditional properties of the EWMA X chart with unknown process parameters based on the M RL metric. In order to investigate the chart's properties, the average M RL (AM RL) and the standard deviation of M RL (SDM RL) will be used together when the process parameters are unknown. To prevent too many lower in-control M RL values, the adjusted control limits of the M RL based EWMA chart are obtained by using a bootstrap type approach and the results show that the adjusted control limits can give a good tradeoff between the in-control and out-of-control M RL performances.

Introduction

Control charts in statistical process control (SPC) are usually used to achieve process stability through the detection of the process variability. Among all types of control charts, a traditional one is the Shewhart type chart. This memoryless type chart is easy to implement and it is efficient to detect large changes in a process. But, for small or moderate changes, it is not as efficient compared to some memory type charts, like exponentially weighted moving average (EWMA) or cumulative sum (CUSUM) type charts. The EWMA type charts are popular for their efficiency in detecting small or moderate shifts in a process [START_REF] Montgomery | Introduction to Statistical Quality Control[END_REF]).

Since [START_REF] Roberts | Control Charts Tests Based on Geometric Moving Averages[END_REF] first recognized the application of the EWMA approach for monitoring processes, much researches have been conducted. [START_REF] Lucas | Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements[END_REF] evaluated the RL distribution of the EWMA control chart using a Markov chain method. When the process observations are correlated, [START_REF] Lu | EWMA Control Charts for Monitoring the Mean of Autocorrelated Processes[END_REF] proposed an EWMA chart to monitor the residuals from the forecast values of the correlated model. [START_REF] Borror | Robustness of the EWMA Control Chart to Non-normality[END_REF] investigated the properties of the EWMA X chart when observations are non-normal, and they showed that the EWMA chart is a robust alternative when the normality assumption cannot be guaranteed. [START_REF] Knoth | Run Length Quantiles of EWMA Control Charts Monitoring Normal Mean or/and Variance[END_REF] evaluated the quantile performance of EWMA control charts with variance adjusted control limits and with FIR (fast initial response) features. [START_REF] Maravelakis | Run Length Properties of Run Rules EWMA Chart using Integral Equations[END_REF] investigated the Run Rules EWMA chart's properties using integral equations and the results show that the Run Rules feature can improve the performance of the EWMA chart. These researches are all focused on EWMA type charts with known process parameters.

In practice, in the implementation of control charts, the process parameters are usually unknown and they need to be estimated from in-control observations. Generally two phases (Phase I and Phase II) are applied in the implementation of control charts. In Phase I, an in-control reference sample is collected to estimate the process parameters, which are then used to set the control limits of a Phase II control chart. In Phase II, samples collected from the process are prospectively plotted on the control chart for the detection of assignable cause(s). For simplicity, a Phase II control chart's performance is usually investigated based on the assumption of known process parameters. Since different practitioners use different Phase I samples to estimate the process parameters, this causes a variability in these estimated process parameters. Thus, the control chart's performance will vary among different practitioners, causing the so called between-practitioners variability effect in the properties of control charts [START_REF] Saleh | The Diffculty in Designing Shewhart X and X Conrol Charts with Estimated Parameters[END_REF]).

Numerous researches have been conducted on EWMA type charts with unknown process parameters. [START_REF] Jones | The Statistical Design of EWMA Control Charts with Estimated Parameters[END_REF] developed design procedures for the EWMA X chart with estimated parameters. [START_REF] Castagliola | The EWMA Median Chart with Estimated Parameters[END_REF] investigated the properties of the EWMA median chart with estimated process parameters and they suggested dedicated chart parameters for different amount of Phase I samples. Considering the between practitioners variability, Saleh et al. (2015a) investigated the conditional performance of the EWMA X chart and suggested to use a bootstrap approach to adjust the control chart parameters.

For a comprehensive literature review involving parameter estimation, readers may refer to [START_REF] Jensen | Effects of Parameter Estimation on Control Chart Properties: A Literature Review[END_REF] and [START_REF] Psarakis | Some Recent Developments on the Effects of Parameter Estimation on Control Charts[END_REF].

A Phase II control chart's property is generally measured by the average run length (ARL), which is defined as the average number of samples required until the chart gives an out-of-control signal. As pointed in [START_REF] Montgomery | Introduction to Statistical Quality Control[END_REF], the shape of the run length (RL) distribution of control charts changes for different mean shift sizes, i.e. from highly right skewed in the in-control state to nearly symmetric when the shift size in the out-of-control state is large. Therefore, the interpretation based on the ARL for highly skewed and nearly symmetric RL distributions are certainly different. For example, the EWMA X chart with appropriate parameters can have an in-control ARL of 1000, but with a median run length (MRL) value equals to 695, which means half of the RLs are smaller than 695. When there is one standard deviation shift in the process mean, the ARL is 11.7 and half of the RLs,

i.e. MRL, are smaller than 10 ( [START_REF] Gan | An Optimal Design of EWMA Control Charts Based on Median Run Length[END_REF]).

