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Abstract
In this paper, we describe the ViVoLab speech activity detec-
tion (SAD) system submitted to the Fearless steps Challenge -
phase III. This series of challenges have proposed a number of
speech processing task dealing with audio from Apollo space
missions over the last few years. The focus in this edition is set
on the generalisation capabilities of the systems, with new eval-
uation data from different channels. Our proposed submission
is based on the use of the unsupervised representation learn-
ing paradigm, seeking to obtain a new and more discriminative
audio representation than traditional perceptual features such as
log Mel-filterbank energies. These new features are used to train
different variations of a convolutional recurrent neural network
(CRNN). Experimental results show that features learned via
unsupervised learning provide a much more robust represen-
tation, significantly reducing the mismatch observed between
development and evaluation partition results. Obtained results
largely outperform the organisation baseline, achieving a DCF
metric of 2.98% on the evaluation set and ranking third among
all the participant teams.
Index Terms: unsupervised representation learning, speech ac-
tivity detection, fearless steps challenge

1. Introduction
Speech activity detection (SAD) aims to determine whether an
audio signal contains speech or not, and its exact location in
the signal. This constitutes an essential preprocessing step in
several speech-related applications such as speech and speaker
recognition, as well as speech enhancement. In many cases, the
SAD is used as a preliminary block to separate the segments of
the signal that contain speech from those that are only noise.
This way, enabling the overall system to, for instance, perform-
ing speaker recognition only on speech segments.

A large number of approaches have been proposed for the
SAD task. Starting with unsupervised approaches, some exam-
ples can be cited: based on energy [1], or based on the estima-
tion of the signal long-term spectral divergence [2]. Tradition-
ally, statistical approaches have been used with relevant results
under the assumption of quasi-stationary noise. Several works
rely on the extraction of specific acoustic features [3] [4]. Con-
versely, other methods are model-based [5] [6], aiming to es-
timate a statistical model for the noisy signal. Recently, deep
learning approaches are becoming more and more relevant in
the SAD task. The research presented in [7] implements a SAD
system based on a multilayer perceptron with energy efficiency
as the main concern. A deep neural network approach is used in
[8] to perform SAD in a multi-room environment. In [9], new
optimisation techniques based on the area under the ROC curve
are explored in the framework of a deep learning SAD system.

While supervised learning algorithms have been essential
for the development of deep learning applications, labelled data

is not always easy to obtain. This problem is becoming more
and more relevant as models grow faster in size and compu-
tational requirements. In this context, unsupervised learning
solutions [10] have emerged in order to alleviate the need for
labels. These methods expose the model to huge amounts of
data, with the objective of understanding the data source, by
learning to make predictions related to it. This idea was al-
ready presented for discrete sources such as text, forcing the
network to predict the next items [11]. When dealing with real
valued signals, the idea was initially approached by minimis-
ing the reconstruction of the signal [12]. Some evolution on
this idea were proposed, such as the reconstructions of missing
or corrupted fragments [13]. However, greater gains have been
obtained by constructing pretext tasks, where the objective of
the system is to solve a prediction as a classification. In many
works, this objective is to select an unseen fragment of the sig-
nal among other randomly selected distractor fragments [10].
This self supervised mechanism was successfully implemented
for large scale tasks with good results for image [14] and speech
recognition [15] [16].

In this paper, we present ViVoLab submission to the SAD
task proposed by the Fearless Steps challenge 2021. We build
our work upon the neural architectures evaluated in previous
editions of this challenge [17], where convolutional recurrent
neural networks (CRNNs) yielded competitive results. Our fo-
cus in this new edition is set on the input features fed to the
neural network. We propose the introduction of the unsuper-
vised learning paradigm to obtain a new representation of audio
signals more discriminative than traditional perceptual features
such as log Mel-filterbank energies, seeking to improve the per-
formance of our SAD system using thousand of hours of unla-
belled audio.

The remainder of the paper is organised as follows: a brief
description of the Fearless steps challenge and its context is
given in section 2. Our proposed system for the SAD task, our
approach for unsupervised feature learning and the SAD neural
networks are described in section 3. The experimental setup for
the challenge, stating the data and metrics considered, is intro-
duced in section 4. Section 5 presents and discusses the results
obtained. Finally, a summary and the conclusions are presented
in section 6.

