Cell Host & Microbe, Volume 29

Supplemental information

Uncoupling of IL-6 signaling

and LC3-associated phagocytosis

drives immunoparalysis during sepsis

Tonia Akoumianaki, Katerina Vaporidi, Eleni Diamantaki, Frédéric Pène, Remi Beau, Mark S. Gresnigt, Marina Gkountzinopulou, Maria Venichaki, Elias Drakos, Jamel El-Benna, George Samonis, Kieu T.T. Le, Vinod Kumar, Dimitrios Georgopoulos, Frank L. van de Veerdonk, Mihai G. Netea, Jean-Paul Latge, and Georgios Chamilos

Fig. S1

After sepsis (Day 7)

 ∇

0

1250

1000

750

500

After sepsis (Day 7) Intact LAP Δ **Defective LAP** ∇ 2000 Δ 1500 IL-1B (pg/mL) 1000 500 0 After sepsis (Day 7)

• •

 $\Delta \pm 2$

400

300

200

-₩ 0

40

20

 ∇

⊽ ⊽⊽ ₹

v ▼

- △ Intact LAP
- ▽ Defective LAP

After sepsis (Day 7)

Fig. S1, related to Fig. 1. Studies on phagosome biogenesis and monocyte effector functions in sepsis patients with different LAP responses.

(a) Primary human CD14⁺ monocytes obtained on the day of sepsis diagnosis (Day 1) and upon sepsis recovery (Day 7) were stimulated for 30 min with FITC-labeled conidia of *A. fumigatus* melanin-deficient $\Delta pksP$ strain (MOI 3:1), fixed, stained for LC3 and analyzed by confocal microscopy. Data on differences in LAPosome formation in monocytes of 38 consecutive patients over time (Day 1 vs. Day 7) are shown. Segregation of LAP responses in two distinct groups of patients (intact LAP vs. defective LAP) on Day 7 is shown with different colors.

(b) Data on quantification of LC3⁺, p47phox⁺, and CD63⁺ phagosomes in monocytes obtained from a patient with defective LAP vs. a patient with intact LAP responses following recovery from sepsis (Day 7), stimulated as in (a) are presented as mean \pm SEM. At least > 200 phagosomes were counted for each phagosome marker per patient. ***p < 0.0001, **p < 0.001, * p < 0.01, unpaired Student's t test.

(c) Representative immunofluorescent images of LC3⁺ phagosome (LAPosome) formation, p47phox, and CD63 lysosomal protein recruitment to the phagosome of monocytes obtained from the patients analyzed in b are shown. FITC-labeled *A. fumigatus* conidia are shown in magenta; LC3, p47phox, and CD63 were stained with Alexa⁵⁵⁵ secondary antibody and are shown in green. Scale bar, 5 µm.

(d) CD14⁺ primary human monocytes obtained from healthy control (HC) individuals or sepsis patients with LAP defects were infected with conidia of wild type *Aspergillus fumigatus* (ATCC46645) or the melanin-deficient *A. fumigatus* strain $\Delta pksP$ at a MOI 1:10 upon sepsis recovery (Day 7). Killing of intracellular conidia was assessed following cell lysis at 24h by CFU counting. *p < 0.01, unpaired Student's t test.

(e) Phagocytosis rate and phagocytosis index of *Aspergillus* conidia by monocytes of HC or patients with sepsis stratified based on LAP responses upon stimulation at a MOI of 1:1 for 1h with conidia of $\Delta pksP$ melanin-deficient strain.

(f) Cytokine (TNF, IL-1β, IL-1Ra) production in culture supernatants following overnight stimulation of monocytes of patients with or without LAP defects with *Aspergillus* conidia, stimulated as in Fig. 1f. Each symbol represents mean value of each individual patient.

Fig. S2

С

HLA-DR MFI

△ Intact LAP

▽ Defective LAP

d

% CD163⁺ monocytes

△ Intact LAP

▽ Defective LAP

Fig. S2 related to Fig. 1. Flow cytometry analysis in monocytes of sepsis patients with different LAP responses.

(a) Gating strategy for analysis of human monocyte subsets in the peripheral blood of patients with sepsis.

(b) Differences in the percentage of CD14⁺CD16⁺ monocytes in a representative cohort of sepsis patients with intact or defective LAP responses. Each symbol represents mean value of the percentage of CD14⁺CD16⁺ monocytes of an individual patient.

