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Abstract

Classification and regression trees (CART) prove to be a true alternative to full parametric models
such as linear models (LM) and generalized linear models (GLM). Although CART suffer from a biased
variable selection issue, they are commonly applied to various topics and used for tree ensembles and
random forests because of their simplicity and computation speed. Conditional inference trees and
model-based trees algorithms for which variable selection is tackled via fluctuation tests are known to
give more accurate and interpretable results than CART, but yield longer computation times. Using a
closed-form maximum likelihood estimator for GLM, this paper proposes a split point procedure based
on the explicit likelihood in order to save time when searching for the best split for a given splitting
variable. A simulation study for non-Gaussian response is performed to assess the computational
gain when building GLM trees. We also propose a benchmark on simulated and empirical datasets
of GLM trees against CART, conditional inference trees and LM trees in order to identify situations
where GLM trees are efficient. This approach is extended to multiway split trees and log-transformed
distributions. Making GLM trees possible through a new split point procedure allows us to investigate
the use of GLM in ensemble methods. We propose a numerical comparison of GLM forests against
other random forest-type approaches. Our simulation analyses show cases where GLM forests are
good challengers to random forests.

keywords: GLM, model-based recursive partitioning, GLM trees, random forest, GLM forest

1 Introduction

Recursive binary partitioning is a statistical technique for building decision trees by separating a dataset
into different homogeneous subgroups according to partitioning explanatory variables that characterize
them generally known as features. These models have been widely used in supervised learning for
regression and classification for more than 50 years (Loh, 2014). Most binary trees comprise two steps:
(1) recursively splitting the dataset by selecting the best split, which forms a node or a leaf, until
reaching a stopping criterion; (2) fitting an intercept-only model at each terminal node. CART (Breiman
et al., 1984) is certainly the most used model because it is efficient and easy to interpret. However, it
suffers from a well-known selection bias problem induced by an exhaustive search over all possible splits
simultaneously, see, e.g., Hothorn et al. (2006) or Breiman et al. (1984, p. 42). Several solutions
permitting an unbiased split selection in tree algorithms based on statistical tests have been proposed in
the literature, see, e.g., FACT (Loh and Vanichsetakul, 1988), QUEST (Loh and Shih, 1997), CRUISE
(Kim and Loh, 2001) or CTREE (Hothorn et al., 2006) algorithms. However, these approaches may lead
to long computation times, especially on large datasets.

While these classical algorithms are built on a set of nodes with constant values for predictions,
the concept of decision trees can be cleverly combined with parametric models through MOdel-Based
recursive partitioning (MOB) introduced by Zeileis et al. (2008). The idea consists in fitting separate
parametric models for each terminal node of a tree with specific subgroup parameters. For instance,
Rusch and Zeileis (2013) and Seibold et al. (2018) use the MOB approach with LM trees and GLM trees.
For growing the tree, a unique objective function, such as the log-likelihood function, is considered both
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for the model parameter estimation and partitioning variables selection. These variables are selected
via a fluctuation test (Zeileis and Hornik, 2007) for parameter instability, which overcomes the variable
selection-bias issue. This general framework is the successor of different previous models which also
integrate a parametric model into a tree, see among others generalized regression trees (Ciampi, 1991),
functional trees (Gama, 2004), GUIDE (Loh, 2002) or maximum likelihood trees under the assumption of
a Gaussian response (Su et al., 2004). Using a well-established parametric model, a key goal of MOB is
that it provides predictions given by a statistical model adapted to each node, which are easy to interpret.
However, the computation time may be longer than simple tree algorithms with intercept-only nodes
since the splitting procedure requires maximizing the objective function and assessing the parameters
instability using a hypothesis test.

For all tree methods, single trees suffer from an instability issue, i.e., the resulting tree can be
significantly affected by small changes in the training data. See Philipp et al. (2018) for a general
framework for assessing the stability of results generated from supervised statistical learning algorithms.
They may be less competitive than other classical approaches in artificial intelligence and machine
learning, like neural networks (Lawrence, 1994) or support vector machines (Cortes and Vapnik, 1995)
in terms of prediction. Predictions can be improved by introducing ensemble tree methods based on
bagging (Breiman, 1996), random forest (Breiman, 2001) or boosting (Friedman, 2002), but this is done
at the expense of interpretability. In this literature, the overwhelming majority of approaches are based
on the CART algorithm, although variable selection may be biased. Unbiased trees for forest are also
available, see function cforest in (Hothorn and Zeileis, 2015) for the CTREE algorithm introduced in
Hothorn et al. (2006) or the function mobForest related to random forest for MOB (Garge et al., 2013),
both implemented in R (R Core Team, 2021). Since ensembles are based on random sampling, the longer
computation time of these unbiased tree methods makes them more difficult to use than ensemble trees
based on CART, as stated, e.g., by Garge et al. (2013) or Fokkema (2020).

In this paper, we propose a new approach for reducing the computation time of recursive binary
partitioning based on the explicit fitted GLM likelihood as an objective function. Based on the idea
of Brouste et al. (2020), we show that closed-form estimators can be derived when computing the split
points with respect to each partitioning variable for GLM-type trees. More precisely, we replace a time-
consuming step in the splitting procedure where the split point is determined by optimizing a score
function based on the GLM likelihood. This approach is general as the results obtained by Brouste
et al. (2020) are valid for any distribution belonging to the one-parameter exponential family (possibly
with an additional dispersion parameter) and any link function in the case of categorical explanatory
variables. Hence, it can be applied to several GLM-type models such as maximum likelihood trees (Su
et al., 2004) or GLM Trees (Rusch and Zeileis, 2013). We specifically focus on this last approach in that
paper due to its flexibility.

The remainder of this paper is organized as follows. In Section 2, we present GLMs and GLM trees
as well as the framework for building GLM trees based on a closed-form estimator. Section 3 assesses
the performances of our approach on simulated and empirical datasets. In Section 4, we propose a GLM
forest algorithm based on GLM trees based on bagging. Finally, Section 5 concludes.

2 Generalized Linear Models Binary Trees

In this section, we first describe GLMs and GLM-based trees and explain how we introduce a closed-
form estimator for GLMs in the original GLM tree algorithms. Then, we discuss how this approach can
be extended to other decision trees based on Maximum Likelihood Estimation (MLE). Finally, several
improvements of estimators proposed by Brouste et al. (2020) and useful for tree models are introduced.

In the following, for the sake of clarity, we use bold notations for vectors of Rp, Rq or Rn, where
p, q, n P N‹. We use the letter x for explanatory variables on which GLMs are fitted and the letter z for
partitioning variables used for the split point procedure. The index i P I “ t1, . . . , nu is reserved for the
observations, while the indexes j, k, l are used both for explanatory and partitioning variables.
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2.1 Generalized linear models

Let x1, . . . ,xn be deterministic exogenous explanatory variables, with xi “ pxi,1, . . . , xi,pq P Rp for i P I.
It is assumed that xi,j is either a real for numeric variables or a binary dummy for categorical variables.
Generalized linear models, see, e.g., McCullagh and Nelder (1989), assume that (i) the random response
vector Y has independent components, (ii) the distribution of random variable Yi, i P I, belongs to
the exponential family with natural parameter λi, see Equation (1), (iii) a so-called link function g
governs the relation between random response variables Yi and deterministic explanatory variables xi,
see Equation (2). In the rest of the paper, lower case yi is used for the corresponding observation of the
random variable Yi.

In other words, the log-likelihood associated with a single observation yi of the random variable Yi,
i P I, in the exponential family is given by

logLpλi, φ, yiq “
λiyi ´ b pλiq

apφq
` cpyi, φq, yi P Y Ă R, λi P Λ Ă R, (1)

and ´8 if yi R Y, where a : R Ñ R, b : Λ Ñ R and c : Y ˆ R Ñ R are known real-valued differentiable
measurable functions. The term λi is called the natural parameter and φ is the dispersion parameter.

Since the expectation is E rYis “ b1pλiq for the exponential family, the relationship between the
expectation of Yi and xi is governed by

gpb1pλipθqqq “ xxi,θy “ ηi, @θ P Θ Ă Rp, (2)

where ηi is the linear predictor, x., .y denotes the scalar product, and λipθq stresses the dependence on
the finite-dimensional parameter θ. Since g is a bijective function, we have an equivalent relationship
λipθq “ b̃ ˝ g´1pxxi,θyq where b̃ “ pb1q´1 is the inverse of b1. The link function g is called canonical when
g “ b̃. Some usual examples are given in Table 1.

It is worth noting that θ is estimated in the first step. Secondly, the dispersion parameter φ is
estimated if any. This additional dispersion parameter makes possible to use non-constant variance
distributions such as gamma or inverse Gaussian distributions, see, e.g., McCullagh and Nelder (1989,
Chapter 8).

Distribution λ φ apxq bpxq cpx, φq b1pxq b̃pxq bpb̃pxqq

Bernoulli
logp p

1´p
q 1 x logp1` exq 0 ex

1`ex
logp x

1´x
q ´ logp1` xqBppq

Binomial
logp p

1´p
q 1

m
x logp1` exq log

´

`

1{φ
x{φ

˘

¯

ex

1`ex
logp x

1´x
q ´ logp1` xqBpm, pq

Gaussian
µ σ2 x x2{2

x2{φ
x x x2{2N pµ, σ2

q ´ 1
2

logp2πφq

Gamma ´1
µ 1{ν x ´ logp´xq

logpx{φq
φ

´ logpxq
´1{x ´1{x logpxq

Gpν, µq ´ logpΓp 1
φ
qq

Poisson
logpµq 1 x ex ´ logpx!q ex logpxq xPpµq

Inv. Gauss.
´1{p2µ2

q 1{σ2 x ´
?
´2x

´ 1
2

logp2πφx3q
1{
?
´2x ´1{p2x2q ´1{xIGpµ, σ2

q ´1{p2φxq

Table 1: Usual distributions in the exponential family

If the model is identifiable, the MLE pθn has desirable properties (existence, consistence, asymptotic
normality), see Fahrmeir and Kaufmann (1985). In the general case, when xi is a vector of numerical
and/or categorical explanatory variables, there is no explicit solution for the MLE and estimation relies
on an iterative weighted least-square (IWLS) algorithm. Conversely, it is well known that the MLE can
be derived directly with a closed-form formula with the Gaussian family, see e.g. Seber and Lee (2003)
and Weisberg (2005).