Recently, the only use of the ARL to measure the performance of control charts has been criticized by many researchers, to name a few, see [START_REF] Gan | An Optimal Design of EWMA Control Charts Based on Median Run Length[END_REF], [START_REF] Gan | An Optimal Design of Cumulative Sum Control Chart Based on Median Run Length[END_REF], [START_REF] Jones | The Run Length Distribution of the CUSUM with Estimated Parameters[END_REF], [START_REF] Chakraborti | Run Length Distribution and Percentiles: The Shewhart X Chart with Unknown Parameters[END_REF] and [START_REF] Tang | Optimal Design of the Aadaptive EWMA Chart for the Mean Based on Median Run Length and Expected Median Run Length[END_REF]. All these researches pointed out the disadvantage of the interpretation based only on the ARL, because the shape of the RL distribution changes with the mean shift. On the other hand, the MRL does not have this interpretation problem. For this advantage, some researchers recommended the usage of the MRL as an efficiency measure for control charts. [START_REF] Gan | An Optimal Design of EWMA Control Charts Based on Median Run Length[END_REF][START_REF] Gan | An Optimal Design of Cumulative Sum Control Chart Based on Median Run Length[END_REF] have investigated the properties of the EWMA and CUSUM X charts based on MRL. [START_REF] Khoo | Optimal Design of the Synthetic Chart for the Process Mean Based on Median Run Length[END_REF][START_REF] Khoo | Optimal Designs of the Multivariate Synthetic Chart for Monitoring the Process Mean Vector Based on Median Run Length[END_REF] have also investigated the properties of the univariate and multivariate synthetic charts based on the MRL. For other more researches on the design of MRL based charts, readers may refer to Teoh et al. (2016a) for variable sample size chart, [START_REF] Tang | Optimal Design of the Aadaptive EWMA Chart for the Mean Based on Median Run Length and Expected Median Run Length[END_REF] for the adaptive EWMA chart, and [START_REF] Lee | Optimal Design of Synthetic np Control Chart Based on Median Run Length[END_REF] for the the synthetic np attribute chart.

All the researches based on the MRL, referenced above, assume that the chart parameters are all known. For the unknown process parameters case, the properties of MRL based control charts with estimated parameters have also been investigated by some researchers, see [START_REF] Chakraborti | Run Length Distribution and Percentiles: The Shewhart X Chart with Unknown Parameters[END_REF], [START_REF] Teoh | A Median Run Length-Based Double-Sampling X Chart with Estimated Parameters for Minimizing the Average Sample Size[END_REF], [START_REF] Teoh | The Exact Run Length Distribution and Design of the Shewhart Chart with Estimated Parameters Based on Median Run Length[END_REF] and [START_REF] You | Optimal Exponentially Weighted Moving Average Charts with Estimated Parameters Based on Median Run Length and Expected Median Run Length[END_REF]. These researches only focused on the marginal MRL performance of control charts with estimated parameters. When the process parameters are estimated from different Phase I samples, the MRL based charts will also have the "between-practitioners variability" problem.

Considering the between-practitioners variability, on one hand, much researches have been conducted on the ARL based control charts for different type charts, see [START_REF] Saleh | The Diffculty in Designing Shewhart X and X Conrol Charts with Estimated Parameters[END_REF], Saleh et al. (2015a), [START_REF] Faraz | Guaranteed Conditional Performance of the S 2 Control Chart with Estimated Parameters[END_REF], [START_REF] Hu | Guaranteed Conditional Design of the Median Chart with Estimated Parameters[END_REF], [START_REF] Keefe | The Conditional In-Control Performance of Self-Starting Control Charts[END_REF], [START_REF] Aly | A Re-evaluation of the Adaptive Exponentially Weighted Moving Average Control Chart When Parameters are Estimated[END_REF], [START_REF] Aly | The Performance of the Multivariate Adaptive Exponentially Weighted Moving Average Control Chart with Estimated Parameters[END_REF], Geodhart et al. (2017a) and [START_REF] Geodhart | Guaranteed In-Control Performance for the Shewhart X and X Control Charts[END_REF]. These researches recommended to use the average ARL (AARL), combined with the standard deviation of ARL (SDARL) to give a more complete picture of control charts'

properties. On the other hand, for the MRL based control charts, it is also important to investigate the between-practitioners variability.

Although numerous researches have been done on EWMA type charts, as far as we know, considering the between-practitioners variability, no research has been conducted on the MRL based EWMA X chart with unknown process parameters. Since the between-practitioners variability causes a large variation in the in-control and out-of-control performances of control charts, this suggests us that the MRL based EWMA X chart also needs to be investigated based on the average (AMRL) and the standard deviation (SDMRL) of the MRL.

The rest of this paper is organized as follows: First, Section 2 presents the run length properties of the EWMA X chart with unknown process parameters using the Markov chain approach. Based on the average, the standard deviation, and several percentiles of the MRL distribution, we investigate in Section 3 the MRL performance of the EWMA X chart with unknown process parameters. In Section 4, the bootstrap adjustment of the control limits and the corresponding in-control and out-of-control performances of the EWMA X chart are discussed. Finally, some conclusions and recommendations are made in Section 5.

In addition, an online supplement is provided to discuss the following: (i) a brief background of the MRL based EWMA X chart; (ii) an example introduced in Montgomery ( 2009) is given to illustrate the use of the MRL based EWMA X chart.

