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Numerical analysis of the Monte-Carlo noise for the resolution of the
deterministic and uncertain linear Boltzmann equation

(comparison of non-intrusive gPC and MC-gPC)
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aCEA DAM CESTA, F-33114 Le Barp, France

Abstract

Monte Carlo-generalised Polynomial Chaos (MC-gPC) has already been thoroughly studied in the
literature [1, 2, 3, 4, 5, 6, 7]. MC-gPC both builds a gPC based reduced model of a partial
differential equation (PDE) of interest and solves it with an intrusive MC scheme in order to
propagate uncertainties. This reduced model captures the behaviour of the solution of a set of
PDEs subject to some uncertain parameters modeled by random variables. MC-gPC is an intrusive
method, it needs modifications of a code in order to be applied. This may be considered a drawback.
But, on another hand, important computational gains obtained with MC-gPC have been observed
on many (linear [1, 3] or nonlinear [4, 5, 6, 7]) applications. The MC-gPC resolution of Boltzmann
equation has been investigated in many different ways: the wellposedness of the gPC based reduced
model has been studied in [2, 6], the convergence with respect to the truncation order P has been
theoretically and numerically studied [2, 1], the coupling to nonlinear physics has been performed
in [7, 6]. But the study of the MC noise remains, to our knowledge, to be done. This is the purpose
of this paper.
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1. Introduction

Monte Carlo-generalised Polynomial Chaos (MC-gPC) has already been thoroughly studied in
the literature [1, 2, 3, 4, 5, 6, 7]. MC-gPC both builds a gPC based reduced model of a partial
differential equation (PDE) of interest and solves it with an MC scheme in order to propagate
uncertainties. This reduced model captures the behaviour of the solution of a set of PDEs subject
to some uncertain parameters modeled by random variables. MC-gPC is an intrusive method, it
needs modifications of an MC code in order to be applied. This may be considered a drawback.
But, on another hand, important computational gains obtained with MC-gPC have been observed
on many (linear [1, 3] or nonlinear [4, 5, 6, 7]) applications. Its use allows performing studies
(uncertainty propagation, sensitivity analysis etc.) which, up to now, were out of reach [1, 7, 6]. In
this article, we are interested in the MC resolution of the gPC based reduced model of the uncertain
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linear transport equation

∂tu(x, t, v,X) + v · ∇xu(x, t, v,X) =− vσt(x, v,X)u(x, t, v,X)

+ vσs(x, v,X)

∫
Ps(x, v · v′, X)u(x, t, v′, X) dv′,

(1)

together with the initial and boundary conditions

u(x, t = 0, v,X) = u0(x, v,X), x ∈ D(X), t ∈ [0, T ] v ∈ V, X ∈ Ω
u(x, t, v,X) = ub(t, v,X), x ∈ ∂D(X), t ∈ [0, T ] v · ns(x,X) < 0, X ∈ Ω,

(2)

where ns is the outward normal to Ω at x. In the above expression, u is a density of particles. The
variables x ∈ D ⊂ R3, t ∈ [0, T ] ⊂ R+ and v ∈ V ⊂ R3 are respectively the space, time and velocity1

variables. Variable X = (X1, ..., XQ)t is a vector of Q independent2 random variables of probability

measure dPX =
∏Q
i=1 dPXi modelling the uncertainties. Variables (x, t, v) are the physical variables

in opposition to X which is refered to as the uncertain variable. The cross-sections σt = σt(x, v,X),
σs = σs(x, v,X) are assumed to be given functions of (x, v,X) in this paper. They stand for the
total and scattering cross-sections. The quantity Ps defines how the velocities and angles are
scattered when a reaction is encountered: it (at least) satisfies

∫
Ps(x, v ·v′, X) dv′ = 1,∀x ∈ D, v ∈

V ∈ R3, X ∈ Ω ⊂ RQ. Of course, the above notations are for macroscopic cross-sections, in the
sense that many physical reactions are summed-up in the above notations, see [13, 14, 15]. System
(1) together with boundary conditions (2) define the well-posed [16] mathematical problem we
want to solve and in which we want to be able to accurately take uncertainties3 into account. In
other words, we are mainly interested in the statistics of X → u(x, t, v,X) (i.e. mean, variance,
histogram, sensitivity indices [17] etc.) at specified locations x ∈ D, times t ∈ [0, T ] and velocities
v ∈ V. The uncertain transport equation is of importance in many physical domains such as
neutronics [18, 19, 20, 7], photonics [21, 22, 23, 24, 25, 6], biology [26], socio-economics [5, 27, 3],
epidemiology [28] etc. In neutronics [7] or photonics [6] for example, equation (1) must be solved
at each iteration/time step.

Of course, different values of X correspond to different fully decoupled deterministic equations:
in principle, there is no difficulty in solving such uncertain problem. The main issue comes from
the fact that exact propagation of uncertainties is very expensive from the computational point of
view: equation (1) is often solved thanks to an MC scheme [29, 18, 30, 19, 20, 31, 32, 33]. This
resolution method is known to be efficient for high (3(x)+1(t)+3(v) = 7) dimensional problems but
costly. Running several deterministic MC computations for several values of X can consequently
be prohibitive.

Recently, a new solver, called MC-gPC, has been proposed in order to solve the uncertain linear
Boltzmann equation (1): it is based on the construction of a P−truncated gPC based reduced model
together with its MC resolution [1]. The idea of MC-gPC is to make the MC particles solve not
only the physical fields (x, t, v) but also the uncertain one X, on-the-fly during the MC resolution
(it then avoids tensorising the physical and the uncertain experimental designs, see [1]). To sum-up,

1It may be decomposed into v = vω where v = |v| ∈ R+ and ω = v
v
∈ S2.

2It is always possible to come back to such framework, at the cost of more or less tedious pretreatments leading
to a controled approximation [8, 9, 10] and decorrelation [11, 12].

3geometrical, in the cross-sections, in the multiplicity, in the boundary conditions etc.
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important gains have been observed in low to moderate stochastic dimensions4 Q ∼ 1 − 10 with
simple modifications of an existing MC code and without changing the HPC strategy5 of the code,
for linear [1, 2], nonlinear [6] and eigenvalue (keff) [7] problems.

The MC-gPC resolution of equation (1) has been investigated in many different ways: the
wellposedness of the gPC based reduced model has been studied in [2, 6], the convergence with
respect to the truncation order P has been theoretically and numerically studied [2, 1], the coupling
to nonlinear physics has been performed in [7, 6]. But the study of the MC noise remains, to
our knowledge, to be done. This is the purpose of this paper. In this paper, we are interested in
understanding what can be expected in terms of error estimations with respect to NMC , the number
of MC particles. Typically, we try to give elements of answers to the following question: what can be
expected in terms of MC noise for MC-gPC when compared to a more classical (i.e. non-intrusive)
application? In order to answer that question, we estimate the variances of non-intrusive gPC
and MC-gPC, theoretically and numerically, and compare them. Of course, the studies could only
have been carried out numerically (by performing several fine MC resolutions and comparing the
results) but the performances of the different resolution schemes can be very similar hence hard
to distinguish due to the noise. For this reason, in order to avoid misleading situations, we also
focus on simple regimes (free flight regime, collisional regime) for which analytical calculations of
the asymptotical errors are possible.

The paper is organized as follows: section 2 recalls the main principles of non-intrusive gPC
and MC-gPC for solving (1) and introduce notations. In section 3, we present asymptotical results
on some commonly implemented deterministic MC scheme allowing to solve (1) non-intrusively.
Several other MC schemes exist, see [29, 15, 34] and the references therein, but we can not go
through every of them. We focus on the semi-analog scheme6, intensively used in neutronic codes7

[18, 19, 20], and on the non-analog one, mainly used in photonic ones [36, 21, 22, 37, 38, 39, 40].
Even for those well-known MC schemes, the analysis made in this section is, to our knowledge,
original. In section 4, the numerical analysis of the amplitude of the noise (i.e. the variance as an
error estimator) of the uncertain MC schemes, non-intrusive gPC vs. MC-gPC resolutions for (1),
are performed in the same conditions as in section 3 and compared. Emphasis is made on verification
(as in Verification & Validation, see V&V [41]) in those two sections 3–4. Section 5 is devoted to
discussions on how to use the previous material in practice together with concluding remarks on
how MC-gPC could be improved. Note that we chose to add in the appendices all the material
which one can find in other papers but which eases the understanding and the reproducibility of
the results of this paper.

4MC-gPC being based on gPC which is sensitive to the curse of dimension, the P−truncated reduced models
remains exponentially sensitive to P and Q, see [1, 2].

5The HPC strategy we have in mind is commonly called domain replication, see [31, 32, 33]. It consists in
replicating the geometry on several processors and tracking several MC particles populations with different initial
seeds in every replicated domains. At the end of the time steps, the contribution of every processors are averaged.
This parallel strategy is particularly well suited to MC codes, taking advantage of the independence of the MC
particles.

6Also known as implicit capture.
7Note that this MC scheme is also intensively used in photonics, see [35, 24, 25].
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2. Non-intrusive gPC and MC-gPC reduced models in a nutshell

In this paper, we are interested in the construction of gPC based reduced models in order to
take into account uncertainties. Let us introduce the polynomials basis (φXk )k∈N orthonormal with
respect to the scalar product defined by dPX , i.e such that∫

φXk (X)φXl (X) dPX = δk,l,∀(k, l) ∈ N2.

In practice, this basis is built once and for all once dPX known. In the above expression, the
basis must be truncated up to certain orders (pi)i∈{1,...,Q} which may depend on the directions
(Xi)i∈{1,...,Q}. Assume that ∀i ∈ {1, .., Q}, pi = p1D, then the total number of polynomial coeffi-
cients, abusively called the polynomial order later on, is8 P = P (p1D, Q) = (p1D + 1)Q. It exhibits
an exponential growth with both p1D and Q. This is commonly called the curse of dimensionality
[43, 44]. As a consequence, the reduced models described in this paper, in practice, can only be
applied to a moderate number of uncertain parameters (Q ∼ 10). The multivariate polynomial
basis is built by tensorization of one-dimensional polynomial basis in every stochastic direction
(Xi)i∈{1,...,Q}. In the following sections, for conciseness in the notations, we map9 the set of poly-
nomial indices Ap1D,Q = {(k1, ...kQ)|∀i ∈ {1, ..., Q}, ki ≤ p1D} into {0, ..., P} to build the tensorized

basis (φXk (X) =
∏Q
i=1 φ

Xi
ki

(Xi))k∈{0,...,P}. In the previous expression, ∀i ∈ {1, ..., Q}, the basis

(φXik )k∈{0,...,p1D} is a one-dimensional polynomial basis orthonormal with respect to dPXi . When
P grows, we assume it grows because the one-dimensional polynomial orders p1D grow.

Let us assume we want to approximate a function X → F (X) such that
∫
F 2(X) dPX < ∞.

Then the P-truncated gPC expansion defined by the polynomial approximation

FP (X) =

P∑
k=0

Fkφ
X
k (X)

L2

−→
P→∞

F (X), (3)

bears some interesting convergence properties [45, 46, 47]. Spectral convergence for F solution of
the uncertain unstationary linear Boltzmann equation (1) has even been proved in [2].

Independently of the dimension or of the polynomial basis, the gPC coefficients (Fk)k∈{0,..,P}
are defined by integration: they correspond to the projection of F on the components of the gPC
basis with respect to the scalar product defined by dPX :

Fk =

∫
F (X)φXk (X) dPX ,∀k ∈ N. (4)

We naturally want to apply the above material to X → u(x, t, v,X) ∀x ∈ D,∀t ∈ [0, T ],∀v ∈ V,
solution of (1). As a consequence, our aim is to compute the gPC coefficients of u by numerical
integration. This can be done in practice by both non-intrusive gPC and MC-gPC:

– non-intrusive gPC [48, 49, 42, 50, 43, 51, 52] consists in introducing the set of points/weights
(Xi, wi)i∈{1,...,N} approximating random variable X and its probability measure dPX . The

8Of course, simplexes such as the ones presented in [42] may be used and have less coefficients but studying their
effects is beyond the scope of this paper.

9It is only a renumerotation.
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gPC coefficients of u are consequently recovered by numerical integration: ∀k ∈ {0, ..., P}

uk(x, t, v) =

∫
u(x, t, v,X)φXk (X) dPX ,

≈
N∑
i=1

u(x, t, v,Xi)φ
X
k (Xi)wi.

We furthermore assume that the experimental design (Xi, wi)i∈{1,...,N} converges toward
(X, dPX) in the sense that we have ∀k ∈ {0, ..., P}

uk(x, t, v) =

∫
u(x, t, v,X)φXk (X) dPX =

N∑
i=1

u(x, t, v,Xi)φ
X
k (Xi)wi +O(Nβ), (5)

with β < 0. Depending on the choice of the experimental design (Xi, wi)i∈{1,...,N}, conver-

gence can be fast or slow: for an MC experimental design, β = − 1
2 is considered slow but is

independent of the dimension Q and of the smoothness of the solution u. This is the well-
known central limit theorem [29]. Gauss quadrature rules have much faster convergence rates
but they strongly depends on the smoothness of the solution u and can only be applied in
low to moderate dimensions [43, 44].