2.2 GLM-based trees and explicit likelihood split point

The GLM-based tree algorithm introduced by Rusch and Zeileis (2013) consists of splitting the dataset
recursively based on a set of partitioning variables and of fitting a GLM on a set of explanatory variables
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to observations in each node. First, the selection of the variable j‹ among all partitioning variables is
performed by assessing the parameter stability and by finding the partitioning variable with the highest
parameter instability. Given the partitioning variable j‹, this procedure locally estimates in a second
step a parametric model for all possible splits of that variable, see Section 2.2.1. This step can be time-
consuming since an exhaustive search is realized is performed to find the optimal split point s‹ which
requires to fit as many GLM as possible split points. For instance for a categorical variable x with 4
levels A, B, C, D, the following six GLMs are fitted using the IWLS algorithm:

• left node 1xPtA,B,Cu against right node 1xPtDu,

• left node 1xPtA,B,Du against right node 1xPtCu,

• left node 1xPtA,C,Du against right node 1xPtBu,

• left node 1xPtA,Bu against right node 1xPtC,Du,

• left node 1xPtA,Cu against right node 1xPtB,Du,

• left node 1xPtA,Du against right node 1xPtB,Cu.

For these two steps, we show in Section 2.2.2 how to improve this procedure based on the results of
Brouste et al. (2020), where a closed-form solution for GLMs with categorical variables is available for
any link function g and for any probability distribution. More precisely, explicit solutions are derived for
GLM-based tree models for any type of partitioning variables in situations where the GLMs are fitted
with only an intercept or with one categorical explanatory variable. The difference between non-explicit
and explicit GLM trees is how GLMs are fitted: the first one relies on the IWLS algorithm to compute
the MLE, while our procedure computes the closed-form MLE when the tree is growing.

2.2.1 Model-based partitioning trees

The MOB model introduced by Zeileis et al. (2008) is a flexible framework of model parameter estimation
based on least squares, maximum likelihood or more broadly M-estimation approaches. Within this
approach, the parametric model MBb pY , txiu , tλuq, b “ 1, . . . , B, i P I, is locally fitted using vectors of
explanatory covariates txiu on each subset of a partition tBbu of B segments. The partition is determined
when growing a tree based on partitioning variables zi “ pzi,1, . . . , zi,qq P Rq, and an objective function
is maximized to obtain the generic collection of parameters tλbu.

In this paper, the local model on which we focus is the GLM similarly to Rusch and Zeileis (2013)
where parameters θb, b “ 1, . . . B, are estimated by maximizing the log-likelihood on the set of explana-
tory covariables. Their algorithm for GLM trees is given in Algorithm 1. Contrary to CART, MOB
doesn’t require a post-pruning procedure of the tree. For instance, a pre-pruning step can be applied to
avoid the size of a node becomes too small.

First, a full GLM is fitted on all observations of the current node b (i P b) with all explanatory
variables available xi (continuous and/or categorical). Candidate variables for splitting are either all
partitioning variables or a subset of them if a random selection is performed. Unless explanatory variables
come from a single categorical variable, for which an explicit MLE exists (Brouste et al., 2020), θ̂b is
computed by the IWLS algorithm.

Second, a variable selection is performed to avoid selecting useless variables. It is based on a M-
fluctuation test1. Let Wjptq be an empirical fluctuation process, i.e., a normalized cumulative score
process. Zeileis and Hornik (2007) show that under regularity conditions, a normalized Wjptq converges
toward a standard Brownian bridge, which allows to perform M-fluctuation tests for testing the null
hypothesis of parameter stability for each partitioning variable and thus to select the most significant
one. For GLMs, the i-th score contribution is explicit and given by

si,jpθq “
B logLpλi, yiq

Bβj
“
yi ´ µi
V pµiq

h1pηiqzi,j , (3)

1Algorithm 1 assesses parameter instability only if the splitting variable has two or more levels for a categorical variable,
or two or more values for a numeric variable. Otherwise, there is nothing to split.
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Data: Response vector y, vector of explanatory covariates x1, . . . ,xn, partitioning variables
z1, . . . ,zn

while Loop over node b until no significant instability is detected do
Compute the observation number nb “ 7b for node b.
if nb is too small then

Stop the process for that node.
end
1. Fit the local model:

Fit GLM by maximizing (1) for obs. i P b to obtain fitted parameter θ̂b.
2. Assess param. instab. with M-fluctuation tests:

for j “ 1, . . . , q do

Compute the i-th score contribution as ŝi,j “ si,jpθ̂bq in (3) for all i P b.
if j is a numerical variable then

Compute parameter instability using (4) as

λj “ max
i“i,...,i

pnbq
2

ipnb ´ iq

›

›

›
Wj

´

i{nb, θ̂b

¯›

›

›

2

2
,

where ri, is is the interval of potential instability.
else

Compute parameter instability using (4) as

λj “
1

nb

lj
ÿ

c“1

p7Ivj,cq
´1

›

›

›
∆vj,cWj

´

i{nb, θ̂b

¯›

›

›

2

2
,

where Ivj,c “ ti P b, zi,j “ vj,cu is the set of observation indices in category vj,c.

end

end
Compute the p-value of the fluctuation test and assess the significance.
if there is at least one significant instable variable then

Select the most unstable variable

j‹ “ arg max
jPt1,...,qu

λj .

3. Choose the best splitting point s:

if j‹ is a numerical variable then
Search for the optimal split point s‹ P pmini zi,j‹ ,maxi zi,j‹q based on (10).

else
Search for the optimal set s‹ Ă tvj‹,1, . . . , vj‹,lju based on (10).

end

end

end
Algorithm 1: Recursive partition algorithm for GLMs for a binary tree

where µi “ hpηiq, h “ g´1 the inverse link function, ηi “ xxi,θy. The corresponding covariance matrix
Jpθq is also explicit, see, e.g., Zeileis and Hornik (2007, Section 4.1). Therefore, the empirical fluctuation
process has the following expression for GLMs

Wjpt, θ̂q “ Ĵ´1{2
1
?
nb

iPb
ÿ

iďttˆ7bu

ŝσpiq,j , 0 ď t ď 1, (4)

where ŝi,j “ si,jpθ̂q, σpiq is the ordering permutation giving the anti-rank observation of zi,j , 7b is the

cardinality of the set b and Ĵ “ Jpθ̂q the fitted covariance matrix. The function t ÞÑ Wjpt, θ̂q is a
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step function and we denote the increment for variable j in category v by ∆vWjpt, θ̂q. Hence, the
splitting variable with the highest significant instability is selected, i.e., the lowest p-value satisfying the
significance level adjusted with the Bonferroni correction.

Once the best splitting variable is selected, the algorithm chooses the best split point based on the
objective function calculated on the B ě 2 daughter nodes of the splitting variable

O
´

y, φ, θ̂1, . . . , θ̂B

¯

“

B
ÿ

b“1

logLpθ̂b, φ, yiq1tiPLbpj‹qu, (5)

where Lbpj
‹q corresponds to the b-th segment with respect to values taken by the variable j‹. For binary

tree (B “ 2), only one split point for a continuous variable or one subset for a categorical variable,
hereafter noted s, should be exhibited.

In general, objective function (5) is not explicit because parameter vector θ̂b has to be estimated by
the IWLS algorithm. In what follows, we focus on this last step and propose closed-form formula for
´

θ̂1, . . . , θ̂B

¯

leading to an explicit objective function. More precisely, our GLM-based tree algorithm

with closed-form solutions covers these particular situations:

• a GLM with no explanatory variable and a set of partitioning variables (continuous and/or cate-
gorical), see Section 2.2.2.

• a GLM with a single categorical explanatory variable and a set of partitioning variables (continuous
and/or categorical), see Section 2.4.2.

When continuous explanatory variables or more than one categorical explanatory variable are considered,
it is appropriate to return to the general framework set by Zeileis et al. (2008).

2.2.2 Explicit likelihood split point for binary trees with intercept-only nodes

Based on Brouste et al. (2020), we now detail how exactly the split point can be performed more
efficiently for a GLM-based recursive partition, either for a numerical or categorical splitting variable
j‹. For the sake of clarity, we present the case of binary trees with intercept-only nodes, i.e., a GLM-
based tree with any explanatory variable. Such a tree with intercept-only nodes is especially relevant
for comparisons with classical partitioning recursive like the CART or the CTREE algorithms, or for
generating ensemble of decisions trees, see, e.g., Fokkema (2020). This presentation can be extended
to situations with trees of non-constant nodes, i.e., multiple categorical explanatory variables, and to
multiway splits, see Section 2.4.

When the j‹-th partitioning variable is numerical, we consider two binary dummies2 for a known
split point s for all i P I

ηi “ θL ˆ 1tzi,j‹ďsu ` θR ˆ 1tzi,j‹ąsu. (6)

Split point values s are taken in the range of the j‹-th partitioning variable: s P pmini zi,j‹ ,maxi zi,j‹q.
When the j‹-th variable is categorical taking its values in
 

vj‹,1, . . . , vj‹,lj
(

, we consider two binary dummies for a known subset s for all i P I

ηi “ θL ˆ 1tzi,j‹Psu ` θR ˆ 1tzi,j‹Rsu. (7)

Subset values are taken among the partition of the j‹-th partitioning variable levels s Ă tvj‹,1, . . . , vj‹,lj‹ u.
In order to unify both situations, we use a generic notation for the linear predictor

ηi “ θL ˆ 1tiPLpj‹,squ ` θR ˆ 1tiPRpj‹,squ, (8)

2Our specification has no intercept since two dummy variables are introduced. This means that neither the left nor the
right sub-sample is taken as a reference. Note that a model with one intercept and one dummy variable is equivalent and
would simply lead to rewrite Equation (6). However, the fitted log-likelihood is identical with or without intercept, see
Corollary 3.1 and Examples 3.1, 3.2 of Brouste et al. (2020).
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where Lpj, sq and Rpj, sq are the children subsets resulting from the split. Equation (6) is obtained with
i P Lpj, sq ô zi,j P p´8, ss and i P Rpj, sq ô zi,j P ps,`8q, while (7) is obtained with i P Lpj, sq ô i P s
and i P Rpj, sq ô i R s.

From Theorem 3.1 of Brouste et al. (2020), given the link function g, the MLE pθpsq “ pθ̂Lpsq, θ̂Rpsqq
is given by

θ̂Lpsq “ g
`

yLj‹psq
˘

, θ̂Rpsq “ g
`

yRj‹psq
˘

, (9)

where yLj‹psq, y
R
j‹psq are average responses respectively for left and right subsets conditional on the j‹

value, see Table 2. As mentioned in Brouste et al. (2020), the fitted parameters do not depend on the
distribution (functions a, b, c) but only on the link function g.