2. Fearless Steps Challenge
The Fearless steps initiative has resulted in the digitisation of
the original analog recordings from the Apollo space missions.
Part of these data has been made available through the Fearless
steps corpus, consisting of a cumulative 19,000 hours of conver-
sational speech coming from the Apollo 11 mission [18]. Au-
dio data belongs to 30 different communication channels, with
multiple speakers in different locations. Most channels show
a strong degradation with transmission noise or noise due to
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Figure 1: Schematic overview of the system used for unsuper-
vised representation learning.

tape ageing. Some channels even have the presence of babble
noise depending on the location of the personnel in the mission
control centre. Furthermore, the signal-to-noise ratio (SNR)
has a strong variance, with levels ranging from 0 to 20 dB.
Most recordings were made with head-mounted microphones,
but some in-spacecraft recordings were made using fixed far-
field microphones which also picked up the presence of envi-
ronmental noise. All those characteristics are likely to degrade
the performance of speech technology applications.

Aiming to motivate the research effort on this challenging
domain, a series of annual challenges is being held proposing
different speech related tasks. The inaugural Fearless steps
challenge [19] took place in 2019, proposing the SAD task
among other 4 different tasks. The focus on this first chal-
lenge was made on the development of unsupervised or semi-
supervised systems. Only 20 hours of in-domain manually tran-
scribed audio were available for the participants to use. As a
progression, following the previous versions of the challenge
[19] [20], the 3rd phase of the challenge (FSC P3), held in
2021, focuses on the development of single-channel supervised
learning strategies with an aim to test system generalisation to
varying channel and mission data. Besides 20 hours of Apollo-
11 evaluation data, 5 hours of unseen channel evaluation data
and an additional 5 hours of blind-set Apollo-13 mission eval-
uation data have been included in the evaluation dataset for the
challenge. This fact indicates that a larger mismatch between
development and evaluation results could be observed.

3. Proposed SAD system
3.1. Unsupervised representation learning

Our proposed representation learning approach is inspired by
the one presented in [10], with some variations. As shown in
Figure 1, two stages are combined to learn a feature extrac-
tor: First, an strided convolutional neural network (CNN) en-
coder runs directly on the 8 kHz waveform mapping the input
sequence Xt to a latent space Zt. The total downsampling fac-
tor of the network is 80, resulting in a feature vector every 10
ms of audio. The second part is implemented as a GRU re-
current neural network [21] with 512 dimensional hidden state.
The output of the GRU at every timestep is used as the context
Ct from which we predict 8 timesteps using a contrastive loss.
Similarly to Decoar [22] or BERT text models [23], the left and
right embedding contexts of a bidirectional GRU are used to
predict future and past timesteps respectively, providing a loss
term from future and past frame prediction tasks. The final loss
function is the sum of both directional losses. This results in a
final representation of 1024 dimensions being used as the con-
text embedding. This array is extracted after training to be used
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Figure 2: Schematic representation of the different variations
on the proposed convolutional recurrent neural network used
for the SAD task.

as our proposed learned features.
Concerning the prediction process of our system, un-

like [15], our approach uses a single head for predicting future
and past timesteps respectively, with an architecture consisting
of a single hidden layer [24]. Furthermore, predictions for a
clean referenceZt are obtained using augmented data from con-
text Ct. Noises from MUSAN database [25] are added with a
signal to noise ratio (SNR) that is sampled from an uniform dis-
tribution in the range (3, 15) dB. We also simulated different
room impulse responses (RIR) using the gpuRIR toolkit [26] to
incorporate reverberated conditions in training time.

These new features obtained through unsupervised learn-
ing are compared with a traditional set of perceptual features,
considering log Mel-filterbank energies. Namely, we use the
same configuration as in our previous participation in the Fear-
less Steps challenge, 64 log Mel-filterbank energies concate-
nated with the log energy of the frame.