(c) Differences in the percentage and mean fluorescence intensity (MFI) of HLA-DR and CD163 expression in CD14⁺ monocytes obtained from sepsis patients with intact or defective LAP responses. * p < 0.05, unpaired Student's t test.

Fig. S3 related to Fig. 2. Studies on mechanism of activation of ERK signaling in monocytes from healthy controls (HC) and sepsis patients.

(a) ERK⁺ phagosomes in monocytes infected with *Aspergillus* with or without pretreatment with the MEK1/2 inhibitor UO126 presented as mean \pm SEM of one out of three independent experiments performed in triplicate. **p < 0.001, *p < 0.01, unpaired Student's t test.

(b) Representative immunofluorescence images of ERK1/2 phosphorylation on *Aspergillus*-containing phagosomes of human monocytes from HC stimulated as in (b). p-ERK was stained with the use of secondary Alexa⁴⁸⁸ antibody (green). White arrows demonstrate p-ERK localization on the phagosome.

(c, d) Primary human monocytes from HC were stimulated as in (a) and either left untreated or treated with wortmannin (250 nM), a VPS34 (PI3K class III) inhibitor, added at 5 min of infection. LAPosome formation (c) and ERK recruitment (d) at *Aspergillus* phagosomes were evaluated at 30 min of infected and presented as mean \pm SEM of one out of three independent experiments performed in triplicate. ***p < 0.0001, unpaired Student's t test. Representative immunofluorescence images of ERK recruitment to the phagosome (white arrows) are shown. ERK stained with Alexa⁵⁵⁵ secondary antibody is shown in green and FITC-labeled *Aspergillus* conidia are shown in magenta. Scale bar, 5 µm.

(e) Primary human monocytes obtained from HC or patients following recovery from sepsis with evidence of LAP blockade and ERK phagosomal trafficking defects shown in **Fig. 2 (i-k)**, were left untreated or stimulated for 20 minutes with *Aspergillus*. Phosphorylation of ERK1/2, p47phox (Ser345) and total ERK1/2 were determined in cell lysates by immunoblot analysis. Calnexin was used as loading control.

Fig. S4 related to Fig. 3. Histopathological analysis of *Aspergillus* infection in IL6^{-/-} (KO) and control IL-6^{+/+} mice.

IL-6^{-/-} (KO) or control IL-6^{+/+} mice infected *via* intratracheal administration of a standardized inoculum (5 × 10⁷ conidia per mice) of wild type *Aspergillus fumigatus* (ATCC 46645). Mice were sacrificed on Day 3 of infection with *Aspergillus* and representative histopathological sections were stained with H&E or GMS stain to demonstrate fungal elements. In the lungs of IL-6^{-/-} (KO) mice there is evidence of increased numbers of *Aspergillus* dormant and swollen conidia as compared to control IL-6^{+/+} mice. Few germinating conidia are present in the lung of IL-6^{-/-} (KO) mice (shown in inset). Magnification X 400

IL-6+/+

Lysotracker Red

С

Figure S5 related to Fig. 3 and Fig. 4. Analysis of phagocytic capacity in IL6^{-/-} (KO) and control IL-6^{+/+} BMDMs.

(a) BMDMs from IL-6^{-/-} (KO) or control (IL-6^{+/+}) mice were infected for 1h with wild type *Aspergillus fumigatus* (ATCC 46645) as in Fig. 3c. Phagocytosis rate and index was assessed by confocal microscopy.

(b) Phagocytosis of *Pseudomonas aeruginosa* (ATCC 27853 strain) following infection of control (IL-6^{+/+}) and IL-6 KO (IL-6^{-/-}) BMDMs as in Fig. 7h was assessed at 1h. **(c)** BMDMs from IL-6^{-/-} (KO) or control (IL-6^{+/+}) mice were stimulated with 3 μ m size streptavidin beads coated with biotin (biotin beads) for 1h, stained with Lysotracker Red (to discriminate intracellular particles) and phagocytosis rate was assessed by confocal microscopy. Representative images are shown. Scale bar, 5 μ m

b

Fig. S6 related to Fig. 5. Histopathological analysis of *Aspergillus* pneumonia in mice recovering from sepsis.