Left node Right node

Node size mL
j psq “

n
ř

i“1
1tiPLpj,squ mR

j psq “
n
ř

i“1
1tiPRpj,squ

Average yLj psq “
1

mLj psq

n
ř

i“1
yi1tiPLpj,squ yRj psq “

1
mRj psq

n
ř

i“1
yi1tiPRpj,squ

Table 2: Notations for conditional node sizes and averages

Furthermore, we can deduce the fitted log-likelihood (5) using Corollary 3.1 of Brouste et al. (2020),
see Appendix A.1. Equation (15) in Appendix A.1 has terms which do not depend on s and the same
applies for the fitted deviance, see Appendix A.2. Hence, we do not need to estimate φ nor to depend on
the functions a and c in order to maximize the log-likelihood logLj with respect to s, i.e., the application

s ÞÑ logLpθ̂Lpsq, θ̂Rpsq,y, sq (or the deviance) can be simplified.
Let yj‹psq “ py

L
j‹psq, y

R
j‹psqq be the vector of conditional average responses andmj‹psq “ pm

L
j‹psq,m

R
j‹psqq

be the vector of node sizes. Thanks to Brouste et al. (2020), we maximize the following explicit objective
function s ÞÑ Opyj‹psq,mj‹psqq given the splitting variable j‹ in order to find the best split point or the
best subset s‹ with

Opyj‹psq,mj‹psqq “ b̃
`

yLj‹psq
˘

mL
j‹psqy

L
j‹psq ´ b

´

b̃pyLj‹psqq
¯

mL
j‹psq

`b̃
`

yRj‹psq
˘

mR
j‹psqy

R
j‹psq ´ b

´

b̃pyRj‹psqq
¯

mR
j‹psq,

(10)

where b̃ “ pb1q´1 is the inverse of b1. Equation (10) is thus linked to the distribution assumption only
through the function b but neither a, c, nor the link function g. Hence, the choice of link function has
an impact on the fitted parameter pθpsq but neither on the fitted likelihood, nor the objective function.

As noted by Zeileis et al. (2008), the framework introduced by MOB is quite general and unifies
different decision tree models, such as maximum likelihood trees introduced by Su et al. (2004) for
regression model with intercept only. This remains true in our approach, which is in line with this
framework and allows some classical models to benefit from explicit solutions. The objective function (10)
is actually very close to classical situations, namely the entropy function and the residual sum of squares
used in the CART algorithm.

Consider a Bernoulli response with λ “ logpp{p1 ´ pqq, for which Y “ t0, 1u, Λ “ R. Using Table 1
and ignoring s in frequencies and averages for ease of notation, Equation (10) becomes

Opyj ,mjq “ mL
j

“

yLj log
`

yLj
˘

` p1´ yLj q log
`

1´ yLj
˘‰

`mR
j

“

yRj log
`

yRj
˘

` p1´ yRj q log
`

1´ yRj
˘‰

.

This formula is of type p logppq ` p1 ´ pq logp1 ´ pq as the entropy function used in classification trees,
see Venables and Ripley (2002, p. 255).

Note that if for some splits, the left node or the right node contains only successes or failures, the
above objective function has an indefinite form 0 ˆ 8. In practice, the limit of p logppq is used, i.e.,
p logppq Ñ 0 as p Ñ 0, or analogously p1 ´ pq logp1 ´ pq Ñ 0 as p Ñ 1. Hence, the contribution of the
problematic node to the objection function is set to zero.

For a Gaussian response with a mean µ “ λ and a variance σ2 “ φ for which Y “ R and Λ “ R,
Equation (10) becomes using Table 1 and ignoring s,

Opyj ,mjq “
1

2

`

yLj
˘2
mL
j `

1

2

`

yRj
˘2
mR
j .
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Despite the formula looks different than the usual regression tree, this objective function is indeed
proportional to the loss in deviance. From Chambers and Hastie (1993, p. 414) with their notation, the
loss in deviance is defined as

∆D “
n
ÿ

i“1

pyi ´ µ̂q
2 ´

n
ÿ

iPL

pyi ´ µ̂Lq
2 ´

n
ÿ

iPR

pyi ´ µ̂Rq
2 9 pµ̂Lq

2mL ` pµ̂Rq
2mR.

Using µ̂L “ yLj , µ̂R “ yRj , mL “ mL
j and mR “ mR

j leads to ∆D is proportional to our objective function.

2.3 Non-Gaussian non-binary distributions for GLM trees

An advantage of the GLM framework is the possibility to use any probability distribution in the exponen-
tial family: we are not limited to Gaussian distribution for numeric responses and Bernoulli distribution
for binary responses, see usual distributions in Table 1. In the insurance field, actuaries and statisticians
usually use the Poisson distribution to model claim frequencies and the gamma distribution to model
claim severities, see, e.g., Denuit et al. (2019). In biology, there are also several examples of the relevancy
of non-Gaussian non-binary distributions, e.g., Szöcs and Schäfer (2015) and Wilson and Grenfell (1997).

2.3.1 Classical distributions for GLMs

The objective function (10) contains many other special cases. We give below typical probability distri-
butions generally used within the GLM framework.

A gamma distribution parametrized by its mean µ and its shape parameter ν is obtained with λ “ ´1
µ ,

φ “ 1{ν, for which Y “ p0,`8q, Λ “ R´. Using Table 1, we get

Opyj ,mjq “ ´m
L
j

`

1` logpyLj q
˘

´mR
j

`

1` logpyRj q
˘

.

A Poisson distribution with a mean µ is obtained with λ “ logpµq, for which Y “ N and Λ “ R.
Using Table 1, we get

Opyj ,mjq “
`

logpyLj q ´ 1
˘

yLjm
L
j `

`

logpyRj q ´ 1
˘

yRj m
R
j .

An Inverse Gaussian distribution parametrized by its mean µ and its shape parameter σ2 is obtained
with λ “ ´1{p2µ2q, φ “ 1{σ2, for which Y “ p0,`8q and Λ “ p´8, 0q. Using Table 1, we get

Opyj ,mjq “
mL
j

2yLj
`
mR
j

2yRj
.

These examples illustrate the non-quadratic objective function (10) for continuous distributions and
non-logit objective functions for discrete distributions. All distributions considered are generally already
implemented in statistical software, such as in the glm() function for the R statistical software (R Core
Team, 2021).

2.3.2 Taking weights into account

Slightly adapting Theorem 3.1 of Brouste et al. (2020) allows the use of weighted MLE which can deal
with other probability distributions of the exponential family. Using the proof in Appendix A.3, the MLE
pθpsq “ pθ̂Lpsq, θ̂Rpsqq is obtained by changing arithmetical means y

L{R
j psq to weighted means y

L{R
j,w psq in

Equation (10) according to Table 3.
From a computational point of view, the weighted sums and the weighted average can be computed

as follows. Let us first compute the total weight and the total weighted sum

mw “

n
ÿ

i“1

wi, Sw “
n
ÿ

i“1

wiyi.
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Left node Right node

Frequency mL
j,wpsq “

n
ř

i“1
wi1tiPLpj,squ mR

j,wpsq “
n
ř

i“1
wi1tiPRpj,squ

Average yLj,wpsq “
1

mLj,wpsq

n
ř

i“1
wiyi1tiPLpj,squ yRj,wpsq “

1
mRj,wpsq

n
ř

i“1
wiyi1tiPRpj,squ

Table 3: Notations for conditional weighted frequency and average

Then only for the left node, using Table 3, we deduce mL
j,wpsq and SLj,wpsq. Since the right-branch

statistics can be deduced from mw and mL
j,wpsq, Sw and SLj,wpsq, we easily obtain the needed weighted

averages as

yLj,wpsq “
SLj,wpsq

mL
j,wpsq

, yRj,wpsq “
Sw ´ S

L
j,wpsq

mw ´mL
j,wpsq

.

This may reduce the computation time if the selection ti P Lpj, squ is computer intensive. Now we present
usual distributions that benefit from using a weighted MLE in order to illustrate this framework.

The binomial distribution enters the exponential family framework by considering the random vari-
able Y {m when Y „ Bpm, pq for a size parameter m and a probability parameter p, see, e.g., Zeileis
and Hornik (2007). Using Table 1, the distribution of Y {m belongs to the exponential family, for which
Y “ t0, 1{m, . . . , 1u and Λ “ R. In practice, the size parameter m is known for the binomial experiment
and does not have to be estimated. Furthermore, the parameter is not common to every observations,
that is we model Yi{mi when Yi „ Bpmi, piq. So, we can tackle this issue by considering a weighted MLE
without changing a, b function yet c becomes cpx, φq “ 1{mi log

`

mi
mix

˘

. Using Table 1, the objective func-
tion for the binomial distribution is the same as for the Bernoulli distribution by changing arithmetical

means y
L{R
j psq to weighted means y

L{R
j,w psq.

2.3.3 Other special cases for log transformed variable

Finally, we close our overview of distributions belonging to the GLM framework by considering a transfor-
mation of the response variable. Various parametrized transformations have been proposed to nonlinearly
transform response variables so that the resulting distribution has a tractable distribution, typically the
Gaussian distribution. In that perspective, a classical transform is the Box-Cox transform (Box and Cox,
1964). Transforming the response variable is different than transforming the expectation through a link
function (possibly parametrized), see the discussion of McCullagh and Nelder (1989, Section 11.3.3).

In order to keep tractable solutions of MLE, we consider the log transformation which leads to
known distributions. More precisely, we consider the transformation tpxq “ logpd1x ` d2q and denote
by Ti “ tpYiq the transformed random variables, where d1, d2 are known parameters, i.e., no estimation
is needed. We assume that T1, . . . , Tn are independent random variables with a distribution defined in
Equation (1).

In Appendix A.4, we show that the log-likelihood (1) only differs by a new c̃ function

c̃py, φq “ cpy, φq ` logp
d1

d1y ` d2
q,

whereas a and b remain identical to the original distribution. As shown in Brouste et al. (2020), the MLE
is still explicit and the closed-form expression (9) has to be updated by replacing the original variable
Yi by the transformed variable Ti. Thus, we obtain expressions given in Table 4.