Independently of the choice of the experimental design, a non-intrusive application of gPC
implies performing N runs of a code solving (1) in order to gather (u(x, t, v,Xi), wi)i∈{1,...,N}
and post-treat them in order to build the gPC coefficients as in (5). In our MC resolu-
tion context, each run needs NMC particles such that u is approximated as u(x, t, v,Xi) =

uNMC (x, t, v,Xi) + O(N
− 1

2

MC), where uNMC is the code output. This means that we have
∀k ∈ {0, ..., P}

uk(x, t, v) =

N∑
i=1

uNMC (x, t, v,Xi)φ
X
k (Xi)wi +O(Nβ) +O(N

− 1
2

MC),

=

N∑
i=1

uNMC (x, t, v,Xi)φ
X
k (Xi)wi +O(Nβ) +

σk(x, t, v)√
NMC

Gk.
(6)

In the above expression, (Gk)k∈{0,...,P} are random variables of mean zero and variance one
which, at this stage, remains to be fully characterised. From the residual terms in (6), we can
see that the experimental design for the uncertain variable X is tensorised with the one for the

physical variables (x, t, v) with an accuracy which is O(max(Nβ , N
− 1

2

MC)). Both N and NMC

must grow in order to converge. MC-gPC has been introduced in [1] mainly because a full
MC experimental design on the whole set of variables (x, t, v,X) can avoid this tensorization.

– MC-gPC allows integrating the gPC coefficients on-the-fly during MC resolution. The details
are in [1] and briefly recalled in Appendix C. With MC-gPC, the gPC coefficients are
computed on-the-fly during the MC resolution so that we have ∀k ∈ {0, ..., P}

uk(x, t, v) = uNMCk (x, t, v) +O(N
− 1

2

MC),

= uNMCk (x, t, v) +
σk,MC(x, t, v)√

NMC

G̃k.
(7)
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Once again, in (7), random variables (G̃k)k∈{0,...,P} are of mean zero and variance one and
their distributions remain to be characterised. In (7), the convergence only depends on NMC

which can be considered an advantage.

non-intrusive NMC = 10
non-intrusive NMC = 20
non-intrusive NMC = 100

gPC intrusive MC scheme (NMC = N)
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Figure 1: Convergence studies with respect to N and NMC for non-intrusive gPC and MC-gPC on the variance of
the number of particles.

Figure 1 illustrates the behaviours summed-up in expressions (6) and (7). It presents some conver-
gence curves in a very simple configuration (see Appendix A for all the details) for the two above
numerical methods:

– the results obtained by non-intrusive gPC use a deterministic black-box code solved by an
MC scheme (the semi-analog one, see Appendix B.1) of discretisation parameter NMC . The
uncertain counterpart is solved with an MC sampling of (X, dPX) with N points. Three
plots are displayed, corresponding to three convergence studies with respect to N for fixed
values of NMC = 10, 20, 100. Every curve obtained with the non-intrusive method presents,
first, a converging behaviour with a slope characteristic of the numerical method used in order
to integrate the uncertainties, i.e. here O(N−

1
2 ). Then, the curves present a more or less

pronounced kink: a change of slope, followed by a plateau, a stagnation of the accuracy. It
corresponds to the point where the general accuracy becomes driven by the coarser numerical

method, here O(N
− 1

2

MC). Increasing N (relative to the x−axis) does not allow any significant

gain as O(Nβ) = O(N−
1
2 )� 1. In a sense, the locations of the kinks corresponds to optimal

parameter choices (NMC , N): increasing the accuracy in one direction without the other
induces a loss of computational time.

– For MC-gPC, the behaviour is quite different and is described by equation (7). For MC-gPC
N = NMC , i.e. the experimental design is not anymore tensorized with the MC particles.
The approximation obtained with the new MC scheme does not stagnate with the increasing
number of samplings. The uncertainty is solved on-the-fly during the MC resolution and the
convergence rate for the whole problem remains O( 1√

NMC
) avoiding the kinks in the curves

obtained non-intrusively.
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Now, from a practical point of view, if σk,MC for MC-gPC is much more important than σk for
non-intrusive gPC, the method is not necessarily relevant and it is not clear we have a gain as
much more MC particles could be needed for MC-gPC than for non-intrusive gPC. In [1, 6, 7]10,
it has experimentally been verified that we probably often have σk ∼ σk,MC so that MC-gPC does
not require much more MC particles than non-intrusive gPC. The aim of this paper is to verify it
more rigorously and identify more precisely the regimes and reasons when σk ∼ σk,MC does not hold.

In the next sections, we analytically and numerically compute σk and σk,MC in particular con-
figurations and compare them. We will see that their expressions can strongly depend on the
resolution scheme (non-analog, semi-analog etc.) used in the MC code or on the regimes (determin-
istic, uncertain, collisional etc.) involved during a simulation. For this reason, we begin, in the next
section, by the numerical analysis of some (deterministic, i.e. without uncertainties) MC schemes
in particular regimes.

3. Numerical noise analysis of existing Monte-Carlo schemes for (1)

As explained in several publications [1, 2, 7, 6], MC-gPC relies on few modifications of an ex-
isting MC implementation. Depending on the code, different MC schemes can be implemented
(analog, implicit capture or semi-analog, non-analog etc.). We can not go through every of them
so we focus on the most common ones, the semi-analog MC scheme (intensively used in neutronic
codes) and on the non-analog MC scheme (intensively used in photonic codes). In this section, we
perform the numerical analysis of their noise in a deterministic context (i.e. without uncertainties).
Even in a deterministic context, the next analysis is, to our knowledge, original. It will also help
performing the numerical analysis of non-intrusive gPC and of the MC-gPC schemes of section 4.

The MC schemes, semi-analog and non-analog, are recalled in Appendix B for the sake of
reproducibility of the results of this paper. We insist they are commonly used and we rely on [34]
for the details of their respective constructions. Both MC schemes are unbiased [29]. This means
they converge toward the same result for the mean, the first moment of the particle distribution.
Obviously, the schemes differ (see the different samplings and operations in Appendix B). But
it is hard a priori having any idea of their performances. The Central Limit theorem [29] states
that their performance differences can be expressed in term of convergence rate/variance11. We
consequently study the asymptotic behaviours of the MC schemes with respect to the variance12 of
the population of particles. For this, in the next section, we rely on few simplifications: in section
3.1, we consider the free-flight regime in which every MC scheme is equivalent. In section 3.2, we
consider the collisional regime in which the MC schemes can strongly differ.

3.1. The free flight regime of (1)

In this section, we consider the free flight regime. It corresponds to the particular case where
σt = σs = 0. In this regime, the non-analog and the semi-analog MC schemes are equivalent. They

10This is also observable on figure 1 as the non-intrusive NMC = 100 slope is on the same level as the one for
MC-gPC.

11the Central Limit theorem states that the variance (if obtained from an unbiased estimator [29]) is an error
estimator.

12and even some high order moments for the semi-analog and non-analog schemes in sections 3.2.1–3.2.2.
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differ only in the collisional one, studied in section 3.2. In the deterministic free flight regime, (1)
degenerates toward ∂tu(x, t, v) + v∂xu(x, t, v) = 0,

u(x, 0, v) = u0(x, v),
u(x, t, v) = ub(t, v), x ∈ ∂D, t ∈ [0, T ] v · ns < 0.

(8)

In the next sections, we study the MC resolution of equation (8). Equation (8) can be rewritten
in an integral form [15]. In this case, the solution at time t is made of a contribution of the initial
condition together with the the contribution of the boundary one. In order to ease the computation,
let us consider an infinite medium so that (8) resumes to

u(x, t, v) = u0(x− vt, v),∀x ∈ D, v ∈ V, t ∈ [0, T ]. (9)

Let us build du0 such that

du0(x, v) =
u0(x, v)

U0
dxdv where U0(x) =

∫
u0(x, v) dv.

The above quantity is such that u0 > 0 and sums-up to 1: it is the probability density function
of the positions x and velocities v of the initial condition. Expression (9) can consequently be
rewritten in an integral form as

u(x, t, v) = u0(x− vt, v),

=

∫∫
U0δ0(x− vt)δ0(v)

u0(x− vt, v)

U0
dx dv,

=

∫∫
U0δ0(x− vt− x0)δ0(v − v0) du0(x0, v0).

Introduce the random variables x0,v0 ∼ du0(x0, v0), then the above expression can be rewritten
as an expectation over path of a stochastic process as

u(x, t, v) = E [U0δ0(x− v0t− x0)δ0(v − v0)] ,

where the stochastic process is given by

Ux,t,v = U0δ0(x− v0t− x0)δ0(v − v0).

Then, by definition, we have
u(x, t, v) = E[Ux,t,v].

The second order moment of the stochastic process Ux,t,v is given by

E[U2
x,t,v] = E[U2

0 δ0(x− v0t− x0)δ0(v − v0)].

Finally, the central limit theorem states that we have u(x, t, v) ∼ uNMC (x, t, v) + σ(x,t,v)√
NMC

G with

σ(x, t, v) = E[U2
x,t,v]− E2[Ux,t,v],

and G a gaussian random variable of mean zero and variance one. In the following sections, we are
going to estimate σ numerically for different values of an uncertain parameter X. The equivalent of

8



this quantity for non-intrusive gPC and for MC-gPC will be studied in sections 4.1.1–4.1.2 relying
on the material of this section.

Let us consider an uncertain monokinetic configuration (i.e. u(x, t, v,X) ≡ u(x, t, ω,X) with
|ω| = 1) with initial condition given by

u0(x, ω,X) = U0(X)1[−xI ,xI ](x), x ∈ D, X ∼ dPX . (10)

The initial condition is initially isotropic with respect to the angular variable ω. In practice, we
take v = |v|ω with |v| = 1, xI = 0.1, D = [−1, 1] and U0(X) = U0 + Û0X with U0 = 1, Û0 = 0.5
with X ∼ U([−1, 1]). Figure 2 (left) presents the initial spatial profiles x→ u0(x,Xi), i ∈ {1, ..., N}

t = 0.0 t = 0.5

analytical U(x, t = 0, X)
MC U(x, t = 0, X)
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Figure 2: Spatial profiles x → U(x, t,Xi) for i ∈ {1, ..., 10} for t ∈ {0.0, 0.5} from the analytical solutions and from
MC ones.

for N = 10 Gauss-Legendre points and Nx = 100 cells. The uncertainty only affects the plateaus
of the initial conditions. Figure 2 (right) presents both the analytical solutions

u(x, t,X) =

∫
u(x, t, ω,X) dω =

∫
u0(x− ωt, ω,X) dω,

= U0(X)

∫ 1

−1

1[−xI ,xI ](x− ωt)
1

2
dω,

(11)

at the N = 10 Gauss-Legendre points and the corresponding numerical results obtained from an
MC code: on figure 2 (right), the results are in good agreement despite the numerical noise of the
MC code. Now, our aim is mainly to study the amplitude of this numerical MC noise: figure 3
presents the numerical approximations of the spatial profiles x→ σ(x, t,Xi), i ∈ {1, ..., N} obtained
by two different ways:

– first, thanks to the MC estimator instrumenting every MC resolution (the computations used
NMC = 5× 104),

– Second, thanks to an estimation relying on Nseed = 1000 runs with NMC = 100 particles,
each initialised with a different seed and by evaluating the second order moment of random
variable (u(x, t,X)− E[Ux,t](X))

√
NMC , i.e.

t→ V
[
(u(x, t,X)− E[Ux,t](X))

√
NMC

]
, (12)
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where u(x, t,X) is the analytical solution given by (11). According to the Central Limit
Theorem (and due to the unbiasedness of the estimator used in the MC code) we have13

(u(x, t,X)− E[Ux,t](X))
√
NMC ∼ G(0, σ(x, t,X)).

x→ σ(x, t = 0.5, Xi), i ∈ {1, ..., N}

from post-treatment
MC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

Figure 3: Spatial profiles x→ σ(x, t = 0.5, Xi) for i ∈ {1, ..., N = 10} Gauss-Legendre points for t = 0.5. The results
are obtained from two different ways: the curves labeled ’from post-treatement’ are estimated by using the analytical
solution (11) in (12). The dotted ’MC’ curves are obtained from the MC estimators of the code.

In figure 3, the spatial errors for every (Xi)i∈{1,...,N=10} obtained using the analytical solution (11)
in (12) are in agreement with the variances computed during the MC resolutions. These numerical
experiments allow verifying our developments (see V&V [41]). The analysis will consequently
be used in section 4.1.1 in order to compute the variances (σ2

k)k∈{0,...,P} on the gPC coefficients
obtained non-intrusively.