C57BL/6 (B6) mice subjected to severe polymicrobial sepsis (sepsis) or SHAM treated (control) mice were infected via intratracheal administration of a standardized inoculum (5×10^7 conidia per mice) of *Aspergillus fumigatus* wild type clinical isolate (ATCC46645) on Day 7 of recovery from sepsis or SHAM treatment. Mice were sacrificed on Day 3 of infection with *Aspergillus* and representative histopathological sections were stained with **(a)** H&E or **(b)** Grocott-Gomori's Methenamine Silver (GMS) stain to demonstrate fungal elements.

(a) In sepsis mice there is evidence of extensive inflammatory infiltrates by neutrophils and mononuclear phagocytes, consistent with consolidative pneumonia. Localized inflammatory infiltrates are present in SHAM treated mice infected with *Aspergillus*.

(b) Representative lungs sections from sepsis mice with evidence of *Aspergillus* germinating conidia in shown in red arrows. H&E, original magnification X 100. GMS, original magnification X 400

a Murine alveolar macrophages

С

- d SHAM
 - △ Severe sepsis

е

- SHAM
- △ Severe sepsis

P = NS

Fig. S7 related to Fig. 5 and Fig. 6. Studies on phagosome maturation and IL-6 production in control and sepsis mice.

(a) GFP-LC3 mice were SHAM-treated or subjected to severe or mild bacterial peritonitis and upon recovery (Day 7) infected intratracheally with 5×10^7 conidia of melanin-deficient *Aspergillus* $\Delta pksP$ strain. Alveolar macrophages (AMs) were isolated from bronchoalveolar lavage at 4h of infected, fixed and analyzed by confocal imaging. Representative fluorescent images of GFP-LC3⁺ phagosomes from SHAM-treated mice or mice recovering from severe sepsis are shown. LAPosome formation is shown with white arrows. Scale bar 5 µm.

(b) Data on quantification of LC3⁺ phagosomes in monocytes, BMDMs or alveolar macrophages (AMs) stimulated as in (a) and analyzed by confocal microscopy, are presented as mean \pm SEM of three independent experiments. ***p < 0.0001, **p < 0.001, one-way ANOVA and Tukey's multiple comparisons post hoc test.

(c) Representative fluorescent images from BMDMs of control SHAM treated mice or mice recovering from severe sepsis (Day 7) following infection with florescent-labeled *Aspergillus* conidia (shown in magenta), fixation and immunostaining for LAMP1, VATPase, and Cathepsin-D stained with Alexa⁵⁵⁵ secondary antibody (shown in green). Selective localization of each phagosome maturation marker in BMDMs of SHAM treated as compared to BMDMs of severe sepsis mice is evident as a rim of fluorescence surrounding *Aspergillus*-containing phagosomes (white arrows).

(d) IL-6 serum levels in mice following recovery from SHAM treatment or severe sepsis. (e) IL-6 production in culture supernatants of BMDMs obtained on Day 7 following recovery from SHAM treatment or severe sepsis, left untreated or following overnight left stimulated with melanin-deficient *Aspergillus* $\Delta pksP$ strain at a MOI of 10:1. *p < 0.01, unpaired Student's t test

Table S1 related to Fig. 1. Analysis of secondary infections in patients admitted in the Intensive Care Unit (ICU) with community acquired septic shock