Left node Right node

Average t
L
j psq “

1
mLj psq

n
ř

i“1
tpyiq1tiPLpj,squ t

R
j psq “

1
mRj psq

n
ř

i“1
tpyiq1tiPRpj,squ

Table 4: Notations for conditional average for transform tpxq with frequencies given in Table 2
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As for non-transformed responses, the fitted log-like-lihood is explicit, see Appendix A.4. Hence, the
objective function, when searching for the best split point s‹ or the best subset s‹, is similar to (10)

Optj‹psq,mj‹psqq “ b̃
´

t
L
j‹psq

¯

mL
j‹psqt

L
j‹psq ´ b

´

b̃pt
L
j‹psqq

¯

mL
j‹psq

`b̃
´

t
R
j‹psq

¯

mR
j‹psqt

R
j‹psq ´ b

´

b̃pt
R
j‹psqq

¯

mR
j‹psq.

(11)

We present now important distributions which fall in this framework. The Pareto 1 distribution with
a known threshold parameter d is obtained by considering d1 “ 1{d and d2 “ 0. Indeed as studied in
Brouste et al. (2020, Section 4), in that case, Yi follows a Pareto 1 with shape parameter λ and threshold
parameter d implies that Ti “ logpYi{dq follows an exponential distribution Epλq, i.e., a special of the
gamma distribution Gp1, 1{λq. Hence, this falls in the GLM framework with a unitary dispersion φ “ 1
in Table 1. Using Equation (11), we obtain the following objective function

Optj‹psq,mj‹psqq “ ´m
L
j‹psq ´ t

L
j‹psqm

L
j‹psq ´m

R
j‹psq ´ t

R
j‹psqm

R
j‹psq.

The shifted lognormal distribution with a known threshold parameter d is obtained by considering
d1 “ 1 and d2 “ ´d. Indeed as studied in Brouste et al. (2020, Section 5), in that case, Yi follows a shifted
lognormal distribution with parameters µ, σ2 and threshold parameter d implies that Ti “ logpYi ´ dq
follows a Gaussian distribution N pµ, σ2q. Using Table 1 and Equation (11), we obtain the following
objective function

Optj‹psq,mj‹psqq “
mL
j‹psq

2

´

t
L
j‹psq

¯2
`
mR
j‹psq

2

´

t
R
j‹psq

¯2
.

2.4 Extensions to more complex trees

In this section, we discuss two possible extensions for GLM-based trees by including more than two splits
in Section 2.4.1 and several categorical explanatory variables in the GLM in Section 2.4.2.

2.4.1 Split into more than two segments

Our approach can easily deal with multiway splits at tree nodes. Generalizing the linear predictor (8),
we use a generic notation for the linear predictor

ηi “ θL1 ˆ 1tiPL1pj,squ ` ¨ ¨ ¨ ` θLm ˆ 1tiPLmpj,squ, (12)

where Lkpj, sq is the k-th leaf subset resulting from the split. For numeric partitioning variables, L1 Y

¨ ¨ ¨ Y Lm is a partition of the interval rmini zi,j ,maxi zi,js, while for categorical partitioning variables, it
is a partition of the modalities set tvj,1, . . . , vj,lju.

Again, from Theorem 3.1 of Brouste et al. (2020), the MLE pθpsq depends only on the link function
g and is given by

θ̂Lkpsq “ g
´

yLkj‹ psq
¯

, mLk
j‹ psq “

n
ÿ

i“1

1tiPLkpj‹,squ,

yLkj‹ psq “
1

mLk
j‹ psq

n
ÿ

i“1

yi1tiPLkpj‹,squ.

The fitted log-likelihood is also explicit using Corollary 3.1 of Brouste et al. (2020) and the objective
function (10) is generalized to

Opyj‹psq,mj‹psqq “
m
ÿ

k“1

b̃
´

yLkj‹ psq
¯

mLk
j‹ psqy

Lk
j‹ psq ´

m
ÿ

k“1

b
´

b̃pyLkj‹ psqq
¯

mLk
j‹ psq. (13)

This objective function is completely tractable and deals with both categorical and numerical partitioning
variables. This differs from other algorithms for multiway splits. Indeed, CHAID by Kass (1980) and
CRUISE by Kim and Loh (2001) build up contingency tables to compute chi-square statistics in the

10



search of the best partition not restricted to two children nodes. FACT by Loh and Vanichsetakul
(1988) is based on the linear discriminant analysis which allows multiple splits at the same node. Note
that categorical partitioning variables in CRUISE and FACT are converted to numerical variables via
the largest discriminant coordinate. Functional trees (FT) by Gama (2004) provide a general algorithm
but not an explicit objective function to be maximized at each node. LMT by Landwehr et al. (2005)
deals only with Bernoulli or multinomial responses and propose an iterative algorithm (LogitBoost) to
fit logistic regression models as well as heuristics to speed up their algorithm.

2.4.2 Explicit MLE solutions with categorical explanatory variables

Explanatory variables can be included in the GLM as it is permitted by MOB. For simplicity, we modify
Equation (8) by introducing a single explanatory categorical variable3. Similarly to Brouste et al. (2020,

Section 3.1), we denote by x
p1q
i the explanatory categorical variable which takes values in a set tv1, . . . , vdu

of size d ą 2. Considering m splits, the linear predictor can be simplified

ηi “
m
ÿ

k“1

d
ÿ

l“1

1tiPLkpj,squ1
!

x
p1q
i “vl

)θlLk “
m
ÿ

k“1

d
ÿ

l“1

x
pk,lq
i θlLk , (14)

where θlLk for different k and l are unknown parameters and x
pk,lq
i “ 1

tiPLkpj,sq,x
p1q
i “vlu

is a new dummy.

Using Example 3.4 of Brouste et al. (2020), the exact MLE of θ is for a given split point s

θ̂lLkpsq “ gpyk,lj‹ psqq, k “ 1, . . . ,m, l “ 1, . . . , d,

where yk,lj‹ is the empirical average over node k and modality vl given the partitioning variable j‹. Again
the fitted log-likelihood can be derived using Corollary 3.3 of Brouste et al. (2020): this consists in

replacing averages yLkj‹ psq by yk,lj‹ psq as well as node sides mLk
j‹ psq by mk,l

j‹ psq in (13) .
With a higher number of explanatory categorical variables, we may define dummy variables based on

interaction terms as in (14). However, an explicit log-likelihood is available only when the assumptions
of Theorem 3.2 of Brouste et al. (2020) are satisfied. More precisely, for two categorical explanatory
variables with modality numbers d2 ą 1, d3 ą 1, the MLE θ̂ is given by solving a system zeroing the
score where we need to impose that q “ 1` d2 ` d3 linear constraints on the parameter θ (Rθ “ 0) as
well as

detpR1 ´Q1R2q ‰ 0,

where Q1 “ p1d2d3 ,1d3bId2 , Id3b1d2q is a d2d3ˆp1`d1`d2`d2d3q real matrix with d2d3 the cardinal of
the set of combined modalities between the two categorical explanatory variables (excluding unobserved
combinations), R “ pR1, R2q is a q ˆ p1 ` d1 ` d2 ` d2d3q real matrix of linear contrasts whose rank
is equal to q, b is the Kronecker product, Id2 and Id3 are identity matrices and 1d2 ,1d2 and 1d2d3 are
ones-vectors. In the case of no intercept and no single-effect, this simplifies and the linear predictor (14)
is generalized to two explanatory variables as

ηi “
m
ÿ

k“1

d2
ÿ

l2“1

d3
ÿ

l3“1

x
pk,l2,l3q
i θl2,l3Lk

,

where θl2,l3Lk
are unknown parameters and

x
pk,l2,l3q
i “ 1

tiPLkpj,sq,x
p1q
i “vl2 ,x

p2q
i “vl3u

,

is a new dummy variable. In that case, its MLE is obtained as the g-transformed average response over

Lk given x
p1q
i “ vl2 , x

p2q
i “ vl3 , i.e. for a given split point s, k “ 1, . . . ,m, l1 “ 1, . . . , d1 and l2 “ 1, . . . , d2

θ̂l2,l3Lk
psq “ gpyk,l2,l3j‹ psqq.

3We do not consider an intercept as the fitted log-likelihood is identical with or without intercept, see Brouste et al.
(2020, Corollary 3.1).
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To our knowledge, this approach can not be directly extended to one or more continuous explanatory
variables, since explicit MLE is only available for categorical explanatory variables. Different ways are
possible for bypassing this issue. In some situations, continuous explanatory variables are never used
directly but splitted into levels, typically based on a regular grid or on quantile values. In experimental
situations also, continuous explanatory variables are sometimes recorded with a finite precision such as for
concentration, temperature, volume, so that a categorization of the variable is practicable. For instance,
this is the case for insurance pricing where the policyholder age is discretized, e.g., Denuit et al. (2019).
In ecotoxicology, Szöcs and Schäfer (2015) use discrete values in mg/L of treatment to explain mayfly
larvae counts. Alternatively, if modelers want to benefit from explicit MLE for GLM when building the
tree, continuous variables could be used as partitioning variables. Finally, the original glmtree model
(without explicit solutions) can of course be used in situations where continuous explanatory variables
should remain numeric so that a single coefficient is fitted in order to obtain monotonicity of the response
with respect to that variable.

3 Computational gain of closed-form solutions for GLM trees

In this section, we want to compare the performances, both in terms of accuracy and computation time,
of model-based recursive partitioning methods against a CART model on simulated datasets. Following
the literature (Zeileis et al., 2008), the superiority of GLM-based trees is expected, but our approach
should significantly reduce the runtime.

3.1 Dataset simulation

We consider an approach to build up various test datasets used in Wood (2011) for benchmarking
generalized additive models. Precisely for m explanatory variables, we first generate independent and
uniformly random variables pxi,jqi,j . Then, we simulate continuous independent variables Yi, i “ 1, . . . , n
with the mean µi “ g´1pηiq for a linear predictor ηi defined as

ηi “ 1`
m
ÿ

j“1

fj´1pmod 15qpxi,jq,

where the first five fj are Simon Wood’s smooth functions and the last ten fj are similar nonlinear test
functions defined in Appendix B.1. Distributions considered are given in Table 5. For the considered
distributions, a dispersion φ is needed to fully characterize the distribution, see last column in Table
5 for φ used when generating datasets and Table 1 for the link between the shape parameter and φ.
Various sample sizes are considered when simulating ranging from n “ 100 to n “ 50000 as well as
different explanatory variable number m “ 10 or 20. The naming convention for simulated datasets is
given in Table 6, for instance contIG2 refers to a simulated dataset with m “ 20 continuous explanatory
variables with inverse Gaussian responses.