2 The run length properties of the EWMA X chart with unknown process parameters

Model standardization

Suppose that the subgroups {Y i,1 , Y i,2 , . . . , Y i,n } of size n, at sampling time i are consecutively collected. We assume that there is independence within and between these subgroups and, Y follows a normal distribution Y ∼ N(µ 0 + δσ 0 , σ 0 ), where µ 0 and σ 0 are the in-control mean and standard deviation, respectively, and δ is the magnitude of the standardized mean shift. The process is considered to be in-control when δ = 0. Otherwise (δ = 0), the process is out-of-control. The EWMA chart statistic Z ′ i , at sampling time i, is defined as

Z ′ i = λ Ȳi + (1 -λ)Z ′ i-1 (1) 
where Ȳi = 1 n n j=1 Y i,j is the sample mean of subgroup i and λ (0 < λ ≤ 1) is a smoothing constant. The initial value Z ′ 0 is usually set to be the target value of a process, i.e. Z ′ 0 = µ 0 .

When the process parameters µ 0 and σ 0 are known, the lower control limit (LCL ′ ) and the upper control limit (UCL ′ ) of the EWMA X chart are equal to,

LCL ′ = µ 0 -K λ 2 -λ σ 0 √ n , (2) 
UCL ′ = µ 0 + K λ 2 -λ σ 0 √ n . ( 3 
)
where K is a constant chosen to satisfy the desired in-control performance of the control chart. The EWMA X chart signals when the statistic Z ′ i fall outside the control limits in (2) and (3).

In order to investigate the properties of the EWMA X chart, this article adopts the standardized form of the EWMA statistic (see [START_REF] Jones | The Statistical Design of EWMA Control Charts with Estimated Parameters[END_REF] and Saleh et al. (2015a)):

Z i = λW i + (1 -λ)Z i-1 (4) 
with

W i = Ȳi -µ 0 σ 0 / √ n . ( 5 
)
and the initial value of the EWMA statistic W 0 is 0.

When the process parameters µ 0 and σ 0 are unknown, they need to be estimated from a Phase I data set, composed of i = 1, 2, . . . , m subgroups {X i,1 , . . . , X i,n } of size n, where X is assumed to be a N(µ 0 , σ 0 ) random variable. A natural estimator μ0 of

µ 0 is μ0 = 1 m m i=1 Xi , (6) 
and a pooled estimator σ0 for σ 0 [START_REF] Jensen | Effects of Parameter Estimation on Control Chart Properties: A Literature Review[END_REF]) is,

σ0 = 1 m(n -1) m i=1 n j=1 (X i,j -Xi ) 2 , ( 7 
)
where Xi = 1 n n j=1 X i,j is the ith sample mean.

By substituting µ 0 and σ 0 with the corresponding estimators in ( 6) and ( 7), the standardized form of the EWMA statistic with estimated parameters is,

Z i = λ W i + (1 -λ) Z i-1 (8) 
with

W i = Ȳi -µ 0 σ 0 / √ n (9) 
After some manipulations, we can re-rewrite (9) as follows:

W i = (W i -U) √ n V ( 10 
)
where

W i = Ȳi -µ 0 σ 0 / √ n , U = (μ 0 -µ 0 ) √ n σ 0 and V = σ0 σ 0 √ n.
Under the standardized case, the control limits of the EWMA X chart become,

LCL = -K λ 2 -λ , (11) 
UCL = +K λ 2 -λ . ( 12 
)
It must be noted that these control limits remain the same no matter if the chart parameters µ 0 and σ 0 are known or estimated.

The Markov chain approach

Generally, three approaches can be used to obtain the run length distribution of the EWMA type charts: (i) Integral equations; (ii) Markov chain approach; (iii) Monte-Carlo simulations. Following some researches done on the EWMA type charts (see [START_REF] You | Optimal Exponentially Weighted Moving Average Charts with Estimated Parameters Based on Median Run Length and Expected Median Run Length[END_REF], [START_REF] Castagliola | The EWMA Median Chart with Estimated Parameters[END_REF] and Saleh et al. (2015a)), this paper mainly focused on the Markov chain approach. Using the Markov chain approach introduced in [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF], the run length properties of the EWMA X chart can be obtained by dividing the interval

[LCL, UCL] into 2m + 1 subintervals (H j -∆, H j + ∆), j = {-m, . . . , 0, . . . , m}, each of width 2∆ = U CL-LCL 2m+1 . Let H j = LCL+U CL 2 + 2j∆
represents the midpoint of the jth interval.

By dividing the interval [LCL, UCL] into a large number of subintervals, the statistic Z i is said to be equal to

H j at time i, if H j -∆ < Z i < H j + ∆, j = -m, . . . , 0, . . . , m. Otherwise,
if the statics falls outside the control limits, the Markov chain reached the absorbing state.

The transient states are referred to be as in-control states, and the absorbing state is referred to be as the out-of-control state.