Patient #	% LAPosomes (D7)	LAP status	Secondary Infection	Type of Infection	Type of Pathogen	Day of infection	ICU Center
1	55	Intact LAP	Yes	VAP	Pseudomonas aeruginosa	9	University of Crete
4	53	Intact LAP	Yes	VAP	Klebsiella pneumoniae	7	University of Crete
5	48	Intact LAP	No		I I I I I I I I I I I I I I I I I I I	0	University of Crete
6	53	Intact LAP	No			0	University of Crete
7	52	Intact LAP	No			0	University of Crete
8	51	Intact LAP	No			0	University of Crete
14	53	Intact LAP	Yes	VAP	Serratia marcescens	10	University of Crete
16	47	Intact LAP	No			0	University of Crete
23	49	Intact LAP	No			0	University of Crete
24	53	Intact LAP	No			0	University of Crete
25	46	Intact LAP	No			0	University of Crete
26	49	Intact LAP	Yes	CVC-related bacteremia	Acinetobacter baumannii	12	University of Crete
29	52	Intact LAP	No			0	University of Crete
30	51	Intact LAP	No			0	University of Crete
31	46	Intact LAP	No			0	University of Crete
2	36	Defective LAP	Yes	CVC-related bacteremia	Acinetobacter baumannii	8	University of Crete
3	32	Defective LAP	Yes		Acinetobacter baumannii	10	University of Crete
9	33	Defective LAP	No			0	University of Crete
11	39	Defective LAP	Yes	VAP	Stenotrophomonas maltophilia	6	University of Crete
11	39	Defective LAP	Yes	Bacteremia	Enterococcus spp.	8	University of Crete
12	38	Defective LAP	Yes	VAP-bacteremia	Pseudomonas aeruginosa	29	University of Crete
12	38	Defective LAP	Yes	Bacteremia	Klebsiella pneumoniae	42	University of Crete
13	38	Defective LAP	No			0	University of Crete
18	33	Defective LAP	No			0	University of Crete
22	38	Defective LAP	Yes	CVC-related candidemia	Candida tropicalis	19	University of Crete
27	34	Defective LAP	No			0	University of Crete
28	31	Defective LAP	Yes	VAP- bacteremia	Acinetobacter baumannii	14	University of Crete
32	42	Defective LAP	No			0	University of Crete
36	39	Defective LAP	No			0	Cochim Hospital, Paris
10	21	Defective LAP	No			0	University of Crete
15	23	Defective LAP	Yes	CVC-related bacteremia	Pseudomonas aeruginosa	3	University of Crete
17	14	Defective LAP	Yes	CVC-related bacteremia	Staphylococcus epidermidis	10	University of Crete
19	16	Defective LAP	Yes	New sepsis episode (UTI)	Escherichia coli	21	University of Crete
20	20	Defective LAP	Yes	Sepsis, CVC-related bacteremia	Escherichia coli	16	University of Crete
20	20	Defective LAP	Yes	CVC-related bacteremia	CoNS	25	University of Crete
21	8	Defective LAP	Yes	CVC-related bacteremia	Acinetobacter baumannii	18	University of Crete
21	8	Defective LAP	Yes	CVC-related candidemia	Candida tropicalis	35	University of Crete
21	8	Defective LAP	Yes	Bacteremia	Klebsiella pneumoniae	85	University of Crete
33	18	Defective LAP	Yes	VAP	Klebsiella pneumoniae	18	University of Crete
34	24	Defective LAP	No	N/A		0	University of Crete
35	18	Defective LAP	Yes	CVC-related candidemia	Candida spp.	16	University of Crete
37	28	Defective LAP	No	N/A		0	Cochim Hospital, Paris
38	16	Defective LAP	No	N/A		0	Cochim Hospital, Paris
39	42	Defective LAP	Yes	VAP	Acinetobacter baumannii	13	University of Crete
39	42	Defective LAP	Yes	CVC-related candidemia	Candida parapsilosis	44	University of Crete
39	42	Defective LAP	Yes	CVC-related bacteremia	Acinetobacter baumannii	45	University of Crete
39	42	Defective LAP	Yes	VAP	Pseudomonas aeruginosa	53	University of Crete
40	31	Defective LAP	Yes	Bacteremia	Pseudomonas aeruginosa	7	University of Crete
41	26	Defective LAP	Yes	VAP-bacteremia	Acinetobacter baumannii	38	University of Crete
42	22	Defective LAP	Yes	VAP	Acinetobacter baumannii	7	University of Crete
42	22	Defective LAP	Yes	Bacteremia	Klebsiella pneumoniae	11	University of Crete
42	22	Defective LAP	Yes	New sepsis episode	olymicrobial intraabdominal sepsi	s 13	University of Crete
43	36	Defective LAP	No			0	University of Crete

Table S2 related to Fig. 1. Analysis of cytokine responses in monocytes of sepsis patients with different degree of LAP responses following stimulation with *Aspergillus*