Distribution µi φ

Gaussian N pµi, σ2q µi “ ηi 0.25

gamma Gpν, µiq µi “ eηi{5 0.25

inverse Gaussian IGpµi, σ2q µi “ eηi{5 0.1

Table 5: Mean and dispersion parameters µ, φ used in simulations

variable distribution number

cont for continuous expl. variables IG for inverse Gaussian 1 for m “ 10 covariates
categ for categorical expl. variables G for gamma 2 for m “ 20 covariates

N for normal

Table 6: Naming convention for datasets <variable><distribution><number>
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3.2 Implementation details

Numerical illustrations of this paper have been carried out in the R statistical software. Core functions,
such as glm, are implemented in the stats package, but some CRAN packages are also used. We
use ctree from package partykit by Hothorn and Zeileis (2015) to fit recursive partitioning based
conditional inference trees (CTREE ), and rpart from package rpart by Therneau and Atkinson (2019)
for the CART algorithm. New functions have been written to compare GLM-based trees: in the following,
GLM tree refers to outputs of glmtree, a special case of mob, in partykit, and explicit GLM tree refers
to the new estimation procedure for GLM trees proposed in Section 2. In addition, the function lmtree

from package partykit refers to linear model tree, which is equivalent to GLM trees with a Gaussian
distribution. Recall that a closed-form solution exists for this last method. Variables pxi,jqi,j can play
the role of both explanatory and partitioning variables in the GLM-tree algorithm. All theses variables
are considered as partitioning variables in Section 3.3 and 3.4, i.e., GLMs are fitted with an intercept.
GLMs with one explanatory variable are also considered in Section 3.4. They are estimated with our
Explicit GLM Tree model if the explanatory variable is categorical, and with GLM Tree if the explanatory
variable is continuous. All analyses are done with the default parameters with the following exceptions.
All trees are constrained to have a minimum number of 7 observations per terminal node, 20 observations
per internal node, and a maximum tree depth of 9 for all models. Furthermore, we also considered three
options4 of ctree fit by modifying the way the distribution of the test statistic is computed: Teststatistic
refers to the raw statistic for computing the p-values, Bonferroni and Univariate correspond respectively
to adjusted and unadjusted p-values from the asymptotic distribution. It is worth noting that the tuning
of parameters has not been optimized. A wise choice of these parameters could improve the prediction
quality of the different models.

3.3 Runtime comparison between GLM tree and explicit GLM tree

In this section, we especially focus on the gain in runtime between the original GLM tree method and
our new approach. To examine the superiority of our approach in terms of computation speed, we
perform a comparison simulation as described above and generate several samples of different sizes.
Here, performance are assessed based on the computation time only since the predictions are identical.

Figure 1 displays average computation times (over 10 runs) as a function of sample size from n “ 102

to 104 for ten continuous explanatory variables. Sub-figures 1a and 1b correspond to the Gamma
distribution while Sub-figures 1c and 1d are for the inverse Gaussian distribution. The results presented
show clearly the important gain in computation time for all sub-figures of Figure 1 when the size of the
simulated sample increases. For sample size larger n ą 103, explicit GLM tree is particularly fast. Note
also that comparisons cannot be done on samples of larger size because glmtree, which uses glm, does
not converge when GLMs are fitted during the split point search. This advantage holds irrespectively of
the chosen distribution or the number of explanatory variables.

Time ratios for other distributions and link functions are displayed in Figure 6 in Appendix B.2. Note
that for some distributions, such as normal or gamma, GLM tree does not converge for a non-canonical
link so that a comparison with explicit GLM tree is unfortunately not possible. Non-convergence issues
for GLM tree is due to some combinations of split points and explanatory variables where glm is badly
initialized and does not reach the convergence. Time ratios for the mean, the median and the standard
deviation runtime have similar patterns leading to the same conclusion.

3.4 Comparison with benchmark models

Since CART models are often preferred to unbiased tree methods while accuracy may be worse, our
aim is to show how the trade-off between computation times and predictive accuracy evolves with the
introduction of our approach. We compare the performance in accuracy, complexity and computation
time of our version of GLM trees with an explicit solution (Explicit GLM Tree) with a intercept-node
only; GLM trees with a one explanatory variable (GLM Tree reg) which admit an explicit solution when

4The p-values can be computed by Monte-Carlo and then adjusted with Bonferroni. This fourth option has also be
examined, but the results is not reported as the goodness-of-fits of results is comparable to the other ctree options, but
the computation times is much longer.
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(c) Inverse Gaussian m “ 10
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(d) Inverse Gaussian m “ 20

Figure 1: Computation time (sec) of GLM tree and explicit GLM tree

this variable is categorical; the original approach based on IWLS (GLM Tree), CTREE with different
test specifications and CART. These performance indicators are assessed by performing a bootstrap
cross-validation approach based on 100 bootstrap replications with replacement for each dataset. The
sample size is fixed to n “ 1, 000. Then, different models are trained on each bootstrap sample and
validated based on the leave-out cross-validation estimates. The accuracy of each model is calculated
through the root mean squared error (MSE) since the response is continuous. Complexity of trees is
assessed as the number of its terminal nodes. Finally, we assess the computation times in seconds for
each of these methods.

Figure 2 displays the distribution of the predictive RMSE of the considered methods over 4 simulated
data-sets introduced in Table 6, namely CategG1, CategIG1, ContG1 and ContIG1. For almost all
datasets, the explicit GLM Tree and GLM Tree5 with inverse Gaussian or gamma distributions produces
the smallest median RMSE compared to the other specifications. This result can be expected since inverse
Gaussian or gamma distributions are used for generating the response variable 6. The performance of

5Since the results of explicit GLM Tree and GLM Tree are equal, only those related to explicit GLM Tree are depicted.
6We also model a post-pruned version of the CART model using the one standard error criterion, which produce more
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GLM Tree reg with one explanatory variable are fairly similar for
CategG1 and CategIG1, except for the Gamma distribution, and for ContIG1. We observe however
than the explicit GLM Tree performs better for ContG1. We also note that the explicit GLM Tree with
Gaussian distribution outperforms CART and the CTREE specifications for for all samples, even if the
difference is visually small with the latter for CategIG1 and ContG1. Differences are observed between
the results of LM Tree and those of Explicit GLM Tree with Gaussian distribution. These discrepancies,
which appear in a material way only for the ContIG1 dataset, are explained by the splitting criterion
which is different between a linear model and a generalized linear model. Indeed, the first one is based on
the residual sum of squares while the second one is based on the log-likelihood of the model. Furthermore,
the interquartile range of the predictive RMSE does not show that Explicit GLM tree models provide
more reliable predictions than other algorithms.

ContG1 ContIG1

CategG1 CategIG1

20 40 60 20 40 60

4 6 8 5 10 15 20 25

ctree Bonferroni

ctree Teststatistic

ctree Univariate

explicit GLM tree

explicit GLM tree−Gamma

explicit GLM tree−inverse Gaussian

GLM tree reg

GLM tree reg−Gamma

GLM tree reg−inverse Gaussian

lmtree

rpart

ctree Bonferroni

ctree Teststatistic

ctree Univariate

explicit GLM tree

explicit GLM tree−Gamma

explicit GLM tree−inverse Gaussian

GLM tree reg

GLM tree reg−Gamma

GLM tree reg−inverse Gaussian

lmtree

rpart

RMSE

Figure 2: Predictive RMSE with 100 bootstrap replications, CategG1: gamma with categorical var.;
CategIG1: inv. Gaussian with categorical var.; ContG1: gamma with continuous var.; ContIG1: inv.
Gaussian with continuous var.

Table 7 focuses on the average over the 100 bootstrap samples of the predictive complexity. Despite its
lesser performance, we clearly note that CART produces less complex trees compared to other models.
As a result, this model retains an important interest compared to its competitors to the extent that
CART provides more interpretable and simpler to explain results. The complexity of all Explicit GLM
Tree and LM tree are close for each of them, but much higher to that of CART. For instance, on the
CategG1 dataset, the average complexity is around 3.3 times higher than the number of terminal nodes
of CART. Hence, the choice of these tree models to be used can be assessed in terms of the trade-off
between performance and complexity. The complexity of a Explicit GLM Tree and a GLM Tree reg

accurate results for CART model on the CategIG1 and the ContIG1 datasets, but explicit GLM Tree remains better in
terms of RMSE.

15



is similar with categorical variables, while a GLM Tree reg is clearly less complex in presence of one
continuous explanatory variable and continuous partitioning variables. This comes from the fact that
the trees of GLM Tree reg are grown with one less partitioning variable than Explicit GLM Tree, which
clearly reduce the number of possible nodes for trees built on continuous partitioning variables. The
complexity results of CTREE models depends on the chosen options for the variable selection test and
can be higher than the complexity of Explicit GLM Tree. For all datasets, the Bonferroni option is the
most parsimonious without a loss of performance, see Figure 2. Regarding the complexity, Explicit GLM
Trees are less complex to this specification on datasets with categorical partitioning variables (CategG1
and CategIG1) and more complex for datasets with partitioning continuous variables.

Method CategG1 CategIG1 ContG1 ContIG1

ctree Bonferroni 51.770 (4.156) 64.570 (4.841) 7.880 (3.006) 18.690 (3.826)

ctree Teststatistic 77.430 (2.417) 77.520 (2.834) 53.000 (8.299) 68.560 (5.907)

ctree Univariate 64.880 (3.264) 71.910 (3.232) 17.830 (5.520) 36.950 (6.559)

GLM tree reg 30.990 (1.982) 32.220 (1.643) 5.520 (3.301) 13.660 (5.769)

GLM tree reg-Gamma 30.022 (2.022) 32.225 (1.814) 5.340 (2.886) 12.420 (6.054)

GLM tree reg-inverse Gaussian 30.391 (1.827) 32.261 (1.725) 5.140 (3.291) 13.210 (5.186)

explicit GLM tree 31.640 (1.738) 31.090 (2.327) 10.950 (2.858) 25.800 (3.162)

explicit GLM tree-Gamma 31.450 (1.714) 31.170 (2.070) 10.220 (2.939) 25.030 (3.395)

explicit GLM tree-inverse Gaussian 31.420 (1.742) 30.800 (2.429) 12.560 (3.016) 22.990 (3.611)

lmtree 32.010 (1.888) 32.130 (2.377) 11.370 (3.139) 24.130 (3.620)

rpart 9.530 (1.795) 6.880 (3.291) 5.040 (2.558) 5.360 (1.494)

Table 7: Mean predictive complexity over 100 bootstrap replications with standard deviations in paren-
theses. CategG1: gamma with categorical var.; CategIG1: inv. Gaussian with categorical var.; ContG1:
gamma with continuous var.; ContIG1: inv. Gaussian with continuous var.

