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Key Points: 

⚫ Employing land surface schemes that take a sub-grid approach is critical in simulating the  

climate impacts of fine-scale land cover change 

⚫ Land surface schemes that take a dominant approach can largely misestimate the climate 

response to land cover change 

⚫ The theoretical tiling approach of CLM was not active when it was coupled into the 

Weather Research and Forecasting model 
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Abstract: Land surface schemes in Earth System Models simulate how vegetation regulates 

land-atmosphere fluxes of heat, water, carbon, and momentum. Despite the spatial resolution 

of regional climate modelling that we can reach now has advanced, many land cover changes 

still occur at sub-grid scale, and need to be properly treated. Here, we investigate the response 

of evapotranspiration, representing the fluxes of heat and water, to deforestation in Southeast 

Asian Massif by employing three land surface schemes (Noah mosaic, Noah-MP and 

Community Land Model (CLM)) with different approaches in representing sub-grid variability, 

implemented in the Weather Research and Forecasting model. Two experiments, with and 

without satellite-observed deforestation, were performed for each scheme. Results show that 

the simulations are highly sensitive to the subgrid-scale approaches embedded in the land 

surface schemes. Comparing to the observed historical climate, CLM outperforms others and 

Noah mosaic shows the largest bias. However, if we target the simulation of the climate impacts 

of land cover change, the Noah mosaic scheme which takes the sub-grid approach can better 

capture the response of evapotranspiration to deforestation. The NoahMP and CLM schemes 

underestimate the evapotranspiration response in the grid cells where the dominant land cover 

type has not changed, but they overestimate the response in those grid cells with dominant type 

changed, which is a characteristic of dominant-grid approach. To improve our understanding of 

climate impacts induced by fine-scale land cover change, future efforts to better represent 

subgrid-scale variability and land-atmosphere flux exchange in climate models are desirable.  

Keywords: subgrid-scale variability; land cover change; climate response; land surface 

schemes; coupled model  
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1. Introduction 

The realistic representation of land surface processes is still a challenge in Earth system 

modeling (Betts, 2009). On the one hand, the nonlinear nature of land-atmosphere interaction 

calls for accurate description of land surface characteristics and biogeophysical processes in 

models (Mallard & Spero, 2019). This relies on appropriate parameterizations to reproduce the 

vegetative and radiative properties of the surface reasonably (Yano, 2016; Tomasi et al., 2017). 

On the other hand, land surface properties exhibit high degree of spatial heterogeneity (Sellers, 

1991). Although advances in technology, such as multi-source remote sensing, could yield land 

surface information in fine resolutions (≤5 m), Earth system models and numerical weather 

models are typically implemented at coarser grid spacing ranging from a few hundreds of km 

at global scale to a few kilometers at regional scale. Land cover parameters can vary 

significantly within a model mesh, affecting the mean surface fluxes at the grid level and climate 

dynamics at larger scales (Li et al., 2013). As such, subgrid-scale variability, indicating the 

heterogeneous properties of land surface, is substantial in Earth system modeling and should be 

attached great importance.  

In the past few decades, different strategies of physical parameterization have been 

employed to integrate land surface information in models (Giorgi & Avissar, 1997). As one of 

the most common method, the “dominant” approach provides parameters of the most abundant 

land cover type (LCT) within each grid cell, and the state characteristics and processes are 

assumed to be uniform (Noilhan & Planton, 1989; Chen et al., 1997). Generally, this approach 

is a trade-off between considering the model complexity in a simple way and omitting the 

representation of subgrid-scale interactions and processes. There are several approaches 

deliberating the subgrid-scale variability. One is the “composite” approach (Koster & Suarez, 

1992), which aggregates parameter values of all LCTs within a grid cell into one homogeneous 

but fictitious type. Another is the “statistical-dynamical” approach (Avissar, 1991), in which 

parameters within a grid cell are divided into a number of bins following probability density 

functions, and the fluxes are computed using the bin values of surface parameters. Different 

from the former two methods, the “mosaic/tiling” approach provides a more realistic way 

(Avissar & Pielke 1989; Li et al., 2013). The grid cell is divided into a certain number of tiles 

based on LCTs, and the surface is assumed to be homogeneous and continuous in each tile. 