The probability p j,k that the control statistic goes from state j to state k in one step is equal to,

p j,k = P ( Z i ∈ (H k -∆, H k + ∆)| Z i-1 = H j ), (13) 
Replacing

Z i = λ W i + (1 -λ) Z i-1 yields, p j,k = P H k -∆ -(1 -λ)H j λ ≤ W i ≤ H k + ∆ -(1 -λ)H j λ , = P H k -∆ -(1 -λ)H j λ V √ n + U ≤ W i ≤ H k + ∆ -(1 -λ)H j λ V √ n + U , (14) 
Using the fact that W i ∼ N(δ √ n, 1), we can obtain

p j,k = F N H k + ∆ -(1 -λ)H j λ V √ n + U -δ √ n -F N H k -∆ -(1 -λ)H j λ V √ n + U -δ √ n , (15) 
where F N (•) is the c.d.f. (cumulative distribution function) of the standard normal N(0, 1) distribution.

Let Q be the (2m + 1, 2m + 1) matrix of probabilities p j,k of moving from one transient state to another, i.e.

Q =                    p -m,-m • • • p -m,-1 p -m,0 p -m,1 • • • p -m,m . . . . . . . . . . . . . . . . . . . . . p -1,-m • • • p -1,-1 p -1,0 p -1,1 • • • p -1,m p 0,-m • • • p 0,-1 p 0,0 p 0,1 • • • p 0,m p 1,-m • • • p 1,-1 p 1,0 p 1,1 • • • p 1,m . . . . . . . . . . . . . . . . . . . . . p m,-m • • • p m,-1 p m,0 p m,1 • • • p m,m                    , (16) 
The run length distribution of the EWMA X chart is determined by the transition probability matrix Q and the initial probability vector q, which can be represented by a (2m + 1, 1) vector q = (q -m , . . . , q -1 , q 0 , q 1 , . . . , q m ), where

q j =      0 if Z 0 / ∈ (H j -∆, H j + ∆) 1 if Z 0 ∈ (H j -∆, H j + ∆) (17) 
Since the run length (RL) of the EWMA X chart is a Discrete PHase-type (DPH) random variable of parameters (Q, q) (see [START_REF] Neuts | Matrix-Geometric Solutions in Stochastic Models: an Algorithmic Approach[END_REF] or [START_REF] Latouche | Introduction to Matrix Analytic Methods in Stochastic Modelling[END_REF]), the p.m.f. (probability mass function) f RL (ℓ|Q, q) and the c.d.f. F RL (ℓ|Q, q) of the RL defined for ℓ = {1, 2, 3, . . . } can easily be obtained as follows:

f RL (ℓ|Q, q) = q ⊺ Q ℓ-1 r, (18) 
F RL (ℓ|Q, q) = 1 -q ⊺ Q ℓ 1. ( 19 
)
where r = 1 -Q1 (i.e. row probabilities must sum to 1) with 1 = (1, 1, . . . , 1) T .

Moreover, the 100ξ (0 < ξ < 1) percentage point RL ξ of the run length distribution is determined as follows [START_REF] Gan | An Optimal Design of Cumulative Sum Control Chart Based on Median Run Length[END_REF]):

F RL (RL ξ -1) ≤ ξ and F RL (RL ξ ) > ξ. (20) 
By setting ξ = 0.5, we can easily obtain the conditional MRL ( MRL) of the EWMA X chart.

It is important to note that, the MRL computed using ( 20) is conditioned on U and V .

From the results in [START_REF] Zhang | The Synthetic X Charts with Estimated Parameters[END_REF], we can note that the random variable U follows

a normal (0, 1 √ m ) distribution with the p.d.f. f U (u|m) = f N u 0, 1 √ m
, where f N (•) is the p.d.f. of a normal distribution and, the random variable V follows a gamma distribution with the p.d.f. f

V (v|m, n) = 2vf γ v 2 m(n-1) 2 , 2n m(n-1)
, where f γ (•) is the p.d.f. of the gamma distribution with parameters m(n-1) 2 and 2n m(n-1) .

Considering random variables U and V , the unconditional MRL, denoted as AMRL, of the EWMA X chart with unknown process parameters can be obtained as follows:

AMRL = E( MRL) = +∞ -∞ +∞ 0 MRL × f U (u|m)f V (v|m, n)dvdu, (21) 
and the standard deviation of MRL, denoted as SDMRL, is

SDMRL = E( MRL 2 ) -(E( MRL)) 2 , ( 22 
)
where

E( MRL 2 ) = +∞ -∞ +∞ 0 MRL 2 × f U (u|m)f V (v|m, n)dvdu. (23) 
Since the integrals in ( 21) and ( 23) are difficult to compute directly, the Gauss-Legendre quadrature is used in our article to obtain an approximation of these integrals.

3 The M RL performance of the EWMA X chart with unknown process parameters MRL based control charts with unknown process parameters are often investigated solely based on the unconditional MRL properties (see [START_REF] Teoh | A Median Run Length-Based Double-Sampling X Chart with Estimated Parameters for Minimizing the Average Sample Size[END_REF], [START_REF] You | Optimal Exponentially Weighted Moving Average Charts with Estimated Parameters Based on Median Run Length and Expected Median Run Length[END_REF] and [START_REF] Teoh | The Exact Run Length Distribution and Design of the Shewhart Chart with Estimated Parameters Based on Median Run Length[END_REF]). This approach does not unfortunately reflect the sampling variation or the between-practitioners variability in control charts and unfortunately, it does neither account for the variability in the conditional MRL values. If this variability is large, the conditional MRL value of the EWMA X chart corresponding to a specific practitioner can be far away from the desired in-control MRL (denoted as MRL 0 ).