The mean runtime is summarized in Table 8. The results of Explicit GLM Tree and GLM Tree are
presented separately since the computation times obtained are different. In a similar way to Section 3.3,
it can be observed that Explicit GLM Tree largely outperforms GLM Trees. Concerning the CTREE, the
performance gap with GLM Trees differs depending on whether the partitioning variables are continuous
or categorical. For the CategG1 dataset for example, the models with a Gamma distribution and an
inverse Gaussian distribution have an average computation time of respectively 0.658 seconds and 0.612
seconds against 0.541 seconds for a CTREE with the Bonferroni option. The improvement is thus
substantial compared to the use of glmtree for which the computation time is 2.45 times and 2.65 times
higher on average. A comparable result is observed with the CategIG1 dataset. Furthermore, it is also
interesting to compare the performance of Explicit GLM Trees and GLM Trees reg for categorical and
continuous variables. With categorical variables, GLM Trees reg admit an explicit formula and clearly
outperforms Explicit GLM Tree. For continuous data, although the Explicit GLM Tree algorithm relies
on an explicit formula, it does not outperform GLM Tree reg due to its higher complexity.

For continuous partitioning variables, the superiority of CTREE over Explicit GLM Tree is more
marked. For the ContG1 dataset for example, the models with a Gamma distribution and an inverse
Gaussian distribution have an average computation time of 3.826 seconds and 2.887 seconds respectively
against 0.089 seconds for a CTREE with the Bonferroni option. In this situation, the gaps in terms of
computation time between the two types of algorithms is amplified since the number of split points is
greater than for categorical partitioning variables. The gain compared to glmtree due to the use of a
closed–form formula remains however very interesting. In addition, we can observe that the computation
time of CART is much lower than those of the other algorithms. The rpart package is indeed known
for its speed of execution as it relies on C code, whereas the partykit package is entirely developed in
the R language, which largely explains the important differences of calculation times.

3.5 Performance on BostonHousing and Hitters datasets

We now assess the performance of Explicit GLM tree, CTREE and CART on two public benchmark
datasets: BostonHousing and Hitters from R packages mlbench (Leisch and Dimitriadou, 2021) and
ISLR (James et al., 2017). On these datasets, most of variables are continuous, including the response
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Method CategG1 CategIG1 ContG1 ContIG1

ctree Bonferroni 0.541 (0.247) 0.418 (0.073) 0.089 (0.043) 0.162 (0.041)

ctree Teststatistic 0.682 (0.326) 0.471 (0.079) 0.365 (0.138) 0.415 (0.084)

ctree Univariate 0.622 (0.312) 0.453 (0.091) 0.166 (0.081) 0.262 (0.068)

GLM tree reg 0.372 (0.043) 0.484 (0.068) 2.310 (1.215) 3.095 (1.071)

GLM tree reg-Gamma 0.484 (0.067) 0.517 (0.070) 2.214 (1.076) 2.980 (1.350)

GLM tree reg-inverse Gaussian 0.436 (0.069) 0.471 (0.064) 2.141 (1.455) 3.590 (1.766)

explicit GLM tree 0.922 (0.452) 0.687 (0.170) 2.943 (1.711) 3.047 (0.461)

explicit GLM tree-Gamma 0.658 (0.099) 0.674 (0.104) 3.826 (0.651) 4.494 (0.585)

explicit GLM tree-inverse Gaussian 0.612 (0.102) 0.632 (0.134) 2.887 (0.659) 2.761 (0.338)

GLM tree 1.121 (0.525) 0.827 (0.163) 5.243 (1.857) 5.708 (0.828)

GLM tree-Gamma 1.325 (0.204) 1.326 (0.197) 17.887 (2.517) 18.601 (1.887)

GLM tree-inverse Gaussian 1.433 (0.227) 1.432 (0.274) 16.165 (4.342) 21.721 (1.693)

lmtree 0.713 (0.357) 0.483 (0.117) 1.651 (1.017) 1.493 (0.308)

rpart 0.022 (0.009) 0.015 (0.007) 0.022 (0.015) 0.018 (0.004)

Table 8: Mean predictive runtime of different methods over 100 bootstrap replications with standard
deviations in parentheses. CategG1: gamma with categorical variables; CategIG1: inverse Gaussian
with categorical variables; ContG1: gamma with continuous variables; ContIG1: inverse Gaussian with
continuous variables.

variable. Hence, we consider three distributions for GLM trees (Gaussian, inverse Gaussian and gamma)
with 100 bootstrap replications as in Section 3.2.

Figure 3 displays the distribution of the predictive RMSE. For BostonHousing, CTREEs are the
best, yet other algorithms performance are very comparable. Since the response variable for this dataset
is the median value of owner-occupied homes in USD 1000’s. Consequently, inverse Gaussian and gamma
distributions do not seem well suited, which explains why Explicit GLM trees with these distributions
do not clearly outperform the Gaussian model. For Hitters, LM Tree is the best yet all models perform
similarly. Since the shape of the density of the variable distribution is fairly close to that of a gamma
distribution, the specification with this law is the best for Explicit GLM trees.

BostonHousing Hitters

4 5 6 300 400

ctree Bonferroni

ctree Teststatistic

ctree Univariate

explicit GLM tree

explicit GLM tree−Gamma

explicit GLM tree−inverse.gaussian

lmtree

rpart

RMSE

Figure 3: Predictive RMSE with 100 bootstrap replications for BostonHousing and Hitters

Table 9 displays both the average and the median over the 100 bootstrap samples of the predictive
complexity and the runtime. The most complex trees are observed for CTREE on both datasets. Again,
we observe the Bonferroni option produces the most parsimonious CTREEs. The least complex trees
are produced by CARTs for BostonHousing and Explicit GLM Trees as well as LM trees for Hitters.
Regarding mean and median runtimes, Explicit GLM Trees clearly outperform GLM Trees for both
datasets. Since most of partitioning variables are continuous, all CTREEs are more efficient than
Explicit GLM Trees, not due to differences in complexity but rather the way that the Explicit GLM Tree
algorithm is implemented in R. Finally, we note that the CART algorithm remains the fastest method
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due to its very efficient implementation compared to the other models.

Complexity Computation time

data method family mean median mean median

ctree Bonferroni Gaussian 21.90 22.0 0.359 0.363

ctree Teststatistic Gaussian 40.91 41.0 0.523 0.525

ctree Univariate Gaussian 36.21 36.5 0.493 0.494

explicit GLM tree Gaussian 14.15 14.0 1.330 1.343

GLM tree Gaussian 14.15 14.0 2.171 2.216

explicit GLM tree Gamma 13.82 14.0 1.752 1.742

GLM tree Gamma 13.82 14.0 4.678 4.684

explicit GLM tree inverse Gaussian 14.09 14.0 1.462 1.464

GLM tree inverse Gaussian 14.09 14.0 4.868 4.875

lmtree Gaussian 13.70 14.0 0.662 0.676

BostonHousing

rpart Gaussian 9.01 9.0 0.036 0.038

ctree Bonferroni Gaussian 9.35 9.0 0.209 0.211

ctree Teststatistic Gaussian 21.77 22.0 0.333 0.333

ctree Univariate Gaussian 18.43 19.0 0.301 0.311

explicit GLM tree Gaussian 7.08 7.0 0.475 0.484

GLM tree Gaussian 7.08 7.0 0.701 0.720

explicit GLM tree Gamma 6.50 6.5 0.604 0.597

GLM tree Gamma 6.50 6.5 1.430 1.435

explicit GLM tree inverse Gaussian 6.56 6.0 0.550 0.545

GLM tree inverse Gaussian 6.56 6.0 1.514 1.521

lmtree Gaussian 6.06 6.0 0.265 0.254

Hitters

rpart Gaussian 9.47 9.0 0.030 0.030

Table 9: Complexity and runtime mean and median for BostonHousing and Hitters

4 Random forest based on GLM Trees

In this section, we assess the benefits of our approach based on a closed-form formula by implementing
a random forest type approach for GLM tree model, called GLM forest hereafter. This analysis is con-
ducted on simulated datasets, where we compare the performance of our approach against two classical
random forest competitors: the function cforest from package partykit to fit random forests based on
CTREE, as well as the function randomForest from the R package randomForest (Liaw and Wiener,
2002).

4.1 Datasets and implementation details

We use the following datasets ContG2 and ContIG2 defined in Section 3.1, that is, datasets with m “ 20
continuous explanatory variables for gamma or inverse Gaussian responses and n “ 1000 observations,
see Table 6.

We consider three versions of GLM forest by choosing Gaussian, gamma and inverse Gaussian dis-
tributions (with canonical link) as for GLM tree in Section 3. Regarding cforest, we also consider three
versions depending on the way the distribution of the test statistic is computed: Teststatistic refers to the
raw statistic, Bonferroni and Univariate correspond respectively to adjusted and unadjusted p-values
as in the previous section. Finally, the randomForest function from package of the same name is used
with the default arguments, except for those listed below.
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In order to make a fair and reliable comparison, we control forest-type algorithms using the following
arguments:

• the number of trees, called ntree,

• the number of input variables randomly sampled as splitting candidates at each node, called mtry,

• the maximum depth of the tree, called maxdepth. An infinite value means that no restrictions are
applied to tree sizes.

For randomForest, the terminal node number is capped by 2maxdepth since there is no argument for
the maximum depth. We consider two metrics for this benchmark: the usual root mean squared error
(RMSE) as well as the mean absolute error (MAE) which proves to be a discriminant metric complemen-
tary to the RMSE. These performance indicators are assessed by performing a bootstrap cross-validation
approach based on 100 bootstrap replications with replacement for each dataset as in Section 3.4.

4.2 Benchmark accuracy results

In Figure 4, we display RMSE and MAE for seven algorithms considered in this paper as a function of
the maximum tree depth with ntree=500 and mtry=5. Regarding RMSE, all algorithms have similar
performance for both datasets. The three cforests are very close to one another leading to the conclusion
that the test statistics has no importance on RMSE yet the computation times are different as we will
see. Depending on the type of distribution used, GLM forests perform well for small trees on ContIG2

in Subfigure 4b and for large trees on ContG2 in Subfigure 4a. On these datasets, the randomForest
algorithm proves to be less competitive with no situation where this algorithm is the best, even for
unconstrained trees (infinite maxdepth).