Then the fluxes of water and energy, as well as other state variables that characterize surface, 

are calculated within each tile independently. The output values of all tiles are spatially 

aggregated by a certain rule to obtain the values of the grid cell.  

The Weather Research and Forecasting (WRF) model (Skamarock et al., 2019) is a 

powerful tool in simulating the regional climate and land-atmosphere interactions due to its 

sophisticated mesoscale and three-dimensional dynamical downscaling structure. Within the 

WRF model, the land surface scheme (LSS) regulates the fluxes of heat, water vapor and 

momentum between land and atmosphere (Ek et al., 2003). WRF has been coupled with several 

land surface schemes. Because of the nonlinear interaction processes involved, different LSSs 

vary in parameterizations and representations of subgrid-scale variability. Many studies have 

performed contrast experiments in different LSSs (Chen et al., 2014; Liu et al., 2019; Ma et al., 

2020) or various land surface parameters (Li et al., 2014; Georgescu, 2015) were used with 

shared same model dynamical and physical options to simulate regional climate. Both model 

users and developers can benefit from these strategies: users select suitable schemes or 
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parameter settings in their particular studies; developers improve the model structures, 

parameterizations and algorithms. However, better performance for a certain scheme in 

historical climate simulations does not mean this scheme can also reasonably capture the 

climate response to land cover change. Even sporadic changes in land cover could enhance 

heterogeneities in land surface characteristics. Model sensitivity to subgrid-level land cover 

change varies among LSSs. This implies that, the effect of subgrid-scale variability in modeling 

climate feedbacks of land cover changes needs to be critically assessed, especially for those 

local but intensive changes (Bou-Zeid et al., 2020).  

During the past two decades, Southeast Asian Massif (SAM) has undergone rapid and 

fragmental agriculturally-driven forest loss, especially in the mountainous areas, providing an 

ideal test bed for this study (Zeng et al., 2018; Hansen et al., 2020). Previous work showed that 

surface characteristics, such as leaf area index (LAI), albedo and roughness, over deforested 

areas differ substantially from those in forested areas, therefore lead to local-scale 

biogeophysical feedbacks (Mahmood et al., 2013; Lawrence & Vandecar, 2015; Alkama & 

Cescatti, 2016). As a crucial process in the climate feedback of forest loss, evapotranspiration 

affects the exchanges of water and energy between land and atmosphere (Bonan, 2008; Jung et 

al., 2010). In the SAM, deforestation causes lower evapotranspiration-induced warming and 

higher albedo-induced cooling, leading to an overall local warming that is dominated by the 

decrease in evapotranspiration (Zeng et al., 2021). However, to our knowledge, research that 

addressed the importance of subgrid-scale variability of LSSs in simulating the climate impacts 

of deforestation is limited. In this study, we created a deforestation scenario based on high-

quality satellite-based forest cover products and ingested it into the WRF model, and compared 

the WRF simulations with and without deforestation over the SAM. The sensitivity of 

evapotranspiration in response to forest loss of different LSSs were investigated by comparing 

the results of simulations under two scenarios. We focused on the sensitivity of 

evapotranspiration because it directly represents the changes in land-atmosphere fluxes of both 

heat and water.  

2. Materials and methods 

2.1. WRF land surface schemes 

The WRF model with the Advanced Research WRF (ARW) dynamical core (version 4.1.2) 

was employed in this study. Here we focused on three widely used LSSs that vary in subgrid-

scale approaches, namely, the Noah model using the mosaic approach (hereafter Noah mosaic), 

the community Noah land surface model with multi-physics parameterization options (Noah-

MP), and the Community Land Model version 4 (CLM4). The Noah mosaic scheme (Li et al., 

2013; added in WRF version 3.6) is rooted in the Noah scheme (Chen & Dudhia, 2001). 