To illustrate this variability in the conditional in-control MRL performances of the EWMA X chart, Table 1 displays the AMRL, SDMRL and several percentiles of the incontrol MRL values of the EWMA X chart for different combinations of λ ∈ {0.1, 0.2, 0.5, 1.0} and m varying from 20 to 500, when MRL 0 = 200 and n = 5. The parameters (λ, K) used in Table 1 are selected to produce the desired MRL 0 for the known parameters case and, the in-control MRL values of the EWMA X chart have been obtained by simulation using 13 several values of K satisfying the desired MRL 0 . Without loss of generality, in this article, we always choose the smallest K that satisfies the desired MRL 0 .

From Table 1, it can be noted that for small numbers (m ≤ 100) of Phase I samples, For other combinations of (λ, K) in Table 1, we can observe a similar trend in the variation of the in-control MRL distributions. For simplicity, these histograms are not presented here. Moreover, with the increase in the number m of Phase I samples, most of the percentiles of the MRL values increase and, the extreme upper percentiles and the SDMRL decrease.

For example, when (λ, K) = (0.1, 2.5986), if we increase the number m of Phase I samples from 50 to 400, the 10% and 50% percentiles of the MRL values increase from 60 up to 148 and from 133 up to 184, respectively. And the 90% percentiles decreases from 236 up to 219, and the SDMRL value decreases from 71.63 up to 28.29. It can also be noted that, for fixed value of m, with the increase in λ, the corresponding SDMRL values of the EWMA X chart increases. For example, when m = 50, the SDMRL value increases from 71.63 up to 108.09 when λ increases from 0.1 up to 1. Because the Shewhart X chart is a specific case of the EWMA X chart with λ = 1, this fact shows that the between-practitioners variability in the MRL performance of the Shewhart X chart is larger than the one of the EWMA X chart.

(Please Insert Table 1 Here) (Please Insert Figure 1 Here)

The simulation results in Table 1 and Figure 1 show that, with a realistic amount of Phase I samples, a larger variation exists in the in-control MRL values of the EWMA X chart, especially for large values of λ. This variation is caused by the between-practitioners variability. To account for the between-practitioners variability, the SDARL is suggested as a measure for the ARL based control charts. A direct measure of this variability for the MRL based EWMA X chart is the standard deviation of the MRL (SDMRL).

In order to investigate the properties of the MRL based EWMA X chart with unknown process parameters, we do not have to only focus on the AMRL performance of the EWMA X chart, but we also need to focus on its SDMRL performance. Some researchers have considered SDARL values about 10% of the desired ARL 0 as being small enough (see Zhang values that are about 10% of the desired MRL 0 are bolded in each table. Moreover, Table 5 also presents the relative difference between the in-control AMRL and the desired MRL 0 .

Here, the relative difference is defined as

∆ = |AM RL-M RL 0 | M RL 0 × 100%.
Some conclusions can be made as follows:

• Based on the AMRL metric, it can be noted from Table 5 that, when MRL 0 = 100 and λ = 0.1, if a practitioner wants the relative difference ∆ smaller than 10%, it requires about m ≃ 250 Phase I samples to estimate the process parameters and it requires about m ≃ 600 Phase I samples to have a ∆ smaller than 5% (see column 2).

With the increase in the value of λ, the required number of Phase I samples to have a ∆ smaller than the predetermined percentage decreases. For example, if λ increases from 0.1 to 1, the required number of Phase I samples decreases from 600 to 20 to have a ∆ smaller than 5% (see columns 2 and 5). Moreover, for fixed value of λ, with the increase in the desired MRL 0 , the required number of Phase I samples to have a ∆ smaller than the predetermined percentage increases. For example, when λ = 0.1, the number of Phase I samples increases from 600 up to 1100 to have a ∆ smaller than 5%

when MRL 0 increases from 100 up to 500 (see columns 2 and 10).

• Based on the SDMRL metric, it can be noted from Table 2 that • Through the results of Tables 2 to 5, it can be noted that, when MRL 0 = 100 and λ = 0.1, m ≃ 250 and m ≃ 600 Phase I samples are needed to have ∆ smaller than 10% and 5%, respectively (see Table 5). While considering the SDMRL values in Table 2, it requires about m ≃ 500 Phase I samples to have a SDMRL value about 10% of the desired MRL 0 = 100 (SDMRL = 9.72) and about m ≃ 2000 Phase I samples to have a SDMRL value about 5% of the desired MRL 0 = 100 (SDMRL = 4.37).