3.2. The collisional regime for (1)

Let us now consider the collisional regime. For this, we assume we are in a monokinetic homo-
geneous configuration. It corresponds to the case of an infinite medium with constant cross-sections
with respect to time, space and energy. With these assumptions, the transport equation (1) resumes
to

∂t

∫
u(t, ω,X) dω + vσt(X)

∫
u(t, ω,X) dω = σs(X)

∫
vPs(ω

′, ω,X)u(t, ω′, X) dω′. (13)

13where G(µ, σ) denotes a gaussian random variable of mean µ and variance σ2.
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From the definition of Ps ensuring14 ∀ω ∈ S2,∀X ∈ Ω,
∫
Ps(ω

′, ω,X) dω′ = 1, it even simplifies to
the classical ODE

∂tU(t,X) + vσt(X)U(t,X) = vσs(X)U(t,X).

Its solution is U(t,X) = U0(X)e−v(σt(X)−σs(X))t where U(t,X) =
∫
u(t, ω,X) dω. In the following

sections, we verify the two MC schemes (semi- and non-analog) are converging for the mean solution
(i.e. unbiased). We furthermore compute their asymptotical higher order moments. The latters
allow comparing their performances via the analytical expression of their asymptotical variances.

3.2.1. Asymptotic mean and variance of the semi-analog scheme

The starting point of the analysis is the expectation form of the transport equation (B.6) for
the semi-analog MC scheme with the monokinetic, homogenous and deterministic assumptions (i.e.
σα(x, v,X) ≡ σα,∀α ∈ {s, t} and u(x, t, v,X) ≡ u(t, ω)). With these assumptions, the recursive
equation (B.6) becomes

U(t) = E
[
1[t,∞[(τ)U0 + 1[0,t](τ)

σs
σt
U(t− τ)

]
. (14)

In the above expression, we have τ ∼ E(vσt) which must be read τ is an exponential random
variable of parameter vσt. We suggest expanding the recursive part into an infinite sum over the
number of interactions. Let us introduce a new random variable Si =

∑i
k=0 τk where τk ∼ E(vσt)

∀k ∈ {1, ..., i} are independent identically distributed. Random variable Si follows a Gamma law of
parameters (vσt, i), denoted by Si ∼ Γ(vσt, i). Let us introduce Ut the stochastic process induced
by the possible histories of any MC particles. It is given by

Ut =

∞∑
k=0

1[0,t](Sk)1[t,∞[(Sk + τk+1)

(
σs
σt

)k
U0.

The indice k denotes the number of interactions encountered by any MC particles for times in [0, t].
The indicatrices

1[0,t](Sk)1[t,∞[(Sk + τk+1),

express the fact an MC particle encounters exactly k interactions for times between [0, t]. The first
moment is defined by U(t) = E[Ut], and by linearity its expression becomes

U(t) = E [Ut] = E

[ ∞∑
k=0

1[0,t](Sk)1[t,∞[(Sk + τk+1)

(
σs
σt

)k
U0

]
,

= U0

∞∑
k=0

E
[
1[0,t](Sk)1[t,∞[(Sk + τk+1)

](σs
σt

)k
,

= U0

∞∑
k=0

P (τk+1 > t− Sk|Sk < t)

(
σs
σt

)k
.

(15)

Replacing the probability of having k interactions by its expression

P (τk+1 > t− Sk|Sk < t) = e−vσtt(vσt)
k s

k

k!
, (16)

14It only corresponds to a pretreatment of the cross-sections.
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leads to

U(t) = U0

∞∑
k=0

e−vσtt(vσt)
k s

k

k!

(
vσs
vσt

)k
,

= U0e
−vσtt

∞∑
k=0

(vσs)
k s

k

k!
,

= U0e
−v(σt−σs)t.

(17)

With the few previous computations, we formally verified the semi-analog MC scheme is unbiased.
Let us now study the moment of order M of the stochastic process Ut. It is defined as E

[
UMt

]
with

UMt = UM0

∞∑
i1=0

...

∞∑
iM=0

1[0,t](Si1)1[t,∞[(Si1 + τi1+1)...1[0,t](SiM )1[t,∞[(SiM + τiM+1)

(
σs
σt

)i1+...+iM

.

In the previous expression, we expanded the exponantM intoM summations over indices (i1, ..., iM ).
Using the generalization to M terms of the fact that ∀(k,m) ∈ N2, we have

1[0,t](Sk)1[t,∞[(Sk + τk+1)1[0,t](Sm)1[t,∞[(Sm + τm+1) = δk,m1[0,t](Sm)1[t,∞[(Sm + τm+1).

We can then simplify the above expression of UMt into

UMt = UM0

∞∑
i=0

1[0,t](Si)1[t,∞[(Si + τi+1)

(
σs
σt

)M×i
.

Taking the expectation of UMt leads to

E[UMt ] = UM0

∞∑
i=0

P (τi+1 > t− Si|Si < t)

(
σs
σt

)M×i
,

= UM0 e−vσtt
∞∑
i=0

(vσt)
i t
i

i!

(
σs
σt

)M×i
,

= UM0 exp

(
(vσs)

M − (vσt)
M

(vσt)M−1
t

)
.

(18)

The latter expression is in agreement with the moment of order 1 and allows obtaining the asymp-
totic variance (via E[Ut] and E[U2

t ]) of the homogeneous process Ut for the semi-analog scheme:

σ2
sa(t) = E[U2

t ]− (E[Ut])
2
,

= U2
0

e (vσs)
2 − (vσt)

2

(vσt)
t
− e2(vσs−vσt)t

 .
(19)

To our knowledge, expression (19) has never been stated and the above (deterministic) result is
original. Let us now verify, see verification & validation (V&V [41]), our analysis. Figure 4 compares
the results obtained with

– the analytical expression (18) for several orders for the moments (E[UMt ])M∈{1,2,3,4},
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– and an instrumentation of an MC code in which the semi-analog MC scheme is implemented
and in which (E[UMt ])M∈{1,2,3,4} is estimated within the MC tracking.

The comparisons are made for two different configurations,

– an absorbing one (figure 4 left), with

U0 = 1, σt = 1.00, σs = 0.85, v = 1, (20)

– and a multiplicative one (figure 4 right), with

U0 = 1, σt = 1.00, σs = 1.01, v = 1. (21)

Absorbing medium Multiplicative medium

ref E[U1
t ]

ref E[U2
t ]

ref E[U3
t ]

ref E[U4
t ]E[U1
t ]E[U2
t ]E[U3
t ]E[U4
t ]

0

0.1

0.2
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0.5

0.6

0.7

0.8
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t

ref E[U1
t ]

ref E[U2
t ]
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t ]E[U2
t ]E[U3
t ]E[U4
t ]

1
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6

7

8
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t

Figure 4: Time evolutions of the moments t → E[Unt ] for n ∈ {1, 2, 3, 4} in the absorbing (20) and multiplicative
(21) configurations.

First, depending on the configuration (absorbing or multiplicative), the moments are either (re-
spectively) decreasing fast (figure 4 left) or growing fast (figure 4 right). Independently of the
configuration, the high order moments numerically estimated are in very good agreement with the
analytical ones given by (18).

The high order moments have an interest in terms of V&V [41]. But we are mainly interested
in the second order moment E[U2

t ] used to compute the variance (19). Figure 5 (top) compares

– the time evolution of the analytical variance (19),

– the time evolution of the variance estimated during the semi-analog MC resolution (the com-
putation used NMC = 5× 104),

– the time evolution of the variance estimated by relying on Nseed = 1000 runs with NMC = 100
particles, each initialised with a different seed and by evaluating the variance of the random
variable (U(t)− E[Ut])

√
NMC , i.e.

t→ V
[
(U(t)− E[Ut])

√
NMC

]
. (22)

According to the Central Limit Theorem (and due to the unbiasedness of the semi-analog
estimator) we have15 (U(t)− E[Ut])

√
NMC ∼ G(0, σsa(t)).

15where G(µ, σ) denotes a gaussian random variable of mean µ and variance σ2.
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The comparisons are made on the two previously described situations (20) and (21) in figure 5
(top). In the absorbing situation, the error with respect to time has a maximum around t ≈ 3 and

Absorbing medium Multiplicative medium

t
→
σ

2 sa
(t

)
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Figure 5: Top: time evolutions t → σ2
sa(t) (analytical variance), t → V[Unt ] and (12) in the absorbing (20) and

multiplicative (21) configurations. Bottom: time evolutions t → σsa(t)
U(t)

(analytical and estimated thanks to the

instrumentaion of the MC code) in the absorbing (20) and multiplicative (21) configurations.

decreases as the population of particle dies out. On another hand, for the multiplicative case, the
error explodes just as the population of particle explodes. The time evolutions of the ratio standard

deviation over mean, i.e t → σsa(t)
U(t) are also displayed in figure 5 (bottom) in both configurations

(20) and (21). This ratio grows linearly with time as the population of particles dies out (see figure
5 top-left) whereas this ratio remains way smaller in the multiplicative case (see figure 5 bottom-
right). This means that the relative accuracy is better in the multiplicative situation here (of course,
this ratio needs to be divided by

√
NMC in order to give an idea of the relative error). Besides, as

the population dies out, it is well known the linear Boltzmann equation is not an accurate enough
model and one needs to rely on more complex ones [53, 54, 55].

From figure 5, we verify our analysis of the moments for the semi-analog MC scheme: the
numerical results (obtained by several different ways) are in agreement with the analytical expression
(19), independently of the time, the values of the cross-sections or the initial condition.

Let us now develop the same computations for the non-analog scheme before considering uncer-
tain problems in section 4.
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3.2.2. Asymptotic mean and variance of the non-analog scheme

Let us apply the same methodology to the non-analog MC scheme and compute the M th order
moments of any non-analog MC solution of (13). For this, we come back to the expectation form of
the transport equation from which the MC scheme is built. With the assumptions detailed above,
the recursive equation (B.13) becomes

U(t) = E
[
1[t,∞[(τ)U0e

−vσat + 1[0,t](τ)e−vσa(t−τ)U(t− τ)
]
, (23)

with σa = σt − σs. We recall τ ∼ E(vσs). Let us expand the recursive part into an infinite

sum over the number of interactions thanks to Si =
∑i
k=0 τk where τk ∼ E(vσs) ∀k ∈ {1, ..., i}

are independent identically distributed. Random variable Si follows a Gamma law of parameters
(vσs, i), denoted by Si ∼ Γ(vσs, i). Then (B.15), the equation for the mean (or the moment of
order 1) rewrites

U(t) = E [Ut] = E

[ ∞∑
k=0

1[0,t](Sk)1[t,∞[(Sk + τk+1)e−vσatk+1U0

]
,

= U0e
−vσat

∞∑
k=0

P (τk+1 > t− Sk|Sk < t)︸ ︷︷ ︸
=1

,

= U0e
−vσat.

(24)

We then recover the analytical solution of the homogeneous problem and formally verified that the
non-analog scheme is unbiased. Note that in this homogeneous configuration, the convergence of
the non-analog scheme does not even depend on the probability measure of the interaction times
τk, Sk as the sum over k always equals 1, whatever this choice. The interesting part concerns the
moments of higher orders. Their computations are in fact very similar to the previous one. Few
computations lead to expression

E[UMt ] = UM0 e−Mvσat. (25)

The latter expression is in agreement with the moment of order 1 and allows showing the asymptotic
variance of the homogeneous process for the non-analog scheme is given by:

σ2
na(t) = 0. (26)

This property of the non-analog scheme is singular: the zero variance result (26) allows recovering
the fact that in the homogenous case, only one MC particle is enough for the non-analog MC
scheme to restitute the analytical solution. For this scheme, we do not plot the curves as they are
all equal to zero except for the first moment t→ U(t) = E[Ut] but we ensure we numerically recover
analytical expressions (25) and (26) in the same conditions as in the previous section 3.2.1.

4. Numerical noise analysis of existing uncertain Monte-Carlo schemes for (1)

In this section, we compute the variances of two stochastic (i.e. with uncertainties) MC schemes
in the free-flight regime and in the collisional one. Each section begins by the study of the variances
of the gPC coefficients of a non-intrusive application of gPC [48, 49, 42, 50, 43, 51, 52]. In section
4.1, we focus on the uncertain free-flight regime and in sections 4.2–4.3 on the uncertain collisional
one. The sections end with the study of the variances of the coefficients obtained by MC-gPC and
their comparisons with the ones obtained with non-intrusive gPC.
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4.1. Non-intrusive gPC and MC-gPC for the uncertain free-flight regime

We study the uncertain free-flight regime with non-intrusive gPC in section 4.1.1 and with MC-
gPC in section 4.1.2. In particular, the asymptotical variances (σ2

k)k∈{0,...,P} and (σ2
k,MC)k∈{0,...,P}

of expressions (6) and (7) are estimated and compared in this regime.

4.1.1. The non-intrusive gPC resolution of the uncertain free-flight regime

The gPC coefficients, by definition see [48, 49, 42, 50, 43, 51, 52], are given by ∀k ∈ {0, ..., P}

uk(x, t, v) =

∫
u(x, t, v,X)φk(X) dPX .

Besides, from section 3, we know that once u is approximated with an MC resolution scheme, we
have

uNMC (x, t, v,X) = u(x, t, v,X) +
σ(x, t, v,X)√

NMC

G(X),

where G(X) is a white noise indexed by X of mean zero and variance one. Note that it is a
white noise (i.e. uncorrelated) because for each X, every MC simulations are independent. The
asymptotic mean of uNMC is u and its asymptotic standard deviation is σ√

NMC
.