Different from the Noah scheme that employs a “dominant” approach at the grid scale, Noah 

mosaic allows users to take the heterogeneous land cover into account by specifying certain 

number (N) of tiles in each grid cell. The most abundant N types of land cover within each grid 

are considered in the subgrid-scale calculation of surface state variables and fluxes, which are 

then aggregated to grid averages. The Noah-MP scheme (Niu et al., 2011; Yang et al., 2011; 

added in WRF version 3.4) is an advanced version of the Noah scheme. It contains more 

sophisticated model structure, including separated vegetation canopy and surface layers, a 

modified two-stream radiation transfer scheme, updated soil and groundwater hydrological 

processes, and a dynamic vegetation option. Similar to Noah, Noah-MP takes the “dominant” 
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approach, and simulates water and energy fluxes using parameters of the dominant LCT. CLM4 

(Lawrence et al., 2011; Jin & Wen, 2012; added in WRF version 3.5) is the land component of 

the Community Earth System Model (CESM). CLM4 incorporates sophisticated treatment of 

geophysical and geochemical processes, and provides more complex parameterizations of 

surface characteristics and advanced estimations of water and energy fluxes. It employs a tilling 

approach that differentiates between five primary sub-grid LCTs (vegetated, urban, lake, 

wetland, and glacier). The vegetated portion within a grid cell is subsequently divided into 

patches of up to 4 of 16 plant functional types (PFTs), each prescribed with distinct parameters 

(Subin et al., 2011). The CLM4 PFTs are translated from the WRF input LCTs through a look-

up table and are assigned to grid cells (Lu & Kueppers, 2012).  

2.2. Forest loss in the Southeast Asian Massif 

Two one-way nested domains were designed in this study (Figure 1a). The outer domain 

has a coarse grid spacing of 25 km, covering the Southeast Asia to capture the synoptic-scale 

features. The inner domain covers the SAM with a fine grid spacing of 5 km. The high-

resolution satellite-based twenty-first-century forest cover product provided by Hansen et al. 

(2013) was used to generate the forest loss over the study area. The product describes forest 

cover in the year 2000 across the globe at 30 m spatial resolution and the forest loss or gain 

information in each pixel in the following years. It has been proven to have accurately captured 

the forest cover change in both highland and lowland areas over Southeast Asia (Zeng et al., 

2018). The forest cover data in the year 2000 was aggregated into 5 km ×5 km grids to match 

the WRF model grid spacing (Figure 1a), and was subsequently superimposed onto the original 

MODIS 30s land cover product to generate the control (“CTL”) land cover scenario (Figure 1b).  

The change of forest cover during the period 2000-2014 was also aggregated into 5 km ×5 

km grids and then converted to areal percentages in each grid cell (Figure 2a). In the SAM, 

changes in forest cover occurred in 74.5% grid cells, leading to an areal mean deforestation of 

2.26% (Figures 2a and 2b). Most of these grid cells experienced forest loss less than 10 % 

(Figure 2c). Specifically, deforestation reached up to 10% in the northern Thailand and northern 

Laos (highland), and in the northwest of Cambodia (lowland). Highland and lowland regions 

were distinguished based on an elevation threshold of 300 m (Figure 1b, Zeng et al., 2021). In 

the lowlands, agriculture could be intense throughout the entire year because of irrigation from 

reservoirs, lakes or rivers. Yet, crops in higher elevations are rain-fed and cannot benefit from 

irrigation during the dry season; the croplands thus become bare ground. Therefore, the forest 

cover change between 2000 and 2014 were superimposed onto the “CTL” scenario in two ways 

to represent the land cover scenario based on satellite-observed deforestation (hereafter “SIM” 

scenario). For grid cells experienced net forest losses, the percentage of cropland (bare ground) 

in lowland (highland) increased accordingly while the percentages of forest categories (i.e., 

evergreen broadleaf forest, deciduous broadleaf forest, and mixed forests in the study area) 

decreased proportionally. In contrast, for grid cells experienced net forest gain, the percentages 

of forest categories proportionally increased while the percentages of non-forest categories 

decreased. The fractions of LCTs (“LANDUSEF” parameter in the WRF model) were 

recalculated for both CTL and SIM scenarios.  

2.3. Experimental design 

The critical effect of subgrid-scale variability on simulated evapotranspiration response to 

deforestation can be quantified by comparing WRF simulations using the three LSSs, namely, 
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Noah mosaic, CLM, and Noah-MP. For the Noah mosaic scheme, two N values of 3 and 9 were 

adopted. N = 3 is the default setting in the Noah mosaic scheme embedded in the WRF model. 