We can note that much more Phase I samples are needed based on the SDMRL metric compared to the AMRL metric. For larger values of λ, in order to have ∆ or SDMRL values smaller than the predetermined percentage, the required number of Phase I samples needed for the SDMRL metric are far more larger than the one for the AMRL metric. For example, in Tables 2 and5, when λ = 0.5, it requires about m ≃ 150 Phase I samples (see column 4 in Table 5) to have a ∆ smaller than 5%.

This number increases up to 3000 to have a SDMRL value about 5% of the desired MRL 0 = 100 (see column 7 in Table 2). Moreover, for fixed values of m and λ, it can also be noted that the SDMRL value increases with the increase in the desired MRL 0 . For example, when m = 200 and λ = 0.1, the SDMRL value increases from 16.19 up to 127.48 when the MRL 0 value increases from 100 to 500 (see columns 3 in Tables 2 and4). This fact shows that if practitioners want a larger in-control MRL 0 for the EWMA X chart with unknown process parameters, they should be more cautious about a large variability in the actual in-control MRL values.

(Please Insert Tables 2 to 5 Here)

Based on the results presented above, m ≃ 200 Phase I samples are large enough to have ∆ values smaller than 10%, except for the λ = 0.1 case. Even for the λ = 0.1 case, at most m ≃ 400 Phase I samples can ensure that the ∆ value is smaller than 10% (see column 10 of Table 5). While at least m ≃ 500 Phase I samples are needed for the EWMA X chart to obtain an in-control SDMRL value about 10% of the desired MRL 0 (see column 3 in Table 2). However in practice, this large number of Phase I samples is sometimes hard and too costly to collect. So with a realistic amount of Phase I samples, the practitioner has no confidence that the in-control MRL value of the specific EWMA X chart will be close to the desired MRL 0 . As presented in Table 1, if λ = 0.1, n = 5 and the desired MRL 0 = 200, there are still 50% of the in-control MRL values smaller than 187 with m = 500 Phase I samples. For this reason, in the next section, the control limits of the EWMA X chart are adjusted to avoid too many small in-control MRL values.

4 Adjustments of the control limits of the M RL based

EWMA X chart

With a realistic number of Phase I samples, the variability in the in-control MRL values of the EWMA X chart is large. The EWMA X charts corresponding to many practitioners may have MRL values smaller than the desired MRL 0 . This will cause a larger false alarm than the one desired in the implementation of the MRL based EWMA X chart. Therefore, there is the need of having an alternative technique for controlling the in-control performances of the MRL based EWMA X chart.

In order to avoid many too small in-control MRL values for the EWMA X chart, a bootstrap type approach introduced in Gandy and Kvaloy ( 2013) is used here to adjust the control limits to guarantee the conditional in-control MRL values to be larger than the desired MRL 0 with a high fixed probability. Recently, some researchers have applied this approach to design ARL based control charts (see Saleh et al. (2015a), [START_REF] Faraz | Guaranteed Conditional Performance of the S 2 Control Chart with Estimated Parameters[END_REF], [START_REF] Hu | Guaranteed Conditional Design of the Median Chart with Estimated Parameters[END_REF], [START_REF] Aly | A Re-evaluation of the Adaptive Exponentially Weighted Moving Average Control Chart When Parameters are Estimated[END_REF], [START_REF] Saleh | CUSUM Charts with Controlled Conditional Performance under Estimated Parameters[END_REF], [START_REF] Faraz | The np Chart with Guaranteed In-Control Average Run Lengths[END_REF]). The bootstrap approach was shown to balance the in-control and out-of-control performances of control charts well. In this article, it will also be adopted to design the MRL based EWMA X chart with unknown process parameters. The steps for obtaining the adjusted control limits of the MRL based EWMA X chart are summarized as follows:

(1) Generate a Phase I data set X i,j composed of i = 1, 2, . . . , m samples {X i,1 , X i,2 , . . . , X i,n } of size n from the (assumed) true in-control distribution P = P (µ 0 , σ 0 ) of X i,j , and compute the estimated parameters μ0 and σ0 as in ( 6) and ( 7).

(2) Set the value of λ and compute the quantity K( P , θ) that produces a desired in-control MRL 0 , where P = P (μ 0 , σ0 ) is the estimated in-control distribution and θ = (μ 0 , σ0 )

is the estimated process parameters used to set the EWMA statistic in its standardized form.

(3) Generate m samples each of size n from P = P (μ 0 , σ0 ) and compute the estimated

process parameters θ * b = (μ * b , σ * b ).
(4) Find the quantity K( P , θ * b ) that produces the desired MRL 0 , where θ * b is used to set the EWMA statistic in its standardized form.

(5) Repeat Steps (3) to (4) B times and get the adjusted control limit K a as the α * ordered value of these control limits, where α * is the specified probability that the practitioner expected the in-control MRL values larger than the desired MRL 0 .

(6) Set up the EWMA X chart with the initial Phase I data set X i,j and the adjusted control limit K a . Compute the in-control and out-of-control MRL values for the EWMA X chart with Phase II data from the (assumed) in-control distribution.