From the last equation, we want to obtain the asymptotical mean and variance of the approxi-
mated gPC coefficients (uNMCk )k∈{0,...,P}. We need to study the mean and variance of

uNMCk (x, t, v) =

∫
uNMC (x, t, v,X)φk(X) dPX ,

=

∫ [
u(x, t, v,X) +

σ(x, t, v,X)√
NMC

G(X)

]
φk(X) dPX ,∀k ∈ {0, ..., P}.

(27)

Let us begin with the mean: taking the expectation of (27) and interchanging the expectation and
the integral leads to ∀k ∈ {0, ..., P}

E
[
uNMCk (x, t, v)

]
=

∫
E
[
u(x, t, v,X) +

σ(x, t, v,X)√
NMC

G(X)

]
φk(X) dPX ,

=

∫
u(x, t, v,X)φk(X) dPX ,

= uk(x, t, v).

(28)

The above expression ensures the estimation of the gPC coefficients is unbiased. In order to compute
the asymptotic variance, we need first to compute the second order moment of (uNMCk )k∈{0,...,P}:

E
[(
uNMCk (x, t, v)

)2
]

= E

[(∫ [
u(x, t, v,X) +

σ(x, t, v,X)√
NMC

G(X)

]
φk(X) dPX

)2
]
,

= E
[∫ [

u(x, t, v,X) +
σ(x, t, v,X)√

NMC

G(X)

]
φk(X) dPX

∫ [
u(x, t, v, Y ) +

σ(x, t, v, Y )√
NMC

G(Y )

]
φk(Y ) dPX

]
,

= E
[∫∫ [

u(x, t, v,X) +
σ(x, t, v,X)√

NMC

G(X)

] [
u(x, t, v, Y ) +

σ(x, t, v, Y )√
NMC

G(Y )

]
φk(X)φk(Y ) dPX(X) dPX(Y )

]
.

(29)
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Let us now interchange the expectation and the integral, just as in the previous calculation for the
mean, in order to obtain:

E
[(
uNMCk (x, t, v)

)2
]

=∫∫
E
[(
u(x, t, v,X) +

σ(x, t, v,X)√
NMC

G(X)

)(
u(x, t, v, Y ) +

σ(x, t, v, Y )√
NMC

G(Y )

)]
φk(X)φk(Y ) dPX(X) dPX(Y ).

(30)

Due to the fact that G(X) and G(Y ) are uncorrelated, we finally get

E
[(
uNMCk (x, t, v)

)2
]

= u2
k(x, t, v,X) +

∫
σ2(x, t, v,X)

NMC
φk(X) dPX , (31)

so that the asymptotic variance of the gPC coefficients is given, ∀k ∈ {0, ..., P}, by

V
[(
uNMCk (x, t, v)

)2
]

=

∫
σ2(x, t, v,X)

NMC
φk(X) dPX . (32)

Its asymptotic standard deviation is consequently given by

√
V
[(
uNMCk (x, t, v)

)2
]

=
1√
NMC

√∫
σ2(x, t, v,X)φk(X) dPX . (33)

The numerical error on the gPC coefficients computed non-intrusively can consequently be estimated
thanks to the experimental design (Xi, wi)i∈{1,...,N} ∼ (X, dPX) via expression

σ2
k(x, t, v) =

∫
σ2(x, t, v,X)

NMC
φk(X) dPX ,

=

N∑
i=1

σ2(x, t, v,Xi)

NMC
φk(Xi)wi +O(Nβ).

(34)

In the next paragraphs, we consider a particular configuration, estimate the above variances/er-
rors and verify our analysis before performing a similar one on the MC-gPC estimated coefficients.
Note that care is taken to make sure we have O(Nβ)� 1 in order to avoid confusing results.

Figure 7 (left) presents the spatial profiles of the gPC coefficients x → uk(x, t = 0.5) for
k ∈ {0, ..P = 4} obtained by numerically integrating the analytical solution (11) and the outputs of
the MC code. First, the results are in agreements, with an observable MC noise. For this test-case,
u0, u1 and u2 are non-zero (even if u2 is small). We can see in figure 7 (left) that the numerical
MC noise for u3 and u4 fluctuates around zero: this testifies of a fast convergence with respect to
the polynomial order P (see [2]). Figure 7 (right) presents the spatial profiles x → σ2

k(x, t = 0.5)
for k ∈ {0, ..., P = 4} in the same configuration as before. The numerical MC noise is higher on the
first coefficients u0 and decreases for the successive orders. The asymptotical variances for u3 and
u4 (which are close to zero) are very small.

4.1.2. The MC-gPC resolution of the uncertain free-flight regime

Let us now perform the same analysis but for the numerical MC noise obtained from an MC-
gPC resolution. In an infinite medium, in the same conditions as in the previous section, we have
∀k ∈ {0, ..., P}

uk(x, t, v) =

∫
u0(x− vt, v,X)φk(X) dPX . (35)
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x→ uk(x, t = 0.5), k ∈ {0, ..., P = 4} x→ σ2
k(x, t = 0.5), k ∈ {0, ..., P = 4}
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Figure 6: Spatial profiles of the gPC coefficients x→ uk(x, t = 0.5) for k ∈ {0, ..., P = 4} (left) and of the variances
of the gPC coefficients x→ σk(x, t = 0.5) for k ∈ {0, ..., P = 4} both obtained thanks to non-intrusive gPC.

MC-gPC consists in taking X into account within the MC scheme in the early stages of the reso-
lution. For example, it consists in building du0 such that

du0(x, v,X) =
u0(x, v,X)

U0(X)
dxdv where U0(X) =

∫∫
u0(x, v,X) dxdv.

The above quantity is such that u0 > 0 and sums-up to 1 ∀X ∼ dPX : it is the probability density
function of the positions x and velocities v of the initial condition with uncertainty X ∼ dPX .
Expression (35) can consequently be rewritten as an expectation as

uk(x, t, v) =

∫
u0(x− vt, v,X)φk(X) dPX ,

=

∫∫ ∫
U0(X)δ0(x− vt− x0)δ0(v − v0)

u0(x0, v0, X)

U0(X)
dx0 dv0φk(X) dPX ,

=

∫∫ ∫
U0(X)δ0(x− vt− x0)δ0(v − v0)φk(X) du0(x0, v0, X) dPX .

Introduce the random variables X0 ∼ dPX and x0,v0 ∼ du0(x0, v0,X0), then the above expression
can be rewritten

uk(x, t, v) = E
[
U0(X0)δ0(x− v0t− xX0 )δ0(v − v0)φk(X0)

]
.

Let us introduce
Ux,t,v,k = U0(X0)δ0(x− v0t− x0)δ0(v − v0)φk(X0).

Then, we have by definition
uk(x, t, v) = E[Ux,t,v,k].

The second order moment of the stochastic process Ux,t,v,k is given by

E[U2
x,t,v,k] = E[U2

0 (X0)δ0(x− v0t− x0)δ0(v − v0)φ2
k(X0)],

and can be estimated in order to approximate the variance (σ2
k,MC)k∈{0,...,P} of the MC-gPC esti-

mators on the gPC coefficients (uk)k∈{0,...,P}:

σ2
k,MC(x, t, v) = E[U2

x,t,v,k]− E2[Ux,t,v,k].
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Figure 7 (left) compares the the gPC coefficients (uk)k∈{0,...,P} approximated with non-intrusive
gPC and MC-gPC with the same number of NMC of MC particles. The non-intrusive runs used
N = 30 (in order to make sure O(Nβ)� 1). The two resolution schemes give satisfactory results on
every gPC coefficients. On figure 7 (left), we can emit the hypothesis that the MC-gPC coefficients
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Figure 7: Left: spatial profiles x → Uk(x, t) for k ∈ {0, ...P = 4} for t = 0.5 obtained from non-intrusive gPC and
MC-gPC. Right: spatial profiles x → σ2

k,MC(x, t) for k ∈ {0, ...P = 4} for t = 0.5 obtained from non-intrusive gPC

and MC-gPC.

are a little bit noiser than the non-intrusive ones. This can be verified by computing the variances
(σ2
k,MC)k∈{0,...,P} of the different estimators, see figure 7 (right). First, the variances of the first

coefficients u0 are the same for non-intrusive gPC and MC-gPC: the two resolution schemes seem
to have the same performances on the mean u0. On another hand, the variances on coefficient
u1 is 2 times more important for MC-gPC than for non-intrusive gPC which tends to confirm the
observation on figure 7 (left). In fact, with MC-gPC, the variances on all coefficients for k > 1 seem
to be equivalent whereas they tend to decrease for non-intrusive gPC.

In this regime, we can observe that MC-gPC is a little bit noisier than non-intrusive gPC. But
it remains hard identifying the reason why this increase of variance occurs. In the next sections, by
considering the collisional regime and by obtaining analytical expressions of the different variances,
we are going to be able to go further in the analysis and identify the term which is responsible for
this increase of variance for MC-gPC.

4.2. Non-intrusive semi- and non-analog MC schemes in the collisional regime

In this section, we exhibit the analytical variances we obtain by applying non-intrusive gPC in
the collisional regime. The projection of the solution u on the components of the basis are given by

uk(x, t, v) =

∫
u(x, t, v,X)φk(X) dPX ,∀k ∈ {0, ..., P}.

In the numerical examples of the following sections, as we focus on the collisional regime, we are in
the monokinetic homogenous context and the above expression resumes to

Uk(t) =

∫
U(t,X)φk(X) dPX ,∀k ∈ {0, ..., P},
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where the solution U(t,X) of the uncertain monokinetic homogeneous equation (1) is given by
∀X ∼ dPX

U(t,X) = U0(X)e−v(σt(X)−σs(X))t. (36)

In the two next sections, we study the non-intrusive gPC resolution on an MC code in which

– the semi-analog MC scheme is implemented, see section 4.2.1,

– the non-analog MC scheme is implemented, see section 4.2.2.

4.2.1. Non-intrusive semi-analog MC schemes in the collisional regime

From (19), the variance of the error made ∀X ∈ dPX in a non-intrusive resolution is

σ2
sa(t,X) = U2

0 (X)

e (vσs(X))2 − (vσt(X))2

(vσt(X))
t
− e2(vσs(X)−vσt(X))t

 . (37)

As a consequence, asymptotically with NMC , according to the Central Limit Theorem, the error
made on U(t,X), ∀X ∈ dPX is given by

U(t,X)− UNMC (t,X) ∼ G
(

0,
σsa(t,X)√
NMC

)
. (38)

Figure 8 presents the results obtained on the uncertain configuration given by
U0 = 1.0,
X ∼ U([−1, 1]),
σs(X) = σa + σs + νfσf (X),
σa = 0.6, σs = 0.1, νfσf (X) = 0.1 + 0.21X,
σt = σa + σs + σf = 1.0.

(39)

Note that as X is uniformly distributed in [−1, 1], the Legendre basis is used for (φk(X))k∈{0,...,P}
(orthonormal with respect to the scalar product defined by the probability measure of X).

Configuration (39) is such that there is a probability of 1% for the medium to be multiplicative.
Figure 8 compares, for several (Xi)i∈{1,...,N} (with N = 30 Gauss-Legendre points), the analytical
results given by (36) to the one numerically estimated by averaging over several realisations of the
stochastic process, i.e. t → E[Ut(Xi)], i ∈ {1, ..., N}. On figure 8 (left), we can see that for some
realisations of X, the number of particles grows fast or decays fast. The results in terms of first,
i.e. t→ E[Ut(X)] (figure 8 left), and second, i.e. t→ E[U2

t (X)] (figure 8 right), order moments of
figure 8 are in excellent agreement for both moments, for every points (Xi)i∈{1,..,N}.

Now, from expression (34), it is easy deducing the asymptotical variance of the estimated gPC
coefficients: we asymptotically (i.e. for N � 1) have

σ2
k,sa =

∫
σ2

sa(t,X)φk(X) dPX ,∀k ∈ {0, ..., P},

=

∫
U2

0 (X)

e (vσs(X))2 − (vσt(X))2

(vσt(X))
t
− e2(vσs(X)−vσt(X))t

φk(X) dPX ,∀k ∈ {0, ..., P}.
(40)
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t→ E[Ut(Xi)],∀i ∈ {1, ..., N} t→ E[U2
t (Xi)],∀i ∈ {1, ..., N}
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Figure 8: Comparisons of the time evolutions of t → E[Ut(Xi)] (left) and t → E[U2
t (Xi)] (right) for N = 30

Gauss-Legendre points (Xi)i∈{1,...,N}.

t→ Uk(t), k ∈ {0, ..., P} t→ σ2
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Figure 9: Time evolutions of t→ Uk(t) (left) and t→ σ2
k,sa(t) (right) in configuration (39) for k ∈ {0, ..., P = 4}.

This means that in this configuration, the error on the statistical quantities such as the mean, the
variance, the gPC coefficients can be analytically characterised. The asymptotical variance (40)
which measures the numerical error on the gPC coefficients in a non-intrusive applications will
later on be compared to the asymptotical variances obtained with MC-gPC implemented with a
semi-analog MC scheme.