Regarding MAE, we observe a large difference between randomForests and the others algorithms.
Using this another metric leads to a viewable difference for the three cforests where cforest Test Stat.
appears as the worst of all. In Subfigure 4d, the best algorithm is always a GLM forest algorithm,
whereas for Subfigure 4c cforest Bonferroni is the best for medium-size trees. Overall, GLM forests
Gaussian perform particularly well, while the datasets are generated with non-Gaussian distributions.

This analysis was also performed on datasets with less simulated explanatory variables ContG1 and
ContIG1 with similar conclusions. We also test our seven algorithms on a wide range of tree numbers
(ntree) and partitioning variable numbers (mtry) for which similar patterns of RMSE and MAE are
observed.

4.3 Runtime and complexity analysis

The analysis of runtime and complexity also gives another point of view of our benchmark. The com-
plexity of a forest for a given run is the sum of terminal node number for each tree. The maximum
complexity for a given maxdepth is thus 100 ˆ 2maxdepth. In Table 10, we display the mean and the
median of complexity as well as computation times (seconds) for maxdepth=8.

By far, the randomForest algorithm proposes the most complex forests with a complexity ten times
higher than that of the cforest Teststatistic algorithm, which is in turn ten times higher than other
complexities. In conjunction with Figure 4, at maxdepth=8, we can conclude that most complex algo-
rithms (such as randomForest and cforest Teststatistic) do not produce necessarily the best model
in terms of RMSE, which is an interesting feature of cforests and GLM forests.

When mtry and ntree parameters are fixed, we empirically observe that the depth of trees can
affect the accuracy of models, but there is no monotonous relation between the depth of trees and the
predicted RMSE. Furthermore, modifying the p-value for parameter stability test of cforests and GLM
forests (when a node is split) does not greatly improve the accuracy of GLM forests. On these datasets,
forests with smaller trees (such as GLMforests and cforests Bonferroni) produce better trees, both in
terms of performance and complexity.

In terms of runtime, there are three groups: random-Forest and cforest Bonferroni are by far the
fastest; cforest Univariate and cforest Teststatistic are second fastest; finally GLM forest algorithms are
the slowest. Let us denote that the randomForest package is well optimized with some routines in C
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Figure 4: Error metrics as a function of maxdepth

and Fortran unlike partykit and that our implementation of GLM forests is developed in R. Therefore,
the superiority of randomForest was expected since the different algorithms are not compared on
the same playing field in terms of language. Yet, it should be noted that the greater complexity of
randomForest leads to a larger number of operations, which means that an implementation of GLM
forests in an equivalent language could lead to similar runtime performance.

4.4 Performance on BostonHousing and Hitters datasets

Finally, we assess the performance of GLM forests,
cforests and RandomForests with ntree=500, mtry=5, maxdepth=8 on BostonHousing and Hitters,
see Section 3.5. As in Section 4.1, we consider three versions of GLM forests by choosing Gaussian,
gamma and inverse Gaussian distributions (with canonical link) as for GLM trees. Regarding cforests,
we restrict ourselves to only one version based on Teststatistic which is the most effective.

Figure 5 displays the predictive RMSE, whereas Table 11 displays the complexity and the runtime
over 100 bootstrap replications. For BostonHousing, most complex forests produced by a randomForest
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Complexity Computation time

data method family mean median mean median

cforest Bonferroni Gaussian 728.00 640.5 2.03 1.72

cforest Teststatistic Gaussian 13244.31 13226.0 34.90 34.86

cforest Univariate Gaussian 1775.54 1732.5 5.61 5.59

glmforest Gamma 1263.94 1224.5 219.71 219.28

glmforest Gaussian 1432.09 1388.0 177.48 181.01

glmforest Inverse Gaussian 1516.63 1504.0 176.86 178.98

ContG2

randomForest gaussian 127905.45 127912.0 3.55 3.55

cforest Bonferroni Gaussian 845.10 794.0 5.39 4.20

cforest Teststatistic Gaussian 15303.13 15202.0 82.62 61.72

cforest Univariate Gaussian 2670.41 2567.0 18.35 14.38

glmforest Gamma 1451.66 1387.5 424.80 406.55

glmforest Gaussian 1587.87 1530.0 253.51 247.73

glmforest Inverse Gaussian 1480.79 1381.5 224.90 213.51

ContIG2

randomForest gaussian 127306.26 127334.0 7.18 5.75

Table 10: Complexity and runtime mean and median for ContG2 and ContIG2 over 100 runs, maxdepth=8

are the best followed by a cforest. Again there is no advantage of using non-Gaussian distributions for
this dataset and the predictive performance for GLM forests is slightly worse than that of cforests and
more unstable. For Hitters, RMSE boxplots of all algorithms are more close, yet
randomForests perform slightly better at the price of complexity. It is thus interesting to note the
parsimony of cforests and GLM forests.

BostonHousing Hitters

3 4 5 200 250 300 350 400

cforest Teststatistic 

GLM forest gamma

GLM forest Gauss.

GLM forest inv. Gauss.

randomForest 

RMSE

Figure 5: Predictive RMSE with 100 bootstrap replications for BostonHousing and Hitters

5 Conclusion

This paper focuses on GLM-based trees which are a particular case of MOB employed for partitioning
GLM. This algorithm is of particular interest for identifying relevant subgroups in data where a GLM is
locally estimated. We propose a new fast algorithm for growing GLM trees based on the use of explicit
MLE solutions for GLM with categorical explanatory variables. The proposed algorithm in Section 2 is
flexible and can be applied for any probability distribution in the one-para-meter exponential family and
any link function. The main method presented in the paper relies on binary trees with intercept-only
nodes, but we also show that it can be combined with multiway splits and the use of several explanatory
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Complexity Computation time

data method family mean median mean median

cforest Teststatistic Gaussian 11569 11555 27.13 27.16

glmforest Gamma 6193 6184 258.50 259.00

glmforest Gaussian 6386 6396 231.98 231.95

glmforest Inverse Gaussian 6198 6194 228.38 227.93
BostonHousing

randomForest Gaussian 62808 62818 0.88 0.88

cforest Teststatistic Gaussian 6614 6606 16.48 16.48

glmforest Gamma 3134 3076 105.36 104.56

glmforest Gaussian 3291 3286 96.92 96.87

glmforest Inverse Gaussian 3161 3074 95.82 94.64
Hitters

randomForest Gaussian 33153 33146 0.41 0.42

Table 11: Complexity and runtime mean and median for BostonHousing and Hitters over 100 runs

categorical variables in the GLM. Our approach also has explicit objective functions for a weighted MLE
and transformed response variables.

We demonstrate on simulated and empirical datasets that this approach greatly increases the compu-
tation speed of the GLM-based tree model compared to the features originally offered by the R package
partykit. Particularly, we show in Section 3 the proposed algorithm is three times faster for a Bernoulli
response, five times faster for continuous non-Gaussian responses than the original. Furthermore, our
numerical applications on continuous simulated datasets confirm the effective out-of-sample performance
compared to other tree-based approaches such as RPART or ctree, both with categorical and continuous
partitioning variables. Hence, this increases the interest of these models for applications where they
are used intensively, as for ensemble decision trees. Despite of the use of closed-form estimators, our
approach developed in R and based on the partykit package remains however much slower than rpart

and ctree functions, indicating that additional efforts would be needed to speed up this method in C or
Fortran code, both available in base R API.

Furthermore, this new algorithm makes it possible to derive a GLM forest algorithm in Section 4.
Although this is also proposed by Garge et al. (2013), the use of closed-form estimators reduces the
gaps in computation times to the other classical random forest algorithms such as randomForests and
cforests. Similarly to cforests, GLM forests produce less complex trees than randomForests which could
be interesting for the purpose of interpretability. For numerical applications based on simulated datasets,
our GLM Forest approach performs better than its competitors in terms of MAE and is similar in terms
of RMSE, depending on the chosen maximum depth of the tree. For the two chosen empirical datasets,
GLM Forest does not perform better than classical random forest, but offers a good compromise in terms
of performance and complexity.

This approach opens up some pathways for future research. Other types of distributions could be
studied in the framework model-based trees, for instance inflated distributions such as zero-inflated
Poisson, see, e.g., CORE models by Liu et al. (2019), two-parameter exponential families such as beta,
negative binomial distributions or heavy-tailed distributions as in Farkas et al. (2021). In addition, we
believe this method can be applied to other ensemble decision tree algorithm, such as boosted trees, or
for prediction rule ensembles (Fokkema, 2020) where the features of MOBs if of interest for interpretable
rule generation.

Acknowledgments

The authors are also very grateful for the useful suggestions of the two anonymous referees, which led
to significant improvements of this article. The remaining errors, of course, should be attributed to
the authors alone. This paper also benefits from fruitful discussions with members of the French chair

22



DIALog – Digital Insurance And Long-term risks – under the aegis of the Fondation du Risque, a joint
initiative by UCBL and CNP; and with members of the French laboratory SAF (UCBL and ISFA).

Conflict of interest

The authors declare that they have no conflict of interest.

References

Box, G. and Cox, D. (1964). An analysis of transformations revisited. In: Journal of American Statistician
77, pp. 209–210 (cit. on p. 9).

Breiman, L. (Aug. 1996). Bagging Predictors. In: Machine Learning 24.2, pp. 123–140. url: https:
//doi.org/10.1023/A:1018054314350 (cit. on p. 2).

Breiman, L. (Oct. 2001). Random Forests. In: Machine Learning 45.1, pp. 5–32. url: https://doi.
org/10.1023/A:1010933404324 (cit. on p. 2).

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (Jan. 1984). Classification and Regression
Trees. New Ed. Boca Raton: Chapman and Hall/CRC (cit. on p. 1).

Brouste, A., Dutang, C., and Rohmer, T. (2020). Closed form Maximum Likelihood Estimator for Gen-
eralized Linear Models in the case of categorical explanatory variables: Application to insurance loss
modelling. In: Computational Statistics 35, pp. 689–724 (cit. on pp. 2, 4, 6–11, 25).

Chambers, J. and Hastie, T. (1993). Statistical Models in S. Chapman and Hall (cit. on p. 8).
Ciampi, A. (Aug. 1991). Generalized regression trees. In: Computational Statistics & Data Analysis 12.1,

pp. 57–78. url: http://www.sciencedirect.com/science/article/pii/0167947391901039 (cit.
on p. 2).

Cortes, C. and Vapnik, V. (1995). Support-vector networks. In: Machine Learning 20.3, pp. 273–297
(cit. on p. 2).