	Pt # V LC3+ phagosomes (<u>IL-1b (D1)</u>	• IL-1b (D7)	<u>IL-1Ra (D1)</u>	IL-1Ra (D7)	TNF (D1)	TNF (D7)	<u>IL-6 (D1)</u>	<u>IL-6 (D7)</u>
			N1 / A	N / A		N / A	N1 / A		N1 / A
ŀ	1 55	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4	4 53	628	608	12867	33996	150	196	8805	9017
	5 48	63	167	1112/	27565	122	306	313 475	<u>6</u> 96
	b 53	230	202	50943	34027	433	625	1/5	409
ŀ	/ 52	2107	610	58893	/1051	410	433	8805	2554
2	8 51	<u>1</u> β4	421	14772	27110	11 6	387	751	1406
-	14 53	B 9	481	10400	9764	<mark>7</mark> 8	792	<mark>6</mark> 27	3817
	16 47	N/A	1705	N/A	40311	N/A	819	N/A	4000
-	23 49	1022	665	18037	<u>97</u> 55	1150	821	10708	2265
-	24 53	246	<u>21</u> 8	10060	10653	328	429	1331	<u>12</u> 75
-	25 46	154	553	8888	22520	532	257	1379	5716
-	26 49	293	42	8968	3637	1053	228	2333	208
1	29 52	18	87	6989	780	<mark>8</mark> 6	<mark>171</mark>	251	9
:	30 51	<mark>1</mark> 29	<u>17</u> 0	12865	16643	202	<u>13</u> 3	166	<mark>4</mark> 56
:	31 46	308	329	19896	20314	305	444	<mark>89</mark> 0	<mark>4</mark> 86
1	2 36	386	277	30890	36056	148	<u>12</u> 1	6873	3252
:	3 32	160	<mark>3</mark> 9	28352	8061	<mark>12</mark> 9	89	<mark>7</mark> 10	31
9	9 33	144	175	40561	25577	550	124	372	<mark>3</mark> 65
:	11 39	133	76	19060	14355	407	245	<mark>8</mark> 55	99
:	12 38	39	168	12857	39417	78	194	221	<mark>12</mark> 45
	13 38	N/A	592	N/A	21152	N/A	565	N/A	4000
	18 33	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	22 38	761	285	25869	27836	1023	397	12000	2713
	27 34	170	750	6805	10060	381	902	2295	2794
1	28 31	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1	32 42	704	107	6897	7529	672	133	1105	228
1	36 39	81	87	N/A	N/A	153	87	119	37
-	10 21	50	122	26976	92412	223	851	301	765
-	15 23	N/A	89	N/A	14433	N/A	78	N/A	195
	17 14	N/A	N/A	, N/A	N/A	, N/A	N/A	N/A	N/A
	19 16	N/A	, N/A	, N/A	, N/A	, N/A	, N/A	N/A	, N/A
	20 20	N/A	195	N/A	22456	N/A	136	N/A	<mark>6</mark> 33
ŀ	21 8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	33 18	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	34 24	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	35 18	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	27 28	15	16	N/A	N/A	68	12	20	16
	28 16	77	03		N/A	182	101	187	03
-14	JU 10	I /				LUJ		101	

Table S3 related to Fig. 1. Analysis of demographic, clinical and microbiological characteristics of patients with septic shock