Figure 9 presents the time evolutions of t→ Uk(t), k ∈ {0, ..., P = 4} (left) and t→ σ2
k,sa(t), k ∈

{0, ..., P = 4} (right) given by (40) in configuration (39). The projections on the gPC basis have
been obtained by numerical integration (with N = 30 Gauss-Legendre points). On figure 9 (left),
we can see that on average, the number of particles decreases with respect to time. The gPC
coefficients are growing with respect to time attesting of an increasing uncertainty on the solution.
On figure 9 (right), we can see that depending on the gPC coefficient, the numerical noise does not
behave the same way: for early times, the error is first more important on U1(t) and U2(t). For
later times, the errors on the Uk(t) with k > 2 are more important.

Let us now perform the same analysis but for non-intrusive gPC applied on an MC code in
which the non-analog MC scheme is implemented.
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4.2.2. Non-intrusive non-analog MC schemes in the collisional regime

From (26), the variance of the error made ∀X ∈ dPX in a non-intrusive resolution is

σ2
na(t,X) = 0. (41)

As a consequence, asymptotically with NMC , according to the Central Limit Theorem, the error
made on U(t,X), ∀X ∈ dPX is given by

U(t,X)− UNMC (t,X) ∼ G
(

0,
σna(t,X)√
NMC

)
. (42)

From expression (34), it is easy deducing the asymptotical error made when estimating the gPC
coefficients: we asymptotically have, ∀k ∈ {0, ..., P}

σ2
k,na =

∫
σ2

na(t,X)

NMC
φk(X) dPX = 0,∀k ∈ {0, ..., P}. (43)

This means that in this configuration, the error on the statistical quantities such as the mean, the
variance, the gPC coefficients can be analytically characterised. The asymptotical variance (43)
which measures the numerical errors on the gPC coefficients in a non-intrusive applications will
later on be compared to the asymptotical variances obtained with MC-gPC implemented with a
semi-analog MC scheme.

4.3. MC-gPC for the semi- and non-analog MC schemes in the collisional regime

As explained before and detailed in [1, 6, 7], the MC-gPC implementation relies on few simple
modifications of an existing MC code (see Appendix C for more details). The asymptotical variance
of MC-gPC consequently strongly depends on the MC scheme implemented in the MC code. For
this reason, in the two next sections, we study the asymptotical variances obtained from MC-gPC
implemented in an MC code in which

– the semi-analog MC scheme is implemented, see section 4.3.1,

– the non-analog MC scheme is implemented, see section 4.3.2.

4.3.1. MC-gPC for the semi-analog MC scheme in the collisional regime

The starting point of the analysis is the expectation form of the uncertain transport equation
(1) for the semi-analog MC scheme with the uncertain monokinetic, homogenous assumptions (i.e.
σα(x, v,X) ≡ σα(X),∀α ∈ {s, t} and u(x, t, v,X) ≡ u(t, ω,X)). With these assumptions, the
recursive equation (C.2) becomes

Uk(t) = E
[
1[t,∞[(τX)U0(X)φk(X) + 1[0,t](τX)U(t− τX , X)

σs(t− τX , X)

σt(t− τX , X)
φk(X)

]
. (44)

We recall we have X ∼ dPX and τX ∼ E(vσt(X)). We suggest expanding the recursive part
into an infinite sum over the number of interactions. Let us introduce a new random variable
SXi =

∑i
k=0 τ

k
X where τkX ∼ E(vσt(X)) ∀k ∈ {1, ..., i} are independent identically distributed.

Once again SXi follows a Gamma law of parameters (vσt(X), i), denoted by SXi ∼ Γ(vσt(X), i).
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Let us introduce Ut,l the stochastic process induced by the possible histories of any MC particles.
It is given by

Ut,l =

∞∑
k=0

1[0,t](Sk(X))1[t,∞[(Sk(X) + τk+1
X )

(
σs(X)

σt(X)

)k
U0(X)φl(X).

The first moment is defined by Ul(t) = E[Ut,l], and by linearity its expression becomes

Ul(t) = E [Ut,l] = E

[ ∞∑
k=0

1[0,t](S
X
k )1[t,∞[(S

X
k + τk+1

X )

(
σs(X)

σt(X)

)k
U0(X)φl(X)

]
,

=

∫
U0(X)φl(X)

∞∑
k=0

E
[
1[0,t](S

X
k )1[t,∞[(S

X
k + τk+1

X )
](σs(X)

σt(X)

)k
dPX ,

=

∫
U0(X)φl(X)

∞∑
k=0

P
(
τk+1
X > t− SXk |SXk < t

)(σs(X)

σt(X)

)k
.

(45)

Replacing the probability of having k interactions by its expression (16) leads to

Ul(t) =

∫
U0(X)φl(X)

∞∑
k=0

e−vσt(X)t(vσt(X))k
sk

k!

(
vσs(X)

vσt(X)

)k
dPX ,

=

∫
U0(X)φl(X)e−vσt(X)t

∞∑
k=0

(vσs(X))k
sk

k!
dPX ,

=

∫
U0(X)e−vσa(X)tφl(X) dPX .

(46)

With the few previous computations, we formally verified the convergence of the semi-analog MC-
gPC scheme for the gPC coefficients of the stochastic process Ut,l. Let us now study the moment

of order 2 of the stochastic process Ut,l. It is defined as E
[
U2
t,l

]
with

U2
t,l =

U2
0 (X)φ2

l (X)

∞∑
i1=0

∞∑
i2=0

1[0,t](S
X
i1 )1[t,∞[(S

X
i1 + τ i1+1

X )1[0,t](S
X
i2 ))1[t,∞[(S

X
i2 + τ i2+1

X )

(
σs(X)

σt(X)

)i1+i2

.

In the previous expression, we expanded the exponantM intoM summations over indices (i1, ..., iM ).
Using the generalization to M terms of the fact that ∀(k,m) ∈ N2, we have

1[0,t](S
X
k )1[t,∞[(S

X
k + τk+1

X )1[0,t](S
X
m)1[t,∞[(S

X
m + τm+1

X ) = δk,m1[0,t](S
X
m)1[t,∞[(S

X
m + τm+1

X ),

we simplify the above expression of U2
t,l(X) into

U2
t,l = U2

0 (X)φ2
l (X)

∞∑
i=0

1[0,t](S
X
i )1[t,∞[(S

X
i + τ i+1

X )

(
σs(X)

σt(X)

)2×i

.
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Taking the expectation of U2
t,l leads to

E[U2
t,l] =

∫
U2

0 (X)φ2
l (X)

∞∑
i=0

P
(
τ i+1
X > t− SXi |SXi < t

)(σs(X)

σt(X

)2×i

dPX ,

=

∫
U2

0 (X)φ2
l (X)e−vσt(X)t

∞∑
i=0

(vσt(X))i
ti

i!

(
σs(X)

σt(X)

)2×i

dPX ,

=

∫
U2

0 (X)φ2
l (X) exp

(
(vσs(X))2 − (vσt(X))2

(vσt(X))
t

)
dPX .

(47)

This leads to the asymptotic variance

σ2
l,MC-sa(t) =

∫
U2

0 (X)φ2
l (X) exp

(
(vσs(X))2 − (vσt(X))2

vσt(X)
t

)
dPX −

[∫
U0(X)e−vσa(X)tφl(X) dPX

]2

. (48)

Figure 10 compares the results in terms of first and second order moments on the P = 4-truncated
gPC coefficients obtained from

– the numerical integration of (48) (ref.),

– an estimation of (48) within an MC-gPC run,

– the time evolution of the variance estimated by relying on Nseed = 1000 runs with NMC = 100
particles, each initialised with a different seed and by evaluating the variance of the random
variable (Uk(t)− E[Uk,t])

√
NMC ,∀k ∈ {0, ..., P = 4}, i.e.

t→ V
[
(Uk(t)− E[Uk,t])

√
NMC

]
,∀k ∈ {0, ..., P = 4}. (49)

According to the Central Limit Theorem (and due to the unbiasedness of the semi-analog
estimator) we have (Uk(t)− E[Uk,t])

√
NMC ∼ G(0, σk,MC-sa(t)),∀k ∈ {0, ..., P}.

The figure shows a good agreement which tends to verify both our implementation and analysis.
Now, expression (48) gives the asymptotic variance of the homogeneous process for the MC-gPC

implementation within a semi-analog MC code. From the above expression, we can already tell that
it differs from the one obtained in a non-intrusive context:

– first, this point has already been experimentally observed in [7]. We here have a proof in a
particular configuration.

– Now, by comparing (48) for MC-gPC and (40) for non-intrusive gPC for k = 0, we can see
that the error is the same on the mean U0(t) for the two resolution strategies (because we
always have φ0(X) = 1 independently of dPX due to the orthonormality of the basis). In
other words, if one compares the mean of an MC-gPC run and of a non-intrusive gPC study
and observes a difference, this will only be explained by the numerical noise. The performance
on the mean U0(t) are asymptotically the same.

– For higher order gPC coefficients (k > 0), there is a difference between (40) and (48) mainly
explained by the exponant α of φαk (X): for (40), α = 1 and for (48), α = 2. In order to have
a hint at what this exponant changes, let us consider a deterministic test-problem. In this
regime, we have
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t→ Uk(t), k ∈ {0, ..., P = 4} t→ σ2
k,MC-sa(t), k ∈ {0, ..., P = 4}
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Figure 10: Top left: time evolution of the gPC coefficients t → Uk(t) ∀k ∈ {0, ..., P = 4} obtained with MC-
gPC and analytically computed (ref.). Top right: time evolution of the variance multiplied by NMC of the gPC
coefficients t → σ2

k,MC-sa(t) ∀k ∈ {0, ..., P = 4} obtained by instrumenting the semi-analog MC-gPC solver and

analytically computed (ref.). Top right: time evolution of the variance multiplied by NMC of the gPC coefficients
t → σ2

k,MC-sa(t) ∀k ∈ {0, ..., P = 4} obtained by instrumenting the semi-analog MC-gPC solver, an analytically

computed reference (ref.) and an evalution by post-treatment of several runs of deterministic MC code (i.e. using
(49)).

– from (40) for non-intrusive gPC

σ2
k,sa(t) =

∫
U2

0

e (vσs)
2 − (vσt)

2

(vσt)
t
− e2(vσs−vσt)t

φk(X) dPX ,∀k ∈ {0, ..., P},

= U2
0

e (vσs)
2 − (vσt)

2

(vσt)
t
− e2(vσs−vσt)t

∫ φk(X) dPX ,∀k ∈ {0, ..., P},

= σ2
sa(t)δ0,k,∀k ∈ {0, ..., P}.

From the above expression, we can see that in the deterministic regime, for k > 0,
asymptotically, the error is zero as σ2

k,sa(t) = 0,∀k ∈ {1, ..., P}.
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– From (48) for MC-gPC and ∀k ∈ {0, ..., P}

σ2
k,MC-sa(t) =

∫
U2

0φ
2
l (X) exp

(
(vσs)

2 − (vσt)
2

(vσt)
t

)
dPX −

[∫
U0e

−vσatφl(X) dPX
]2

,

= U2
0 exp

(
(vσs)

2 − (vσt)
2

(vσt)
t

)∫
φ2
l (X) dPX −

[
U0e

−vσat
∫
φl(X) dPX

]2

,

= U2
0 exp

(
(vσs)

2 − (vσt)
2

(vσt)
t

)
− U0e

−2vσatδk,0.

From the above expression, we can see that in the deterministic regime, for k > 0,

asymptotically, the error is not zero as σ2
k,MC-sa(t) = U2

0 exp
(

(vσs)
2−(vσt)

2

(vσt)
t
)
6= 0,∀k ∈

{1, ..., P}.
– From this relatively simple analysis, this means that there exists, for this MC scheme,

regimes (at least the deterministic one) in which, asymptotically, MC-gPC can have
lesser performances in terms of noise than non-intrusive gPC.

The last result is not alarming: first, MC-gPC has been experimentally computationally competitive
in several configurations in which the semi-analog MC scheme was at the basis of the implementa-
tion, see [1, 6, 7]. One must not forget that the error in non-intrusive gPC and MC-gPC in not σk,sa
and σk,MC-sa but rather

σk,sa√
NMC

and
σk,MC-sa√
NMC

. The question now is: how many more MC-particles

MC-gPC may need in order to have the same level of noise on the coefficients (Uk(t))k∈{0,...,P}
as non-intrusive gPC? Having access to the analytical variances is handy in order to answer this
question (indeed, otherwise, some false positive could be obtained only due to a coarse MC dis-
cretisation on one hand or the other): we suggest studying (40) and (48) more in details in the
following paragraphs. Figure 11 compares (40) and (48) with respect to time in the configuration
(39). Except for the mean (i.e. k = 0) for which the variances are exactly the same, non-intrusive
gPC shows better performances in terms of noise. Now, depending on the time of interest, for
k > 0, the numerical errors can be quite different. In figure 11, the worst case scenario happens for
early times which, here, corresponds to having an almost deterministic solution: indeed, for early
times, the solution U(t,X) ∼ U0(X) = U0 in configuration (39). For early times, one must put
more efforts in terms of number NMC of particles for the semi-analog MC-gPC solver’s accuracy
to match the error the semi-analog non-intrusive one. Nonetheless, for later times, as the problem
becomes uncertain, this gap in number of particles considerably drops and the performances of both
resolution schemes become almost equivalent.