In the previous steps, we consider m = 50 Phase I samples, each with size n = 5 as realistic and they are generated from the true in-control distribution P , which is assumed to be a standard normal distribution. The desired in-control MRL 0 is set to be 200. It is also expected that the in-control MRL values will be larger than the desired MRL 0 with a specified probability α * = 0.9. By repeating 1000 times the steps (1)-( 6), it is expected that 90% of the conditional in-control MRL values for the EWMA X chart will be larger than the desired MRL 0 = 200. As a comparison, by setting λ = 1 in the EWMA X chart, the conditional performances for the Shewhart X chart with unknown process parameters are also simulated with the same parameter settings. Programs written in Matlab are used for the simulations in this paper.

Figures 2 and3 show the boxplots of these in-control and out-of-control MRL values for the EWMA and the Shewhart X charts with the adjusted and unadjusted limits. The control limits are denoted as "Adjusted Limits" when they are adjusted with the bootstrap approach. Otherwise, they are denoted as "Unadjusted Limits".

(Please Insert Figures 2 to 3 Here) When the process is in-control, it can be noted from Figures 2 that the "Adjusted Limits" can guarantee about 90% of the in-control MRL values for the EWMA and Shewhart X charts larger than the desired MRL 0 = 200. While for the "Unadjusted Limits" cases, about 50% of the EWMA X charts have in-control MRL values smaller than 134 and about 90% of the EWMA X charts have in-control MRL values only larger than 229. This fact shows that many of the "Unadjusted Limits" EWMA X charts have a higher false alarm rate than the ones with the "Adjusted Limits". Moreover, in the case of adjusted limit, it is noted that most of the in-control MRL values for the EWMA X charts are larger than the ones for the Shewhart X charts.

When the process is out-of-control, suppose there is a shift δ ∈ {0.2, 0.4, 0.6, 0.8} in the process mean. The out-of-control MRL values for the EWMA and Shewhart X charts with the "Adjusted Limits" and "Unadjusted Limits" are presented in Figure 3. It can be noted that for small shift size (δ ≤ 0.2), the out-of-control MRL values for the EWMA X charts with "Adjusted Limits" are obviously larger than the ones for the EWMA X charts with "Unadjusted Limits". For example, in Figure 3 (a), when δ = 0.2, we have MRL = 47 for the EWMA X chart with "Adjusted Limits" which is larger than MRL = 24 for the EWMA X chart with "Unadjusted Limits". For moderate to large shifts, the difference between the out-of-control MRL values for the EWMA X charts with adjusted or unadjusted limits are not so obvious. For example, in Figure 3 (c), when δ = 0.6, the median of the out-of-control MRL values for the EWMA X charts are about 8 and 6 for the "Adjusted Limits" and "Unadjusted Limits" cases, respectively. Moreover, most of the out-of-control MRL values for the Shewhart X charts are larger than the ones for the EWMA X charts, no matter if the limits are adjusted or not, which shows the advantage of the MRL based EWMA X chart over the MRL based Shewhart X chart for the detection of process mean shifts.

Conclusions and recommendations

The researches on the EWMA X chart with unknown process parameters done before are mainly focused on the chart's unconditional performance, thus ignoring the variability between practitioners. Considering this issue, in this article, the conditional performance of the MRL based EWMA X chart with unknown process parameters is investigated. The MRL metric is used as the conditional measure for the highly skewed run length distributions of the EWMA X chart. Some tables and figures have been presented to assess the between-practitioners variability for the MRL based EWMA X chart. General results show that the number of Phase I samples to reduce the between-practitioners variability of the EWMA X chart up to an acceptable level is far larger than the one needed for Phase I samples based on the unconditional MRL performances. With a realistic number of Phase I samples, the specific practitioner has no confidence of his/her own EWMA X chart's MRL performance. Thus, the bootstrap approach is recommended to adjust the control limits of the MRL base EWMA X chart and the results show that the adjusted control limits can actually balance the in-control and out-of-control MRL performances well, except for some small mean shifts. As this work is done for the univariate case, future works can be extended to the multivariate control charts. 

  the in-control MRL values are quite variable. For example, when (λ, K) = (0.1, 2.5986) and m = 50, 50% of the in-control MRL values are smaller than 133 and 10% of the in-control MRL values are larger than 236. It can be concluded that many MRL values are dispersed from the desired MRL 0 = 200. Even with a larger number of sample size (m = 500), there is also a large variation in the in-control MRL values. For example, considering the same example above but with m = 500, there are still 50% of the in-control MRL values smaller than 187 and 10% of the in-control MRL values larger than 218. This fact shows that, with a realistic amount of Phase I samples, the conditional in-control MRL values of the EWMA X chart can be still widely dispersed. Moreover, in order to emphasize this variation intuitively, Figure 1 also shows the histograms of the in-control MRL values based on 10 5 simulated EWMA X charts for m ∈ {50, 100, 200, 400} when (λ, K) = (0.1, 2.5986), n = 5 and MRL 0 = 200. Percentiles of the conditional MRL values as well as the SDMRL value are presented in the upper part of Table 1. For example, in Figure 1 (a), when m = 50 Phase I samples are used to estimate the process parameters, 5% of the in-control MRL values are smaller than 47, 5% of the in-control MRL values are larger than 274 and, the SDARL value equals to 71.63. In Figure 1 (d), even with m = 400 Phase I samples, a larger variation of nearly SDMRL = 28.29 still exists.