The most abundant three land cover types occupy more than 93% land area fractions in the 

inner domain. When the N value is adjusted to 9, the sum of land area fractions is nearly 100%. 

Thus, four groups of simulations were conducted in this study, referred to as Mosaic3, Mosaic9, 

CLM, and NoahMP. Mosaic9 considered all LCTs at the subgrid-scale, while Mosaic3 only 

considered the first three land cover categories within each grid cell. CLM theoretically took 

the first four PFTs in the vegetated portion. NoahMP took the “dominant” approach. In each 

group, numerical experiments under two scenarios with and without the satellite-observed 

deforestation were performed. The difference between SIM and CTL scenarios represents the 

response of evapotranspiration to forest loss of the corresponding LSS. Besides, the model 

sensitivity of evapotranspiration response to forest loss can be assessed under the different 

settings of highland deforestation conversion (to bare ground) and lowland deforestation 

conversion (to cropland).  

All numerical simulations shared the same physical options except for the difference in 

LSS or its land cover. Detailed physical schemes were summarized in Table 1. The two nested 

domains had 220 × 175 and 190 ×190 horizontal grid cells respectively, with a downscaling 

ratio of 1:5 between the inner domain and its parent domain. 30 vertical levels extended from 

the surface to 100 hPa were used in all simulations. The fifth-generation reanalysis (ERA5) of 

European Centre for Medium-Range Weather Forecasts (ECMWF) was adopted to provide 

initial and lateral boundary conditions for the simulations (Hersbach & Dee, 2016). Sea surface 

temperatures in all simulations were also determined and updated from ERA5 data. The ERA5 

product has a spatial resolution of 0.25° × 0.25° and hourly temporal resolution. All experiments 

were taken during the local dry season from November 15th in 2014 to March 1st in 2015 to 

better isolate the signal of the deforestation-induced evapotranspiration feedbacks from large 

scale synoptic systems. The first 16 days of each model run were treated as spin-up period, and 

the period from December 1st to February 28th was used for validations and analyses.  

Specifically, LAI parameters were updated for the SAM based on the AHI LAI/FPAR 

product (Chen et al., 2019) in this study (Table 2). LAI values of different LCTs are derived 

from look-up tables for the Noah mosaic scheme and the Noah-MP scheme in the WRF model. 

The former only use the maximum and minimum LAI values within a year while the latter use 

monthly LAI series to consider the vegetation phenology. For the CLM scheme, monthly LAI 

values are prescribed for each PFT.  

3. Results  

3.1. Validation of land surface schemes  

Due to the lack of in-situ evapotranspiration observations in the study region, daily 

temperature and precipitation records from 125 Global Surface Summary of the Day (GSOD) 

stations (Figure 1b) were adopted as the reference to assess the overall skill of WRF simulations 

under the SIM scenario. Remarkably, all simulations yielded high correlations of daily mean 

temperature with the corresponding station observations (R = 0.96~0.97, P < 0.01), implying 

that the WRF simulations reasonably capture the temporal variability of surface air temperature 

in the study area (Figure 3a). As for daily precipitation, all simulations replicated similar 

temporal fluctuations compared to ground observations, with correlation coefficients ranging 

from 0.62 to 0.68 (P < 0.01), even though all schemes underestimated precipitation at the 
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beginning of January and overestimated precipitation in the middle and at the end of February 

(Figure 3c).  

The biases in different simulations varies distinctly, indicating that historical climate 

simulations over the SAM are highly sensitive to the use of LSSs. The large difference may 

mainly come from the different land-atmosphere interaction processes and parameterizations in 

these schemes. Mosaic3 and Mosaic9 produced fairly close results and evidently performed 

worse than the other two schemes. The noticeable deficiency for the Noah mosaic is the large 

bias of temperature (-1.90 °C, Figure 3b). The performances of the more sophisticated NoahMP 

are superior to those of Noah mosaic, with an average temperature bias of -0.90 °C and 

precipitation bias of -0.01 mm day-1 (Figures 3b and 3d). In general, CLM outperforms others 

with an average temperature bias of -0.15 °C and precipitation bias of 0.03 mm day-1, illustrating 

the ability of CLM to realistically capture the surface energy balance and water vapor fluxes.  