4.3.2. MC-gPC for the non-analog MC scheme in the collisional regime

The starting point of the analysis is the expectation form of the uncertain transport equation
(1) for the non-analog MC scheme with the uncertain monokinetic, homogenous assumptions (i.e.
σα(x, v,X) ≡ σα(X),∀α ∈ {s, t} and u(x, t, v,X) ≡ u(t, ω,X)). With these assumptions, the
recursive equation (B.13) becomes

Uk(t) = E
[
1[t,∞[(τX)U0(X)e−vσa(X)tφk(X) + 1[0,t](τX)U(t− τX , X)e−vσa(X)(t−τX)φk(X)

]
. (50)

We recall we have X ∼ dPX and τX ∼ E(vσs(X)). We suggest expanding the recursive part
into an infinite sum over the number of interactions. Let us introduce a new random variable
SXi =

∑i
k=0 τ

k
X where τkX ∼ E(vσs(X)) ∀k ∈ {1, ..., i} are independent identically distributed.
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t→ σ2
k,MC-sa(t) (MC-gPC) and t→ σ2

k,sa(t) (non-intrusive gPC) for k ∈ {0, ..., P = 4}
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Figure 11: Comparison between t→ σ2
k(t) (non-intrusive gPC) and t→ σ2

k,MC-sa(t) (MC-gPC), for k ∈ {0, ..., P = 4},
both based on the semi-analog MC scheme.

Once again SXi follows a Gamma law of parameters (vσs(X), i), denoted by SXi ∼ Γ(vσs(X), i).
Let us introduce Ut,l the stochastic process induced by the possible histories of any MC particles.
It is given by

Ut,l =

∞∑
k=0

1[0,t](Sk(X))1[t,∞[(Sk(X) + τk+1
X )e−vσa(X)τk+1

X U0(X)φl(X).

The first moment is defined by Ul(t) = E[Ut,l], and by linearity its expression becomes

Ul(t) = E [Ut,l] = E

[ ∞∑
k=0

1[0,t](S
X
k )1[t,∞[(S

X
k + τk+1

X )e−vσa(X)τk+1
X U0(X)φl(X)

]
,

=

∫
U0(X)φl(X)

∞∑
k=0

E
[
1[0,t](S

X
k )1[t,∞[(S

X
k + τk+1

X )
]
e−vσa(X)τk+1

X dPX ,

=

∫
U0(X)φl(X)e−vσa(X)t

∞∑
k=0

P
(
τk+1
X > t− SXk |SXk < t

)
.

=

∫
U0(X)e−vσa(X)tφl(X) dPX .

(51)

With the few previous computations, we formally verified the convergence of the non-analog MC-
gPC scheme for the gPC coefficients of the stochastic process Ut. Let us now study the moment of
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order 2 of the stochastic process Ut,l. It is defined as E
[
U2
t,l

]
with

U2
t,l =

U2
0 (X)φ2

l (X)

∞∑
i1=0

∞∑
i2=0

1[0,t](S
X
i1 )1[t,∞[(S

X
i1 + τ i1+1

X )1[0,t](S
X
i2 ))1[t,∞[(S

X
i2 + τ i2+1

X )e−vσa(X)(t−τ i1+1

X )e−vσa(X)(t−τ i2+1

X ).

In the previous expression, we expanded the exponantM intoM summations over indices (i1, ..., iM ).
Using the generalization to M terms of the fact that ∀(k,m) ∈ N2, we have

1[0,t](S
X
k )1[t,∞[(S

X
k + τk+1

X )1[0,t](S
X
m)1[t,∞[(S

X
m + τm+1

X ) = δk,m1[0,t](S
X
m)1[t,∞[(S

X
m + τm+1

X ),

we simplify the above expression of U2
l,t(X) into

U2
t,l = U2

0 (X)φ2
l (X)

∞∑
i=0

1[0,t](S
X
i )1[t,∞[(S

X
i + τ i+1

X )e−vσa(X)2(t−τ i+1
X ).

Taking the expectation of U2
t,l leads to

E[U2
t,l] =

∫
U2

0 (X)φ2
l (X)

∞∑
i=0

P
(
τ i+1
X > t− SXi |SXi < t

)
e−vσa(X)2(t−τ i+1

X ) dPX ,

=

∫
U2

0 (X)φ2
l (X)e−2vσt(X)t dPX .

(52)

For the variance, we finally get

σ2
l,MC-na(t) =

∫
U2

0 (X)φ2
l (X)e−2vσa(X)t dPX −

[∫
U0(X)e−vσa(X)tφl(X) dPX

]2

. (53)

Figure 12 compares the results in terms of first and second order moments on the P = 4-truncated
gPC coefficients obtained from

– the numerical integration of (53) (ref.),

– an estimation of (53) within an MC-gPC run,

– the time evolution of the variance estimated by relying on Nseed = 1000 runs with NMC = 100
particles, each initialised with a different seed and by evaluating the variance of the random
variable (Uk(t)− E[Uk,t])

√
NMC ,∀k ∈ {0, ..., P = 4}, i.e.

t→ V
[
(Uk(t)− E[Uk,t])

√
NMC

]
,∀k ∈ {0, ..., P = 4}. (54)

According to the Central Limit Theorem (and due to the unbiasedness of the semi-analog
estimator) we have (Uk(t)− E[Uk,t])

√
NMC ∼ G(0, σk,MC-na(t)),∀k ∈ {0, ..., P}.

The figure shows a good agreement which tends to verify both our implementation and analysis
(V&V [41]) of MC-gPC combined to the non-analog MC scheme together with the unbiasedness of
our estimators.
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t→ Uk(t,X), k ∈ {0, ..., P = 4} t→ σ2
k,MC-na(t), k ∈ {0, ..., P = 4}
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Figure 12: Top left: time evolution of the gPC coefficients t→ Uk(t) ∀k ∈ {0, ..., P = 4} obtained with MC-gPC and
analytically computed (ref.) for the non-analog MC scheme. Top right: time evolution of the variance multiplied
by NMC of the gPC coefficients t → σ2

k,MC-na(t) ∀k ∈ {0, ..., P = 4} obtained by instrumenting the non-analog

MC-gPC solver and analytically computed (ref.). Top right: time evolution of the variance multiplied by NMC of
the gPC coefficients t→ σ2

k,MC-na(t) ∀k ∈ {0, ..., P = 4} obtained by instrumenting the non-analog MC-gPC solver,

an analytically computed reference (ref.) and an evalution by post-treatment of several runs of deterministic MC
code (i.e. using (54)).

Now, we can compare the asymptotical variances obtained with non-intrusive gPC and MC-
gPC, both based on a non-analog MC resolution. Once again, except for the first gPC coefficient
u0, the asymptotical variances are more important with MC-gPC than with non-intrusive gPC.
The conclusions are actually the same as for the semi-analog MC scheme of the previous section.
Note that in the collisional regime, with the non-analog MC scheme, the loss between non-intrusive
gPC and MC-gPC is quite important in terms of numerical error (as the variance is zero for non-
intrusive gPC with the non-analog MC scheme).

We finally compare, on figure 13, the asymptotical variances of a semi-analog MC-gPC imple-
mentation and of a non-analog MC-gPC implementation. For every gPC coefficients and for every
times, in the collisional regime, the error with the semi-analog MC-gPC scheme is slightly higher
than for the non-analog MC-gPC one. The improvement ensured by the non-analog MC scheme in
the collisional regime is not significative for MC-gPC (whereas it is for non-intrusive gPC).
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Figure 13: Time evolutions of t→ σ2
k,sa(x, t) and t→ σ2

k,na(x, t)for k ∈ {0, ..., P = 4} (i.e. for non-analog MC-gPC

and semi-analog MC-gPC).

5. Discussion on how to use the previous results and conclusion

In this paper, we studied the numerical noise induced by the Monte-Carlo resolution of (intrusive
and non-intrusive) gPC based reduced model. In particular, we deepened the study of MC-gPC
applied to the uncertain linear Boltzmann equation. We theoretically and numerically compare the
variances (which are estimators of the error for the unbiased MC schemes) of combinations of MC
schemes/uncertainty propagation methods (the semi- and non-analog ones and non-intrusive gPC
and MC-gPC). In this concluding section, we give examples of how the material of the previous
sections can be used in practice. In particular, we think the analysis can help verify MC codes
(section 5.1), help decide which solver is more appropriate to one’s problem of interest (section
5.2), help predict the behaviour of the numerical noise on statistical quantities of interest (section
5.3) and help identify the weaknesses of MC-gPC in order to imagine new ways to improve it
(section 5.4).

5.1. Help verify an MC code implementation (Verification & Validation [41])

The first use for the previous material which comes in mind concerns Verification & Validation
V&V [41] and especially verification. For example,

– the high order moments of the semi-analog (section 3.2.1) and of the non-analog (section
3.2.2) MC schemes and their asymptotical variances in the collisional regime can be used to
verify the implementation of some deterministic MC code.

– The asymptotical variances obtained in the different sections (in the deterministic or uncertain
case) allow verifying the unbiasedness of the estimator (in the free-flight regime and the
collisional one, see sections 3.1–3.2.1–3.2.2–4.3.1–4.3.2).
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– The asymptotical variances of the gPC coefficients for non-intrusive and MC-gPC allow ver-
ifying the implementations of non-intrusive gPC but, above all, MC-gPC, independently of
the MC scheme (semi-analog or non-analog) already implemented in the deterministic MC
code from which MC-gPC is based (sections 4.3.1–4.3.2).

With these examples, the results of the different sections are considered independently. By com-
paring them, we can go further and make advised choices in order to obtain better performances
for our resolution schemes.

5.2. Help in decision making

From the previous differences, depending on the regime of interest, we can discuss our choices:

– suppose one has mainly to consider configurations in the deterministic collisional regime, then
the non-analog MC scheme is more efficient than the semi-analog one.

– Suppose one is willing to implement MC-gPC within an MC code in which the semi-analog
MC scheme is implemented: then it is almost pointless to implement the non-analog one first
hand as with MC-gPC, the semi-analog and the non-analog MC schemes have almost the
same performances.

– If one wants to stick with non-intrusive gPC, an MC code with the non-analog MC scheme
is more efficient (same performances as the semi-analog one in the free flight regime and zero
variance on the gPC coefficients in the collisional one, see sections 3.1–4.2).

The above list is non-exhaustive and we can also use the above material for more practical consid-
erations, see the two next sections.

5.3. Help predict the behaviour of the numerical noise/error on some statistical quantities

The previous analysis can also help deducing confidence bounds on the different statistical
quantities of interest. The most obvious example remains the one of the mean for which we have
for MC-gPC

E[uNMC (x, t, v,X)] = uNMC0 (x, t, v) = u0(x, t, v) +
σ0(x, t, v)√

NMC

G0.

It gives an idea of how the approximation of the mean is improved with the NMC the number of
MC particles in the simulations. For the mean, it corresponds to a direct application of the material
of the previous sections (see section 4.3 for MC-gPC).

On another hand, a less direct application corresponds to the study of the numerical noise on
other statistical quantities of interest: let us take the example of the physical variance. It can be
obtained from the gPC coefficients as (see [50] for example)

V[uNMC (x, t, v,X)] =

P∑
k=1

(
uNMCk (x, t, v)

)2

.
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Using the material of the previous section, we can relate the physical variance obtained from an
MC approximation to the analytical one as we have:

V[uNMC (x, t, v,X)] =

P∑
k=1

(
uNMCk (x, t, v)

)2

,

=

P∑
k=1

(
uk(x, t, v) +

σk(x, t, v)√
NMC

Gk
)2

,

=

P∑
k=1

(uk(x, t, v))
2

+

P∑
k=1

uk(x, t, v)
σk(x, t, v)√

NMC

Gk +

P∑
k=1

(
σk(x, t, v)√

NMC

Gk
)2

,

= V[u(x, t, v)] +

P∑
k=1

uk(x, t, v)
σk(x, t, v)√

NMC

Gk +

P∑
k=1

(
σk(x, t, v)√

NMC

Gk
)2

.

From the above expression, we can deduce that by averaging over several runs (i.e. several seeds),
we asymptotically have

E
[
V[uNMC (x, t, v,X)]

]
= E [V[u(x, t, v)]] +

P∑
k=1

σ2
k(x, t, v)

NMC
.

The above expression is interesting in the sense that estimating the variances (σ2
k)k∈{0,...,P} together

with the physical variance V[uNMC (x, t, v,X)] can lead to the estimation of an upper bound of
the true physical variance V[u(x, t, v,X)] (which is often desired in industrial applications) of the
quantity of interest. Of course, the previous analysis can be carried out on other statistical quantities
(Sobol indices for sensitivity analysis etc.) which can be deduced from the gPC coefficients, see
[43, 56].