  et al. (2014) andSaleh et al. (2015a)). Similar to these researches conducted on the ARL based control charts, for the MRL based EWMA X chart, we consider the SDMRL values about 10% of the desired MRL 0 as small enough in this article. Under this case, the specific practitioner may have his(her) own control chart's MRL value close to the desired MRL 0 . Now we are wondering "How many Phase I samples are needed for the EWMA X chart to have an AMRL or an actual MRL value close to the desired MRL 0 ?" To answer this question, Tables2 to 4present the AMRL and SDMRL values for different combinations of (λ, K), the desired MRL 0 ∈ {100, 200, 500} and m ranging from 20 to 5000 when the sample size n = 5. The smaller the SDMRL, the smaller the variability in the conditional MRL values and, at the same time, an actual MRL corresponding to a specific practitioner could be closer to the desired MRL 0 . Similar toSaleh et al. (2015a), several values of λ ∈ {0.1, 0.2, 0.5, 1.0} are chosen and the parameter combinations (λ, K) are chosen to satisfy the desired MRL 0 of the EWMA X chart with known process parameters. The SDMRL

  : (1) About m ≃ 500 Phase I samples are needed for the EWMA X chart to have an in-control SDMRL to be about 10% of the desired MRL 0 (see the bolded entry in column 3) when MRL 0 = 100, n = 5 and λ = 0.1; (2) For fixed values of m, with the increase in λ, the SDMRL value also increases. For example, when m = 100, if λ increases from 0.1 up to 1, the SDMRL values increases from 22.54 up to 29.94. This fact also shows that the SDMRL values of the Shewhart X chart is larger than the one of the EWMA X chart for fixed value of m.

Figure 1 :Figure 3 :

 13 Figure 1: Histograms of the in-control MRL values for (a) m = 50, (b) m = 100, (c) m = 200, (d) m = 400 when (λ, K) = (0.1, 2.5986), MRL 0 = 200 and n = 5.(The red line corresponds to the MRL 0 = 200 on the horizontal axis)

Table 1 :

 1 The distribution of the in-control MRL of the EWMA X chart for different values of (λ, K) and m when MRL 0 = 200 and n = 5

Table 2 :

 2 In-Control AMRL and SDMRL for different combinations of (λ, K) and m when

	n = 5 and MRL 0 = 100						
		(λ, K) = (0.1, 2.3030) (λ, K) = (0.2, 2.5025) (λ, K) = (0.5, 2.6619) (λ, K) = (1, 2.6980)
	m	AMRL	SDMRL	AMRL	SDMRL AMRL	SDMRL AMRL SDMRL
	20	64.28	40.97	71.83	51.01	88.27	70.40	104.82	85.00
	30	69.43	35.65	76.07	42.15	89.53	53.91	102.10	62.22
	50	75.87	29.79	81.36	33.57	91.75	40.20	100.55	44.59
	70	79.78	26.16	84.69	28.81	93.19	33.53	100.08	36.55
	100	83.65	22.54	87.74	24.34	94.64	27.74	99.79	29.94
	150	87.43	18.65	90.73	19.93	95.97	22.46	99.65	24.01
	200	89.73	16.19	92.46	17.21	96.69	19.35	99.60	20.64
	250	91.24	14.36	93.63	15.29	97.25	17.27	99.57	18.38
	300	92.38	13.03	94.51	13.92	97.53	15.70	99.56	16.72
	400	93.81	11.09	95.55	11.92	98.03	13.55	99.55	14.41
	500	94.82	9.72	96.24	10.57	98.30	12.09	99.50	12.87
	600	95.53	8.79	96.80	9.56	98.51	11.01	99.55	11.75
	700	96.03	8.02	97.12	8.79	98.65	10.18	99.51	10.85
	800	96.44	7.42	97.40	8.18	98.69	9.54	99.53	10.11
	900	96.76	6.95	97.66	7.68	98.87	8.94	99.49	9.57
	1000 97.00	6.51	97.81	7.28	98.92	8.50	99.57	9.04
	1100 97.22	6.17	97.97	6.90	98.98	8.12	99.57	8.62
	1300 97.54	5.61	98.20	6.34	99.05	7.43	99.46	7.86
	1500 97.80	5.19	98.35	5.86	99.09	6.94	99.51	7.38
	2000 98.18	4.37	98.63	5.04	99.20	5.98	99.55	6.39
	2500 98.44	3.90	98.84	4.51	99.26	5.38	99.52	5.70
	3000 98.65	3.51	98.88	4.04	99.28	4.90	99.54	5.18
	5000 98.99	2.67	99.15	3.16	99.38	3.78	99.49	3.93

Table 5 :

 5 The relative difference ∆ = |AM RL-M RL 0

	∈
	and MRL 0
	× 100% for different combinations of (λ, K), m
	|
	M RL 0
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Table 3: In-Control AMRL and SDMRL for different combinations of (λ, K) and m when n = 5 and MRL 0 = 200 (λ, K) = (0.1, 2.5986) (λ, K) = (0.2, 2.7677) (λ, K) = (0.5, 2.8966) (λ, K) = ( 1