3.2. Simulated responses of evapotranspiration to deforestation  

The choice of LSS also largely affects the simulated magnitude and pattern of how forest 

cover change impacts evapotranspiration over the region (Figure 4). The WRF model generally 

reproduces the deforestation-induced evapotranspiration decreases in all four groups of 

simulations. The mean evapotranspiration changes are up to -0.034 (95% confidence interval [-

0.038 -0.030]) mm day-1 and -0.038 [-0.041 -0.034] mm day-1 for Mosaic3 and Mosaic9, 

respectively, while the simulated decrease is only -0.024 [-0.026 -0.020] mm day-1 and -0.020 

[-0.022 -0.018] mm day-1 for CLM and NoahMP, with the magnitude around half of that from 

the simulation with Noah mosaic. The greatest contrast among the four simulation groups roots 

in the spatial pattern of evapotranspiration response. With respect to the Noah mosaic scheme, 

decreases in evapotranspiration primarily occur in highland regions like northern Laos and 

northern Thailand, and lowland regions like northwest Cambodia (Figures 4a and 4b). This 

spatial pattern matches well with that of forest cover change (Figure 2a). In contrast, the 

decreases in evapotranspiration simulated by CLM and NoahMP are more heterogeneous, 

mainly originating from lowland regions like Cambodia and the southern Thailand (Figures 4c 

and 4d).  

In the framework of the WRF model, land surface parameters are primarily functions of 

LCTs at the grid level. Compared to the “mosaic/tiling” approach, the “dominant” approach 

tends to neglect the climate response to land cover changes that does not result in the 

conversions of dominant type. In the SAM, however, the dominant LCT had changed in only 

2.0% grid cells, which discretely distributed over the study area (Figure 2). Specifically, there 

are many localized grid cells with high magnitude of evapotranspiration change from the WRF 

simulations using NoahMP (Figure 4d). Their locations are consistent with where the dominant 

LCT had changed (Figure 2a). Such a spatial pattern does not appear in the simulations with 

Noah mosaic, and is likely associated with the “dominant” approach for NoahMP scheme. 

Unexpectedly, the spatial pattern of evapotranspiration response and the locations of grids with 

high values for CLM were very similar to those of NoahMP (Figure 4c).  

3.3. Modelled sensitivity of evapotranspiration to forest loss  

Considering the remarkable differences in the spatial patterns of evapotranspiration 

response, we hypothesize that treatments of subgrid-scale variability among these LSSs play an 

important role in shaping the climate feedback of land cover change. Further analyses of the 

simulated evapotranspiration change at the gird level support the hypothesis (Figure 5). The 
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sensitivity of Noah mosaic, in which subgrid-scale variability is considered, was consistent in 

all grid cells no matter their dominant LCT had changed or not. Taking highland grids as an 

example, the simulated evapotranspiration response by Mosaic3 is -0.22 mm day-1 (R = -0.87, 

P < 0.01) and -0.29 mm day-1 (R = -0.94, P < 0.01) per 10% forest loss in grids with the dominant 

LCT unchanged and changed, respectively (Figure 5a). For Mosaic9 simulations, the 

evapotranspiration response to forest loss is -0.22 mm day-1 10%-1 (R = -0.94, P < 0.01) and -

0.26 mm day-1 10%-1 (R = -0.98, P < 0.01) in the two types of highland grid cells (Figure 5b). 

In lowland grid cells, the sensitivity of evapotranspiration change to forest loss is also similar 

among the two types for Mosaic3 and Mosaic9 schemes (black and blue lines in Figures 5a and 

5b).  