5.4. Help understand the weaknesses and improvements for MC-gPC

Finally, with the previous analysis, we also identified explicitly the term which is problematic
for MC-gPC: in section 4.3, we saw that the estimator of the second order moment uses φαk with
α = 2 for MC-gPC (where non-intrusive gPC uses φαk with α = 1). This exponant α = 2 induces
a loss in terms of variance, especially in the deterministic case (or more generally when the gPC
coefficients are small), see sections 4.1.2–4.3. This is probably the weakest point of MC-gPC. It has
been precisely identified thanks to the previous analysis. From what we just learnt, we can now
imagine ways to avoid this excess of variance and improve MC-gPC: for example, there are several
ways to solve the reduced model (C.1) at the basis of MC-gPC. Until now, the MC resolution of
system (C.1) was based on an MC scheme allowing having minimal and simple modifications of
an existing MC solver, see [1] and Appendix C. But these minimal and simple modifications are
not the only ones ensuring solving the gPC based reduced model (C.1). New numerical strategies
could be designed in order to avoid having a too important noise in the deterministic regime. For
example, system (C.1) has almost the same structure as a multi-group system [15, 13]. We could
consequently use already existing strategies in order to reduce the noise of the MC resolution of
the reduced model (C.1) using multi-group MC schemes (for which (φk)k∈{0,...,P} is not anymore
explicitly involved in the estimator of the first or second order moments of the stochastic process
allowing to approximate the solution of our PDE set). This strategy would certainly lead to less
simple modifications of an existing MC solver but also probably to important improvements. This
will be the purpose of further publications.
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de la Direction de l’énergie nucléaire, CEA Saclay; Groupe Moniteur, 2013.
URL https://hal-cea.archives-ouvertes.fr/cea-01152822
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[39] G. Poëtte, X. Valentin, A. Bernede, Canceling teleportation error in legacy imc code for photon-
ics (without tilts, with simple minimal modifications), Journal of Computational and Theoret-
ical Transport 49 (4) (2020) 162–194. arXiv:https://doi.org/10.1080/23324309.2020.1785893,
doi:10.1080/23324309.2020.1785893.
URL https://doi.org/10.1080/23324309.2020.1785893

35



[40] E. Steinberg, S. I. Heizler, Discrete implicit monte-carlo (dimc) scheme for simulating radiative
transfer problems (2021). arXiv:2108.13453.

[41] A. S. o. M. E. ASME V&V 20-2009, Standard for Verification and Validation in Computational
Fluid Dynamics and Heat Transfer, ASME (2009).

[42] G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and
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Appendix A. A simple analytical uncertain solution

In this section we build an analytical solution in a simple uncertain configuration. It is used
as a reference solution for the convergence studies of section 2 and figure 1. The configuration
is monokinetic (i.e. v = 1) and homogeneous (i.e. u(x, t,v, X) = u(t, ω,X)). We assume the
uncertainty, one-dimensional here for the sake of simplicity, affects the scattering cross-sections
σs = σs + σ̂sX, where X ∼ U [−1, 1] and σ̂s is closely related to the variance of the uncertain scat-
tering cross-section. Let us introduce U(t,X) =

∫∫
u(x, t, ω,X) dxdω. In the previously described

configuration, the uncertain linear Boltzmann equation resumes to the following stochastic ordinary
differential equation {

∂tU(t,X) + vσtU(t,X) = vσs(X)U(t,X),
U(0) = U0,

(A.1)

satisfied by U . Introduce σa = σt − σs, then the solution is given by

U(t,X) = U0e
−vσa(X)t = U0e

−v(σt−σs−σ̂sX)t = U0e
−v(σa−σ̂sX)t. (A.2)

The quantity U(t,X) is a random variable indexed by time t, i.e. it is a stochastic process. In this
case, mean and variance of the stochastic process (A.2) can be computed analytically and are given
by

MU
1 (t) = E[U(t,X)] = 1

2U0e
−vσat e

vσ̂st − e−vσ̂st
σ̂stv

,

MU
2 (t) = E[U2(t,X)] = 1

4U
2
0 e
−2vσat

e2vσ̂st − e−2vσ̂st

σ̂stv
,

V[U ](t) = MU
2 (t)− (MU

1 (t))2.

(A.3)

Of course, higher order moments, probability of failure, complete characterisation of the probability
density function of the stochastic process can be calculated but in figure 1, we focus on the variance
V[U ](t) to perform the convergence studies. Note that in practice, we take v = 1, U0 = 1, σt =
σs = 0.1, σ̂s = 0.1. The L1-norm of the error is computed at time t = 10. The curves of figure 1
implying an MC scheme are averaged over 128 computations with different seeds.

Appendix B. The semi-analog and the non-analog MC schemes

In this section, we briefly recall how the semi-analog and the non-analog MC schemes are built
and how they are implemented. The schemes are well-known in the literature. Still, we recall their
constructions here for the sake of reproducibility of the results but above all because the analysis of
sections 3 and 4 begins with the respective expectation forms of equation (1) for the different MC
schemes. Those forms are presented in the two next sections for the semi-analog MC scheme (see
section Appendix B.1) and for the non-analog one (see section Appendix B.2).

Appendix B.1. Construction of the semi-analog MC scheme

The first step in order to rewrite (the deterministic counterpart of) (1) as an expectation consists
in identifying a probability measure relative to the time integration in equation (1). By successive
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changes of variables and integrations, see [34] for example, (1) can be rewritten (on an infinite
domain)

u(x, t, v) =

+

∫ ∞
t

u0(x− vt, v)vσt(x− vs, t− s, v)e−
∫ s
0
vσt(x−vα,t−α,v) dα ds

+

∫ t

0

e−
∫ s
0
vσt(x−vα,t−α,v) dα

∫
vσs(x− vs, t− s, v, v′)u(x− vs, t− s, v′) dv′ ds.

(B.1)

It is then possible to factorize by

fτ (x, t, v, s) ds = 1[0,∞[(s)vσt(x− vs, t− s, v)e−
∫ s
0
vσt(x−vα,t−α,v) dα ds.

The above expression is a probability measure ∀(x, t, v) ∈ D× [0, T ]×R3: indeed, it is positive and
sums up to 1 ∀(x, t, v) ∈ D × [0, T ]× R3. Using its expression in (B.1) leads to

u(x, t, v) =

∫∫  +1[t,∞[(s) u0(x− vt, v) δv(v
′)

+1[0,t](s) u(x− vs, t− s, v′) σs(x− vs, t− s, v, v′)
σt(x− vs, t− s, v)

 fτ (x, t, v, s) dsdv′. (B.2)

Without loss of generality, we can write

vσs(x− vs, t− s, v, v′) = vσs(x− vs, t− s, v)Ps(x− vs, t− s, v, v′).

In the above expression, ∀(y, β) ∈ D × [0, T ] we have

σs(y, β, v) =

∫
σs(y, β, v, v

′) dv′,

Ps(y, β, v, v
′) =

σs(y, β, v, v
′)

σs(y, β, v)
.

(B.3)

The quantity P sV′(x, t, s, v, v′) dv′ = Ps(x− vs, t− s, v, v′) dv′ is positive and is summing up to 1. It
is consequently a three-dimensional probability measure ∀(x, t, v) ∈ D× [0, T ]×R3. The probability
measure for the samplings of the velocity V′ is here averaged over the set of reactions r ∈ {0, ..., R},
see [34] for more details. Equation (B.2) can then be rewritten

u(x, t, v) =∫∫  +1[t,∞[(s) u0(x− vt, v)

+1[0,t](s) u(x− vs, t− s, v′) σs(x− vs, t− s, v)

σt(x− vs, t− s, v)
P sV′(x, t, s, v, v′)

 fτ (x, t, v, s) dsdv′.
(B.4)

Introduce the following random variables associated to the previously identified probability measures{
τ with probability measure fτ (x, t, v) ds,
V′ with probability measure P sV′(x, t, s, v, v′) dv′.

(B.5)

Then (B.4) can be rewritten in an adjoint recursive way as an expectation over the above set of
random variables (B.5)

u(x, t, v) = E
[

1[t,∞[(τ)u0(x− vt, v) + 1[0,t](τ)
σs(x− vτ, t− τ, v)

σt(x− vτ, t− τ, v)
u(x− vτ, t− τ,V′)

]
. (B.6)
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The above expression is the starting point of the analysis of the variance of the semi-analog MC
scheme in section 3.2.1.

In order to build the semi-analog MC scheme, it remains to consider a ’particle’ solutions
(up)p∈{1,...,NMC} of (B.6) having the particular form

up(x, t, v) = wp(t)δx(xp(t))δv(vp(t)), (B.7)

and plug them into (B.6) to identify the operations to perform to make sure each (up)p∈{1,...,NMC} is
solution of (B.6). Practically, the above system of equation in term of weight, position and velocity
leads to the recursive numerical treatment/algorithm (we here detailed the adjoint formulation)
summed up in algorithm 1.
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set u(x, t, v) = 0
set u2(x, t, v) = 0
for p ∈ {1, ..., NMC} do

set sp = t #this will be the remaining life time of particle p
set xp = x
set vp = v

set wp(t) =
1

NMC

while sp > 0 do
if xp /∈ D then

#here a general function for the application of arbitrary boundary conditions
apply boundary conditions(xp, sp,vp)

end
Sample τ from the distribution having probability measure fτ (xp, sp, s, vp) ds.
if τ > sp then

#move the particle p
xp ←− xp + vpsp,
#set the life time of particle p to zero:
sp ←− 0
#tally the contribution of particle p for the first moment
u(x, t, v)+ = wp × u0(xp, vp)
#tally the contribution of particle p for the second moment
u2(x, t, v)+ = wp × u2

0(xp, vp)
end
else

#change the particle weight

wp ←−
σs(xp, sp − τ, vp)
σt(xp, sp − τ, vp)

wp

#Sample the velocity V′ of particle p from P sV′(xp, sp, τ, vp, v
′) dv′

vp = V′

#move the particle p
xp ←− xp + vτ ,
#set the life time of particle p to:
sp ←− sp − τ > 0

end

end

end
Algorithm 1: The MC semi-analog scheme described in term of algorithmic operations in order
to compute (adjoint) u(x, t, v).

The description of algorithm 1 deduced from the recursive set of equations (B.6) shows that
the semi-analog MC scheme is defined by a set of samplings depending on almost every variables
x, t, v, v′. The sampling of the velocity V′ is averaged and the weight of the particle is multiplied
by the ratio σs

σt
at the position and at the instant of the shock. The latter ratio corresponds to the

probability for the particle of being scattered. The MC particle does not represent the behaviour of
a physical particle at x, t, v but rather the behaviour of a population of physical particles at x, t, v.
With this treatment, the weight of an MC particle never goes to zero if σs 6= 0. An MC particle is
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never explicitly captured hence the denomination ’implicit capture’ for this scheme.
The first and second order moments of the solution can be computed during the MC resolution.

The instrumentation of the tracking corresponds to the tallying phases (i.e. the + = operations in
algorithm 1).

Appendix B.2. Construction of the non-analog MC scheme

In this section, we describe the non-analog scheme, intensively applied in photonic ones. As in
the previous sections, we first rewrite the linear Boltzmann equation (1) in an integral form. The
non-analog one is obtained from different changes of variables which are detailed in [34].

First, as in the previous section, we rewrite the scattering cross-section

vσs(x− vs, t− s, v, v′) = vσs(x− vs, t− s, v)Ps(x− vs, t− s, v, v′).

In the above expression, ∀(y, β) ∈ D × [0, T ] we have

σs(y, β, v) =

∫
σs(y, β, v, v

′) dv′,

Ps(y, β, v, v
′) =

σs(y, β, v, v
′)

σs(y, β, v)
.

(B.8)

The quantity P sV′(x, t, s, v, v′) dv′ = Ps(x− vs, t− s, v, v′) dv′ is positive and is summing up to 1. It
is consequently a three-dimensional probability measure ∀(x, t, v) ∈ D × [0, T ]×R3. It is the same
as for the semi-analog scheme. The non-analog scheme now needs the introduction of

σa = σt − σs.

The quantity σa is not always equal to the absorption cross-section σ0 (cross-section of multiplicity
ν0 = 0). It is the case only for a particular set of reactions of the form r ∈ {0, 1}. Let us decompose
σt into σa+σs. This allows making the term e−

∫ s
0
vσa(x−v(t−α),α,v) dα appear in factor of u in (B.2).

Now using the fact that

e−
∫ t
0
vσs(x−v(t−α),α,v) dα = e−

∫ t
0
vσs(x−vα,t−α,v) dα =

∫ ∞
t

vσs(x−vs, t−s, v)e−
∫ s
0
vσs(x−vα,t−α,v) dα ds,

equation (B.2) rewrites

u(x, t, v) =

+

∫ ∞
t

u0(x− vt, v)e−
∫ s
0
vσa(x−vα,t−α,v) dαvσs(x− vs, t− s, v)e−

∫ s
0
vσs(x−vα,t−α,v) dα ds

+

∫ t

0

 vσs(x− vs, t− s, v)e−
∫ s
0
vσs(x−vα,t−α,v) dαe−

∫ s
0
vσa(x−vα,t−α,v) dα

×
∫∫

Ps(x− vs, t− s, v, v′)u(x− vs, t− s, v′) dv′.

 ds.