Denuit, M., Hainaut, D., and Trufin, J. (2019). Effective Statistical Learning Methods for Actuaries I:
GLMs and extensions. Springer Actuarial Lecture Notes. Springer (cit. on pp. 8, 12).

Fahrmeir, L. and Kaufmann, H. (1985). Consistency and asymptotic normality of the maximum likelihood
estimator in generalized linear models. In: The Annals of Statistics, pp. 342–368 (cit. on p. 3).

Farkas, S., Lopez, O., and Thomas, M. (May 2021). Cyber claim analysis using Generalized Pareto
regression trees with applications to insurance. In: Insurance: Mathematics and Economics 98, pp. 92–
105. url: https://www.sciencedirect.com/science/article/pii/S0167668721000330 (cit. on
p. 22).

Fokkema, M. (Mar. 2020). Fitting Prediction Rule Ensembles with R Package pre. In: Journal of Statis-
tical Software 92.1, pp. 1–30. url: https://www.jstatsoft.org/index.php/jss/article/view/
v092i12 (cit. on pp. 2, 6, 22).

Friedman, J. H. (Feb. 2002). Stochastic gradient boosting. In: Computational Statistics & Data Analysis.
Nonlinear Methods and Data Mining 38.4, pp. 367–378. url: https://www.sciencedirect.com/
science/article/pii/S0167947301000652 (cit. on p. 2).

Gama, J. (June 2004). Functional Trees. In: Machine Learning 55.3, pp. 219–250. url: https://doi.
org/10.1023/B:MACH.0000027782.67192.13 (cit. on pp. 2, 11).

Garge, N. R., Bobashev, G., and Eggleston, B. (Apr. 2013). Random forest methodology for model-
based recursive partitioning: the mobForest package for R. In: BMC Bioinformatics 14, p. 125. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626834/ (cit. on pp. 2, 22).

Hothorn, T., Hornik, K., and Zeileis, A. (Sept. 2006). Unbiased Recursive Partitioning: A Conditional
Inference Framework. In: Journal of Computational and Graphical Statistics 15.3, pp. 651–674. url:
https://doi.org/10.1198/106186006X133933 (cit. on pp. 1, 2).

Hothorn, T. and Zeileis, A. (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. In:
Journal of Machine Learning Research 16, pp. 3905–3909. url: https://jmlr.org/papers/v16/
hothorn15a.html (cit. on pp. 2, 13).

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2017). ISLR: Data for an Introduction to Statistical
Learning with Applications in R. url: https://CRAN.R-project.org/package=ISLR (cit. on p. 16).

23

https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://www.sciencedirect.com/science/article/pii/0167947391901039
https://www.sciencedirect.com/science/article/pii/S0167668721000330
https://www.jstatsoft.org/index.php/jss/article/view/v092i12
https://www.jstatsoft.org/index.php/jss/article/view/v092i12
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://doi.org/10.1023/B:MACH.0000027782.67192.13
https://doi.org/10.1023/B:MACH.0000027782.67192.13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626834/
https://doi.org/10.1198/106186006X133933
https://jmlr.org/papers/v16/hothorn15a.html
https://jmlr.org/papers/v16/hothorn15a.html
https://CRAN.R-project.org/package=ISLR


Kass, G. (1980). An exploratory technique for investigating large quantities of categorical data. In:
Annals of Applied Statistics 29, pp. 119–127 (cit. on p. 10).

Kim, H. and Loh, W.-Y. (June 2001). Classification Trees With Unbiased Multiway Splits. In: Journal
of the American Statistical Association 96.454, pp. 589–604. url: https://doi.org/10.1198/
016214501753168271 (cit. on pp. 1, 10).

Landwehr, N., Hall, M., and Eibe, F. (2005). Logistic Model Trees. In: Machine Learning 59, pp. 161–205
(cit. on p. 11).

Lawrence, J. (1994). Introduction To Neural Networks: Design, Theory and Applications. 6th. California
Scientific Software (cit. on p. 2).

Leisch, F. and Dimitriadou, E. (2021). mlbench: Machine Learning Benchmark Problems. url: https:
//CRAN.R-project.org/package=mlbench (cit. on p. 16).

Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest. In: R News 2.3, pp. 18–
22. url: https://CRAN.R-project.org/doc/Rnews/ (cit. on p. 18).

Liu, N.-T., Lin, F.-C., and Shih, Y.-S. (May 2019). Count regression trees. In: Advances in Data Analysis
and Classification. url: https://doi.org/10.1007/s11634-019-00358-7 (cit. on p. 22).

Loh, W.-Y. (2002). Regression trees with unbiased variable selection and interaction detection. In: Sta-
tistica Sinica 12.2, pp. 361–386. url: https://www.jstor.org/stable/24306967 (cit. on p. 2).

Loh, W.-Y. (2014). Fifty Years of Classification and Regression Trees. In: International Statistical Review
82.3, pp. 329–348. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12016 (cit.
on p. 1).

Loh, W.-Y. and Shih, Y.-S. (1997). Split Selection Methods for Classification Trees. In: Statistica Sinica
7.4, pp. 815–840. url: https://www.jstor.org/stable/24306157 (cit. on p. 1).

Loh, W.-Y. and Vanichsetakul, N. (Sept. 1988). Tree-Structured Classification via Generalized Dis-
criminant Analysis. In: Journal of the American Statistical Association 83.403, pp. 715–725. url:
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1988.10478652 (cit. on pp. 1,
11).

McCullagh, P. and Nelder, J. (Aug. 1989). Generalized Linear Models. Second Edition. Statistics and
Applied Probability 37. Boca Raton: Chapman and Hall/CRC (cit. on pp. 3, 9).

Philipp, M., Rusch, T., Hornik, K., and Strobl, C. (Oct. 2018). Measuring the Stability of Results From
Supervised Statistical Learning. In: Journal of Computational and Graphical Statistics 27.4, pp. 685–
700. url: https://doi.org/10.1080/10618600.2018.1473779 (cit. on p. 2).

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing. Vienna, Austria. url: http://www.R-project.org (cit. on pp. 2, 8).

Rusch, T. and Zeileis, A. (July 2013). Gaining insight with recursive partitioning of generalized linear
models. In: Journal of Statistical Computation and Simulation 83.7, pp. 1301–1315. url: https:
//doi.org/10.1080/00949655.2012.658804 (cit. on pp. 1–4).

Seber, G. A. and Lee, A. J. (2003). Linear regression analysis. John Wiley & Sons (cit. on p. 3).
Seibold, H., Hothorn, T., and Zeileis, A. (Oct. 2018). Generalised linear model trees with global additive

effects. In: Advances in Data Analysis and Classification. url: https://doi.org/10.1007/s11634-
018-0342-1 (cit. on p. 1).

Su, X., Wang, M., and Fan, J. (Sept. 2004). Maximum Likelihood Regression Trees. In: Journal of
Computational and Graphical Statistics 13.3, pp. 586–598. url: https://amstat.tandfonline.
com/doi/abs/10.1198/106186004X2165 (cit. on pp. 2, 7).
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A Computation details on likelihood and deviance

A.1 Proof of the fitted log-likelihood

Using Corollary 3.1 of Brouste et al. (2020) for the j-th partitioning variable and using notations from
Table 2, we have

logLppθLpsq, pθRpsq,y, sq

“
1

apφq
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iPLpj,sq

´

yib̃
`

yLj psq
˘
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where b̃ “ pb1q´1 is the inverse of b1.

A.2 Proof of the fitted deviance

Let us note the fitted mean µ̂i “ g´1pă zi, yθpsq ąq “ y
pjq
n . The deviance is given by

Dppµ,yq “ ´2 logLppµ, φ,yq ` 2 logLpy, φ,yq
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.

A.3 Proof of the fitted log-likelihood

We adapt the proof of Brouste et al. (2020) in order to take into account weights when maximizing the
log-likelihood. For a known weight wi, their Equations (4) and (5) become

logLpθ |yq “
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We adapt their proof of Theorem 3.1. The system Spθq “ 0 is
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The first equation being redundant, the second equation simplifies to @j P J
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takes values in Y Ă b1pΛq, and ` injective, we have for all j P J

ypjqw “ b1 ˝ `pθp1q ` θp2q,jq ô θp1q ` θpjq “ gpypjqw q.

The rest of the proof is identical except to replace y
pjq
n by y

pjq
w . Hence, a slight modification of their

Theorem 3.1 is for j P J
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For the two-variable case, we can also adapt their Theorem 3.2 by changing absolute frequencies and
averages to weighted frequencies and averages as below.
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A.4 Proof of the log-likelihood of transformed variable

For tpxq “ logpd1x ` d2q, t
1pxq “ d1

d1x`d2
, t´1pxq “ pex ´ d2q{d1 the log-likelihood of y such that tpyq

follows (1) is given by
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Therefore, the fitted log-likelihood based on (15) is
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(15)

where tlj,wpsq are the corresponding observation of random variable T lj,wpsq defined in Table 4.

B Additional materials for numerical illustrations

B.1 Simon Wood’s test functions

We define smooth functions to Simon Wood’s test datasets (Wood, 2011) as

f0 “ 5 sinp2πxq, f1 “ expp3xq ´ 7, f2 “ 0.5ˆ x11p10p1´ xqq6 ´ 10p10xq3p1´ xq10,

f3 “ 15 expp´5|x´ 1{2|q ´ 6, f4 “ 2´ 1pxă“1{3qp6xq
3 ´ 1pxą“2{3qp6´ 6xq3 ´ 1p2{3ąxą1{3qp8` 2 sinp9px´ 1{3qπqq,

f5pxq “ t20xu´ 10, f6pxq “ 10´ r20xs, f7pxq “ sinp50xq ` 10x´ 10, f8pxq “ 8` 2 cosp50xq ´ 50xp1´ xq,

f9pxq “ r50xp1´ xqs´ 5, f10pxq “ 5 logpx` 10´6q ` 5, f11pxq “ ´10´ 5 logpx` 10´6q ` sinp50xq,

f12pxq “ 2 logpx` 10´6q ´ 2 logp1´ x` 10´6q, f13pxq “ 10| sinp20xq|,

f14pxq “ 1pxă“1{2q ˆ 5 sinp20xq ` 1pxą1{2q ˆ p5 sinp10q ` pexpp5px´ 0.5qq ´ 1qq.
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B.2 Runtime comparison between GLM tree and explicit GLM tree
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Figure 6: Mean runtime ratio of GLM tree over explicit GLM tree
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