In contrast, the relationship between evapotranspiration changes and forest losses is quite 

weak in the simulations with CLM and NoahMP at those grid cells that the dominant LCT did 

not change, displaying a large underestimation for the evapotranspiration response (yellow lines 

in Figures 5c and 5d). Nevertheless, the evapotranspiration reduction of CLM and NoahMP in 

highland grid cells with the dominant LCT changed is -0.08 mm day-1 10%-1 (R = -0.25, P < 

0.01) and -0.13 mm day-1 10%-1 (R = -0.43, P < 0.01), respectively. The results show low 

correlation coefficients and large overestimation in the magnitude of evapotranspiration change 

(red lines in Figures 5c and 5d). The low sensitivity and misestimation of evapotranspiration 

also exist in those lowland grids that experienced forest cover change (black and blue lines in 

Figures 5c and 5d). The remarkable differences suggest that both the CLM scheme and the 

NoahMP scheme failed to accurately capture the evapotranspiration response of deforestation.  

Moreover, the sensitivities of evapotranspiration change to forest loss in the highlands and 

the lowlands are of different magnitudes for the Noah mosaic scheme. The simulated 

evapotranspiration reduction ranges from 0.22 to 0.29 mm day-1 for per 10% forest loss in the 

highlands, whereas only about 0.08 mm day-1 10%-1 in the lowlands (Figures 5a and 5b). Such 

a discrepancy is due to the different experiment designs of land cover change. Actually, the 

percentage of forest loss were converted to bare ground (cropland) in highland (lowland) grids, 

according to the different irrigation availability during the dry season (Zeng et al., 2021). The 

contrasts of biophysical characteristics between bare ground and forest in highland grids are 

greater than that between cropland and forest in lowland grids (Table 2), leading to larger 

sensitivity of evapotranspiration reduction to deforestation over highlands. However, such a 

difference between highland grid cells and lowland grid cells in evapotranspiration response to 

deforestation is not captured by the CLM and NoahMP schemes (Figures 5c and 5d).  

4. Discussion and conclusions 

Simulations of historical climate variability and climate response to land cover change are 

both highly sensitive to the choice of LSSs. The former may mainly relate to the framework 

and parameterizations of schemes (Chen et al., 2014; Ma et al., 2020), while the latter is largely 

dependent on the subgrid-variability of the LSSs (Li et al., 2013). Our results show that large 

magnitude biases exist within the results of the Noah mosaic scheme for historical climate 

simulations. The poor performance of historical simulations for Noah scheme has also been 

reported by a few studies over other regions (Chen et al., 2014; Salamanca et al., 2018; Liu et 

al., 2019). In contrast, Ma et al. (2020) demonstrated that the latent heat flux could be well 

simulated by the Noah scheme compared to other LSSs. These results indicate that the 

performance of WRF LSSs varies with regions and simulation periods, raising doubts about the 
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transferability of the findings. The sources of uncertainty for the WRF model could also come 

from the atmospheric forcing, other physical parameterizations, model resolution, land surface 

parameters, and soil conditions (Li et al., 2014; Pieri et al., 2015; Lin and Cheng, 2016). Thus, 

cautions should be paid when employing LSSs in modeling the climate over a specific region, 

and the schemes should be validated before the simulations of land-atmosphere flux exchanges.  

Nonetheless, this study shows that only Noah mosaic scheme which employs the sub-grid 

approach is able to reasonably reproduce the response of evapotranspiration to deforestation 

(Figures 4 and 5). Despite the remaining uncertainties in the poor performance of historical 

simulations, this study recommends the application of the Noah mosaic scheme in climate 

feedback research of land cover conversion in the WRF modeling framework. Specifically, two 

numbers (N=3 and N=9) of the most abundant land cover types within grid cells were adopted 

in the Noah mosaic simulations. Mosaic3 and Mosaic9 demonstrated similar performance in 

the model validations and evapotranspiration responses to deforestation, suggesting that the 

default setting of N=3 could yield most changes of the surface energy fluxes and atmospheric 

states. Even so, the two types of grid cells (the dominant LCT changed and unchanged) had 

closer sensitivity for the Mosaic9 simulations that contained all types of land cover conversions 

at the subgrid-scale, and their correlation coefficients were larger than those of Mosaic3 

(Figures 5a and 5b).  

CLM is in good agreement with the observed air temperature and precipitation and 

outperforms other schemes, illustrating that the CLM may capture the surface energy balance 

and water vapor fluxes more realistically due to its complex model structure and advanced 

parameterizations of surface characteristics (Lu & Kueppers, 2012; Jin & Wen, 2012). 