Pt #	% LAPosomes (D7)	SEX	AGE	SEPSIS SOURCE	Identified Pathogen	APACHE II score	SOFA D1	Sofa D7	days in ICU	Mortality in ICU
1	55	F	71	Pneumonia	Proteus spp.	24	14	9	42	YES
4	53	F	65	Intra-abdominal		19	6	3	48	YES
5	48	Μ	84	Intra-abdominal		23	10	6	23	NO
6	53	М	70	Intra-abdominal		21	5	4	9	NO
7	52	F	49	Intra-abdominal		8	3	2	5	NO
8	51	F	47	Intra-abdominal		21	9	5	21	NO
14	53	М	85	Intra-abdominal		18	8	15	16	YES
16	47	F	43	Urinary tract infection		26	15	3	9	NO
23	49	Μ	68	Intra-abdominal		21	16	15	12	YES
24	53	F	58	Intra-abdominal		23	11	1	7	NO
25	46	М	84	Intra-abdominal		19	9	8	14	YES
26	49	М	74	Intra-abdominal		14	8	13	13	YES
29	52	Μ	79	Intra-abdominal		23	8	10	21	NO
30	51	М	79	Pneumonia	Klebsiella pneumoniae	21	10	4	9	NO
31	46	Μ	26	Urinary tract infection	Providencia spp.	20	13	5	8	NO
2	36	М	46	Intraabdominal		18	7	7	21	NO
3	32	М	68	Intraabdominal		40	7	7	14	YES
9	33	Μ	45	Intraabdominal		16	8	2	9	NO
11	39	М	71	Pneumonia		31	10	9	21	NO
12	38	F	58	Pneumonia		18	8	11	48	YES
13	38	F	50	Intra-abdominal		13	7	7	11	NO
18	33	М	78	Pneumonia-empyema	Serratia marcescens	12	5	4	44	NO
22	38	М	74	Pneumonia-bacteremia	Klebsiella pneumoniae	23	10	12	17	YES
27	34	Μ	37	Intra-abdominal		21	12	10	17	NO
28	31	М	66	Pneumonia-bacteremia	Streptococcus pneumoniae	35	12	13	22	NO
32	42	М	63	Intra-abdominal		16	9	4	4	NO
36	39	М	71	Intra-abdominal-bacteremia	Pseudomonas aeruginosa, Enterococccus faecalis	37	15	N/A	26	NO
10	21	М	66	Pneumonia	Escherichia coli	31	13	6	14	NO
15	23	F	42	Streptococcal Toxic Shock Syndrome	Streptococcus pyogenes	22	12	9	12	NO
17	14	М	72	Intra-abdominal		31	6	1	5	NO
19	16	М	69	Urinary tract infection-meningitis	Escherichia coli	30	14	7	20	NO
20	20	F	87	Intra-abdominal		21	11	9	16	YES
21	8	М	54	Intra-abdominal		27	9	11	104	YES
33	18	F	49	Intra-abdominal	Escherichia coli	13	12	8	23	NO
34	24	Μ	57	Intra-abdominal		17	9	4	10	NO
35	18	М	56	Skin and Soft Tissue Infection (Fasciitis)		17	10	5	11	NO
37	28	F	65	Pneumonia		39	14	N/A	12	NO
38	16	F	59	Pneumonia		29	7	N/A	16	NO
39	42	М	79	Pneumonia		23	7	8	85	YES
40	31	М	79	Pneumonia		24	10	10	10	YES
41	26	М	76	Pneumonia	Pseudomonas aeruginosa	40	17	21	7	YES
42	22	М	57	Intra-abdominal		14	3	8	53	YES
43	36	F	42	Urinary tract infection	Proteus spp.	19	15	15	17	NO

Data S1

Data S1 related to Fig. 1. RNAseq analysis of selected genes in human sepsis monocytes.

Transcriptomics analysis of genes regulating (a) general autophagy, (a, b) LAP, and (c) Cytokine signaling in unstimulated monocytes of sepsis patients with or without defective LAP responses following sepsis recovery (Day 7). Data on expression of individual genes are expressed with whisker boxes. Distributions of the RNAseq datasets using Box plot representations. "Box plots representing expression level distributions (log10 of normalized counts) for all genes in the different groups of patients.

Data S2 related to Fig. 4 and Fig. 6. Studies on activation of ERK1/2 signaling in BMDMs of mice recovering from sepsis.

(a) Data on kinetics of ERK recruitment in the phagosome of BMDMs obtained from C57BL/6 (B6) mice at different time point of infection with *Aspergillus* conidia (MOI 3:1), presented as as mean ± SEM of three independent experiments.

(b) BMDMs from C57BL/6 (B6) mice left untreated, or treated with STAT3 inhibitor (S3I-201) and infected as in Fig. 4f. Data on quantification of ERK⁺ phagosomes are presented as mean ± SEM of one out of three independent experiments.

(c) BMDMs from SHAM treated mice or mice recovering from severe sepsis (CLP1, 2) were left untreated or infected for 20 min with *Aspergillus* and phosphorylation of ERK1/2 was determined in cell lysates by immunoblot analysis. ERK1/2 was used as loading control.

Movie S1 related to Fig. 4. Time-lapse video of *Aspergillus* phagosome transport in BMDMs of IL-6^{+/+} (control) mice. Overlaid in cyan is the trajectory of a representative phagosome from the beginning of the time series to the last shown frame.

Movie S2 related to Fig. 4. Time-lapse video of *Aspergillus* phagosome transport in BMDMs of IL-6^{-/-} (KO) mice. Overlaid in green is the trajectory of a representative phagosome from the beginning of the time series to the last shown frame.