(B.9)

It is then possible to factorize by

fτ (x, t, v, s) ds = 1[0,∞[(s)vσs(x− vs, t− s, v)e−
∫ s
0
vσs(x−vα,t−α,v) dα ds. (B.10)
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It is also a probability measure (with respect to σs rather than σt). We then rewrite the linear
Boltzmann equation in another integral form

u(x, t, v) =∫∫ [
1[t,∞[(s) u0(x− vt, v) e−

∫ s
0
vσa(x−vα,t−α,v) dα δv(v

′)

1[0,t](s) u(x− vs, t− s, v′) e−
∫ s
0
vσa(x−vα,t−α,v) dα Ps(x− vs, t− s, v, v′)

]
×fτ (x, t, v, s) dv′ ds.

(B.11)

Integral form (B.11) obtained here is different from the one used for the previous scheme. It mainly
differs due to the exponential term multiplying u0 and u. Let us now introduce the random variables{

τ with probability measure fτ (x, t, v) ds,
V′ with probability measure P sV′(x, t, s, v, v′) dv′.

(B.12)

Equation (B.11) can then be rewritten in an adjoint recursive way as an expectation over the above
set of non-analog random variables (B.12)

u(x, t, v) = E
[

+1[t,∞[(τ) e−
∫ t
0
vσa(x−vα,t−α,v) dα u0(x− vt, v)

+1[0,t](τ) e−
∫ τ
0
vσa(x−vα,t−α,v) dα u(x− vτ, t− τ,V′)

]
. (B.13)

The above expression is the starting point of the analysis of the variance of the semi-analog MC
scheme in section 3.2.2.

In order to build the non-analog MC scheme, it remains to consider a ’particle’ solutions
(up)p∈{1,...,NMC} of (B.13) having the particular form

up(x, t, v) = wp(t)δx(xp(t))δv(vp(t)), (B.14)

and plug them into (B.13) to identify the operations to perform to make sure each (up)p∈{1,...,NMC}
is solution of (B.13).

Practically, the above system of equation in term of weight, position and velocity leads to the
recursive numerical treatment/algorithm (we here detailed the adjoint formulation) summed up in
algorithm 2.
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set u(x, t, v) = 0
set u2(x, t, v) = 0
for p = 1 ∈ {1, ..., NMC} do

set sp = t #this will be the life time of particle p
set xp = x
set vp = v

set wp(t) =
1

NMC

while sp > 0 do
if xp /∈ D then

#here a general function for the application of arbitrary boundary conditions
apply boundary conditions(xp, sp,vp)

end
Sample τ from the distribution having probability measure fτ (xp, sp, s, vp) ds.
if τ > sp then

#change its weight

wp ←− e−
∫ sp
0 vpσa(xp−vpα,sp−α,vp) dαwp

#move the particle p
xp ←− xp + vpsp,
#set the life time of particle p to zero:
sp ←− 0
#tally the contribution of particle p
u(x, t, v)+ = wp × u0(xp, vp)
#tally the contribution of particle p for the second moment
u2(x, t, v)+ = wp × u2

0(xp, vp)
end
else

#change the particle weight
wp ←− e−

∫ τ
0
vpσa(xp−vpα,sp−α,vp) dαwp

#Sample the velocity V′ of particle p from P sV′(xp, sp, τ, vp, v
′) dv′

vp = V ′

#move the particle p
xp ←− xp + vpτ ,
#set the life time of particle p to:
sp ←− sp − τ > 0

end

end

end
Algorithm 2: The MC non-analog scheme described in term of algorithmic operations in order
to compute (adjoint) u(x, t, v).

Algorithm 2 mainly differs from the previous one (algorithm 1) by the fact that

– the interaction time is sampled from σs rather than from σt,

– the weight of the particle is modified along its flight path.

The sampling of the velocity V′ is averaged over the set of reactions at the position and at the
instant of the interaction. Once again, the MC particle does not represent the behaviour of a
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physical particle at x, t, v but rather the behaviour of a population of physical particles at x, t, v
averaged in a homogeneous media. Indeed, the weight modification along the flight path of a particle
corresponds to the solution of a punctual/homogeneous problem given by

∂sUx,t,v(s) = −vσa(x− vs, t− s, v)Ux,t,v(s). (B.15)

It is equivalent to having

Ux,t,v(t)

Ux,t,v(0)
= e−

∫ t
0
vσa(x−vα,t−α,v) dα, (B.16)

and exactly corresponds to the weight modification along the flight path of each MC particles. The
asymptotic property of the scheme will be emphasized in section 3.2.2.

The first and second order moments of the solution can be computed during the MC resolution.
The instrumentation of the tracking corresponds to the tallying phases (i.e. the + = operations in
algorithm 2).

Appendix C. The MC-gPC schemes

In this section, we build and express the gPC based reduced model of (1) as an expectaction
over a set of random variables. This set of random variables additionally contains the uncertain
variable X. This section is fully detailed in [2] and [1] but we recall the construction of the reduced
model and of the MC scheme in this paper for the sake of reproducibility of the results. Still, care is
taken to suggest a new way to present MC-gPC in a general manner: the algorithms of this section
explain how we can implement both the non-analog and the semi-analog MC schemes in the same
MC-gPC code.

The gPC reduced model of the uncertain transport equation (1) of size P + 1 is given by (we
drop the dependencies for convenience)

∂tu0 + v · ∇xu0 = −v
∫ σt ∑

k≤P

ukφk

φ0 dPX + v

∫∫ σs ∑
k≤P

ukφk

φ0 dPX

 dv′,

. . . . . .

∂tuP + v · ∇xuP = −v
∫ σt ∑

k≤P

ukφk

φP dPX + v

∫∫ σs ∑
k≤P

ukφk

φP dPX

 dv′.

(C.1)
It is obtained from a Galerkin projection of (1) onto the gPC basis (φk)k∈{0,...P}, see [2].

Going through the same steps as in Appendix B.1, the expectaction form of system (C.1) writes
∀k ∈ {0, ..., P}

uk(x, t, v) =

E

 + 1[t,∞[(τX)u0(x− vt, v,X)φk(X)

+ 1[0,t](τX)u(x− vτX , t− τX ,VX , X)
σs(x− vτX , t− τX , v,X)

σt(x− vτX , t− τX , v,X)
φk(X)

 . (C.2)

Note that the complete description of the steps leading to (C.2) is available in [1].
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for k ∈ {0, ..., P} do
set uk(x, t, v) = 0
set u2

k(x, t, v) = 0
end
for p = 1 ∈ {1, ..., NMC} do

set sp = t #this will be the life time of particle p
set xp = x
set vp = v
set Xp ∼ X

set wp(t) =
1

NMC

while sp > 0 do
if xp /∈ D(Xp) then

#here a general function for the application of arbitrary boundary conditions
apply boundary conditions(xp, sp, vp,Xp)

end
sample τ = sample interaction time(xp, vp, Xp)
K = compute weight modif(xp, vp, τ , τcensus, τexit, τinter, Xp)
wp ←− K × wp
if τ > sp then

#move the particle p
xp ←− xp + vpsp,
#set the life time of particle p to zero:
sp ←− 0
#tally the contribution of particle p for the first and second moments
for k ∈ {0, ..., P} do

uk(x, t, v)+ = wp × u0(xp, vp, Xp)φk(Xp)

u2
k(x, t, v)+ = wp × [u0(xp, vp, Xp)φk(Xp)]

2

end

end
else

#Sample the velocity V′ of particle p from P sV′(xp, sp, τ, vp, v
′, Xp) dv′

vp = V ′

#move the particle p
xp ←− xp + vpτ ,
#set the life time of particle p to:
sp ←− sp − τ > 0

end

end

end
Algorithm 3: The semi-analog and non-analog MC-gPC schemes described in term of algo-
rithmic operations in order to compute (adjoint) u(x, t, v,X).

The tracking phase allowing to solve (C.2) is described in algorithm 3. It describes the ’tracking’
of an uncertain population of particles within the simulation domain D In order to present both
implementations (of the semi-analog and non-analog MC schemes) in the same general framework/-
code, we encapsulated some key parts of the resolution in several functions: sample interaction time,
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compute weight modif, sample velocity16. The three latter key functions are described in algo-
rithms 4–5–6 but for the moment let us focus on the common canvas (i.e. algorithm 3).

sample interaction time(real x, real v, real X)
set τ = REAL MAX
U =sample uniform law()
if MC scheme == semi− analog then

τ = − ln(U)

vσt(x, v,X)
end
if MC scheme == non− analog then

τ = − ln(U)

vσs(x, v,X)
end
return τ

Algorithm 4: The sampling of the interaction time function depending on the choice of the
MC scheme

sample velocity(real x, real v, real X)
V′ =sample from Ps(x, v,X)
return V′

Algorithm 5: Sampling of the velocity

In algorithm 3, we can see that each presented scheme relies on comparing three times, τinter
the interaction time, τexit the time at which an MC particle p would get out of the cell ip, τcensus
the time before ending the time step. For each scheme, the particle moves along vpτ where τ is
the minimum of the three above times. Its weight is modified or not (in compute weight modif)
depending on the scheme. Furthermore, depending on the minimum of τcensus, τexit, τinter, the par-
ticle sees its life time updated and finishes its treatment (census) or crosses the interface between
two cells (exit) or encounters an interaction (inter). In the latter case, its velocity change. All the
samplings potentially depends on the uncertain field Xp carried out by the uncertain MC particle p.
The first and second order moments of the gPC coefficients are computed during the MC resolution.
The instrumentation of the tracking corresponds to the tallying phases (i.e. the + = operations in
algorithm 3).

Let us now focus on the encapsulated functions. First, note that they all only depend on particle
fields (xp, vp, ip, Xp, ...). The first one, to sample the interaction time, only needs the particle energy
vp and the uncertain one Xp and is detailed in algorithm 4. Depending on the chosen scheme, the
interaction time is sampled from the total cross-section σt (semi-analog) or from the scattering one
σs in the current cell ip. Both are obtained inversing the cdf of an exponential law.

The second encapsulated function corresponds to the modification of the weight of the particle,
detailed in algorithm 6. For this function, the event the particle encounters explicitly appears in
the treatment. The non-analog scheme is the only one having a treatment independent of the event.
The weight of a particle remains unchanged for the semi-analog schemes for the census and cell exit
events. It changes in the case of an interaction: for the semi-analog scheme, the weight is multiplied
by the probability of being scattered σs

σt
.

16We do not detail the functions compute cell exit time and find neighbooring cell as they depend more on the
type of grid (cartesian, structured, unstructured) than on the MC resolution scheme.

46



compute weight modif(real v, real τmin, real τcensus, real τexit, real τinter, integer
i, real X)

set K = 1
if MC scheme == semi− analog then

if τmin == τexit or τmin == τcensus then
K = 1

end
if τmin == τinter then

K =
σis(v,X)

σit(v,X)
end

end
if MC scheme == non− analog then

K = e−v(σit(v,X)−σis(v,X))τmin

end
return K, r

Algorithm 6: The weight modification depending on the MC scheme

At the interaction time, each scheme needs the sampling of the outer velocity V′, summed up
in algorithm 5. The semi-analog and the non-analog schemes share the same procedure, using Ps,
averaged over the set of reactions r ∈ {0, ..., NR}.

In algorithm 3, time steps are explicitly detailed but for the linear Boltzmann equation, time
steps may coincide with the times of interest (MC methods are inconditionally stable for the linear
Boltzmann equation). In other words, if one is only interested in time T , it is possible choosing
∆t = T . This is not the case in [6, 7] in which the coupling with additional equations induces
restrictions on the time step. Note that the above algorithm description still applies for the MC
resolution of the linear Boltzmann equation coupled to other equations but may need additional
instrumentations (track length estimator for example).

To finish, we add that the tracking phase as described in algorithm 3 is commonly denoted
’history-based’. It refers to the fact that during one time step, an MC particle is followed from
sp = t −∆t, i.e. the beginning of the new time step, until sp = t, i.e. the end of the current time
step (if, of course, the MC particle is not killed during its history17). Another possibility would be
to apply the events one by one to the whole population of particles until they all reach census or die,
this is what is commonly called an ’event-based’ tracking phase. These considerations are practical
ones and do not explicitly depend on the applied MC scheme. Nevertheless, the discussion on the
choice of a ’history-based’ tracking or an ’event-based’ one is far from being irrelevant as the target
computation device (one may have access to a station, a computation cluster, a supercomputer,
with homogeneous nodes or hybrid ones...) may be sensitive to the operations induced by the
two possibilities. Hybrid architectures (classical nodes, GP-GPU units, vectorization) becoming
more and more common, hybrid strategies mixing history-and-event-based tracking phases may
become more and more relevant. The discussion is beyond the scope of this document but is very
interesting and we refer to [31] for some examples of fine-coarse grain parallel strategies for the
linear Boltzmann equation.

17depending on the chosen MC scheme.
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