Theoretically, the official release of CLM model, in which the tiling approach is used, considers 

five primary sub-grid LCTs and first four PFTs in the vegetated portion (Bonan et al., 2002), 

and thus should be more suitable for simulating the climate responses to land cover change. 

However, the results revealed that CLM is less sensitive to forest cover change in those grid 

cells where the dominant LCT did not change, and the performance is similar to that of the 

NoahMP. This consistency implies that the theoretical “tiling” approach of CLM was not active 

when it was coupled into WRF, and the CLM scheme takes the “dominant” approach instead 

(Skamarock et al., 2019).  

This study highlights that LSSs taking the “dominant” approach can underestimate or 

overestimate the climate response to land cover change. For example, 72.5% land grid cells had 

experienced forest cover change but their dominant LCT did not change during 2000-2014 in 

the SAM (Figure 2b). The biophysical characteristics of these grid cells remained unchanged in 

the deforested scenario compared with those in the control scenario when using the “dominant” 

approach. Consequently, the climate feedbacks of forest loss/gain in these grid cells were 

neglected by the model. Besides, about 2.0% grid cells had undergone alteration of dominant 

LCT during the study period, and nearly 51.8% (66.1%) of them experienced forest cover 

change that less than 10% (20%). Therefore, the climate response to slight changes of forest 

cover in these grid cells could be largely amplified in the “dominant” approach, which converts 

the dominant LCT and reforms the biophysical characteristics of the whole grid in the model. 

Furthermore, the “dominant” approach can be highly sensitive to the grid spacing of model 

since the representations of land cover categories are likely to change with the dominant LCT 

under different spatial resolution (Li et al., 2013; Mallard & Spero, 2019). Taken 3 km ×3 km 
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grid spacing experiment design as an example, the proportion of forest cover changed grid cells 

with and without alteration of dominant LCT are 1.5% and 74.5% in the study area, respectively. 

The patchy forest cover changes in SAM show higher degree of spatial heterogeneity at the 3 

km grid spacing, and the “dominant” approach could lack the representation of subgrid-scale 

interactions over more grid cells.  

Due to the limited evapotranspiration observations in the SAM, the temperature and 

precipitation records from GSOD stations were used to validate the model performance. Further 

validations with extended observations and meteorological variables are still needed to perform 

comprehensive assessments and to acknowledge deficiencies of each LSS. Besides, only three 

most commonly used LSSs among the wide range of physical parameterized options in WRF 

were tested. Additional evaluations of other LSSs are desirable. Nevertheless, this study 

confirmed the critical role of subgrid-scale variability for WRF LSSs in the climate response 

simulations. The findings are anticipated to be broadly robust when transferring to other regions, 

other variables or other types of land cover change. Hence, future efforts for better 

representation of subgrid-scale variability in WRF LSSs are desirable as they will improve the 

capability in simulating the climate response to land cover change. One recommendation for 

WRF CLM that could improve the simulated climate response to deforestation is to correct the 

“tiling” approach in the code. The refined descriptions of land-atmosphere water and energy 

exchange in Noah mosaic scheme are also needed.  
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Table 1. The physical parameterization schemes used in this study. 

Physics option Parameterization scheme 

Microphysics WSM 6-class scheme (Hong and Lim 2006) 

Longwave radiation RRTM scheme (Mlawer et al 1997) 

Shortwave radiation Dudhia scheme (Dudhia 1989) 

Planetary Boundary Layer YSU scheme (Hong et al 2006) 

Cumulus Kain-Fritsch scheme (Kain 2004) 

Surface layer Revised MM5 Monin-Obukhov scheme (Jimenez et al 2012) 
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Table 2. The updated LAI parameters of different land cover types over the Southeast Asian Massif. 

ID Land cover type 
Noah-MP / CLM Noah mosaic 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Maximum Minimum 

2 
Evergreen Broadleaf 

Forest 
5.12 4.83 4.94 5.53 5.41 5.71 5.50 5.78 5.92 5.81 5.44 5.32 5.92 4.83 

4 
Deciduous Broadleaf 

Forest 
1.48 0.85 0.71 1.32 1.50 3.35 4.03 3.25 3.67 3.41 2.87 2.36 4.03 0.71 

5 Mixed Forests 3.33 2.79 2.30 2.31 2.63 4.44 4.61 5.23 4.89 4.72 4.17 3.80 5.23 2.30 

6 Closed Shrublands 0.26 0.26 0.31 0.41 0.63 0.82 0.82 0.67 0.41 0.31 0.26 0.26 0.82 0.26 

7 Open Shrublands 0.54 0.58 0.62 0.75 1.05 1.55 1.68 1.13 0.75 0.62 0.58 0.54 1.68 0.54 

8 Woody Savanas 1.75 1.22 1.18 1.92 1.87 3.00 2.66 3.32 3.61 3.48 2.77 2.27 3.61 1.18 

9 Savanas 1.26 1.07 1.11 1.64 1.72 2.44 2.20 2.45 2.55 2.46 2.01 1.68 2.55 1.07 

10 Grasslands 0.77 0.73 0.75 0.88 0.91 1.02 0.98 1.07 1.19 1.18 1.01 0.88 1.19 0.73 

11 Permanent Wetlands 1.21 1.13 1.23 1.50 1.36 1.49 1.21 1.19 1.40 1.44 1.33 1.35 1.50 1.13 

12 Croplands 0.64 0.60 0.60 0.70 0.74 0.92 0.88 1.03 1.17 1.22 0.98 0.76 1.22 0.60 

14 
Cropland/Natural 

Vegetation Mosaic 
1.11 1.03 0.77 1.19 1.63 1.81 1.67 1.62 1.62 1.58 1.31 1.06 1.81 0.77 

16 
Barren or Sparsely 

Vegetated 
0.35 0.33 0.36 0.43 0.29 0.31 0.25 0.75 0.81 0.73 0.41 0.22 0.81 0.22 
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Figure 1. Study area and land cover type. (a) Two-nested WRF simulation domains and the 

spatial patterns of satellite-observed forest cover in the year 2000. (b) The dominant land cover 

type (“LU_INDEX” parameter) of the CTL land cover scenario over the study area. Land cover 

types are defined by the Noah-modified 20-category International Geosphere–Biosphere 

Programme (IGBP) land cover classifications. The corresponding land cover type of each ID is 

listed in table 2. Blue triangles denote the locations of 125 in-situ GSOD weather stations. Plus 

symbols represent highland areas (elevation  300 m).  
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Figure 2. Satellite-observed forest cover change. (a) Spatial pattern of the forest cover change 

(brown: forest loss; green: forest gain) during the period 2000-2014 over the study area, and the 

locations of the grids of which the dominant land cover type had changed (blue symbols). (b) 

Components of the 5 km  5 km land grids that divided based on their variation in forest cover 

change. (c) Relative frequency of grids with different forest loss intervals.  
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Figure 3. Validation of the model simulations. (a, c) Daily series of the mean air temperature 

and mean precipitation averaged over the GSOD stations and the results of WRF simulations 

using different land surface schemes under the SIM scenario. (b, d) Biases of daily mean 

temperature and precipitation between the SIM simulations and GSOD data during the study 

period. Error bars show the 95% confidence interval of the bias.  
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Figure 4. Simulated evapotranspiration change induced by the satellite-observed 

deforestation (SIM minus CTL) using the (a) Mosaic3, (b) Mosaic9, (c) CLM, and (d) 

NoahMP land surface schemes.  
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Figure 5. Sensitivity of the simulated evapotranspiration change (SIM minus CTL) to 

forest loss at the gird level using the (a) Mosaic3, (b) Mosaic9, (c) CLM, and (d) NoahMP 

land surface schemes. Grids experienced forest loss were divided into four types based on their 

variation in dominant land cover type (ΔLCT = 0: dominant land cover type did not change; 

ΔLCT ≠ 0: dominant land cover type changed) and their elevation (lowland or highland). For 

deforested grid cells within each of the four types, change in evapotranspiration was regressed 

versus the forest loss fraction by using the ordinary least squares regression.  

 
 