3.2. SAD neural network

The neural architectures used for the SAD task are taken from
our previous experience in this challenge [17]. All the architec-
tures proposed are built on top of a RNN block, incorporating a
set of convolutional layers working as a processing stage previ-
ous to it. The schematic representation of the proposed alterna-
tives for the CRNN model is described in Figure 2. Note that the
RNN block followed by a linear layer is shared by the three ar-
chitectures. Then, the difference comes from the convolutional
stage, that is implemented in three different ways:

Architecture A uses three 2D convolutional blocks. Each of
these blocks is integrated by a 2D convolutional layer with 3x3
kernel size and 64 filters. Then it is followed by a batch normal-
isation [27] and the application of a rectified linear unit (ReLU)
[28] activation function. Finally, a max-pooling mechanism is
applied considering a 4x1 stride, so that only the frequency axis
is downsampled. Architecture B similarly uses three 1D con-
volutional blocks. Even though, in this case, we experiment
with different variations for the 1D convolutional layer. The
first approach uses a kernel size of 3 in all the convolutions
with no dilation. In the second implementation, each of the
three layers uses kernel sizes of 5, 3 and 3 with dilations 1,
2 and 4 respectively. For the third approach, we experiment
with the concept of group convolution, implementing convolu-



Figure 3: TSNE 2D projection for the validation subset of both
set of features considered in this work: 64 log Mel-filterbank
energies + log energy (left) and features obtained through un-
supervised learning (right).

tions as 5 independent groups. Finally, to obtain a comparable
representation to the 2D setup, the convolutional layers have
256 output filters and a max-pooling mechanism is applied on
the frequency axis using a 4x1 stride after the batch normalisa-
tion layer and a ReLU activation function. Architecture C com-
bines the information extracted by two different convolutional
branches: one consisting of three Conv2D blocks and other con-
sisting of three Conv1D blocks, both implemented as described
in the previous architectures. This fusion is done in an inter-
mediate feature space, where both branches are then combined
to be processed by the RNN block. The fusion block (depicted
in blue) could be implemented in many different ways. In our
experiments we test three different options: 1) a bilinear layer
combining both convolutional branches, 2) the sum of the out-
put of both branches, and 3) the concatenation of the output of
both branches. In all cases, the SAD neural network is trained
using a cross entropy loss function optimised using Adam algo-
rithm, with a learning rate decaying exponentially from 10−3 to
10−4 during 20 epochs, and a minibatch size of 32.

The neural network output may result in a noisy estima-
tion of class boundaries. Aiming to avoid high-frequency tran-
sitions, speech score is smoothed using an L order averaging
filter. This filter is implemented as a zero-phase FIR filter to
avoid phase distortions in the output signal. The optimal value
for L was empirically found to be in the range between 50 and
60, which is equivalent to considering a moving average of 500
to 600 ms.

4. Experimental setup
4.1. Data description

The Fearless steps challenge follows open training conditions.
Participants can use any available data in addition to the pro-
vided challenge data to train and tune their systems. Our pro-
posed unsupervised learning representation system can benefit
from huge amounts of unlabelled training data. In order to train
it, we include data from several English datasets: Librispeech,
RSR2015, Tedlium release 1, Voxforge, Librilight, Voxceleb 1
and 2, Commonvoice (English only) and MLS (English only).
Note that the full dataset is included unless explicitly noted.
This results in a total of around 130 thousands hours of unla-
belled audio used in training for the unsupervised feature learn-
ing system.

Given the specific audio domain considered for this chal-
lenge, with quite degraded channels and several kinds of trans-
mission noises, the SAD neural network has been trained using
only data provided by the challenge organisation. These data
consist of 3 different partitions. In the following lines, we de-
scribe them and explain how they have been used in our sub-
mission. Training subset makes a total of around 62.5 hours of

audio. In our experiments we used 10% of these data for train-
ing validation. This way, all the SAD systems were trained with
around 56 hours of audio from the train partition. Development
subset comprises 15 hours of audio. This subset was used to ob-
tain an empirical threshold, in order to minimise the detection
cost function (DCF) metric. Also, results are reported on this
subset. Evaluation subset contains 34 hours of audio. We report
our results on this subset as provided by the challenge organi-
sation. The DCF metric obtained in the evaluation subset is the
one used to rank the participants.

4.2. Evaluation metric

Two different errors can be considered when dealing with a
SAD system: a false positive (FP), this is the identification of
speech in a segment where the reference identifies non-speech,
and a false negative (FN), this is the missed identification of
speech in a segment where the reference identifies speech. With
these two errors, we can define the probability of a false positive
and the probability of a false negative according to the follow-
ing equations:

PFP =
TFP

Tref non-speech
, PFN =

TFN

Tref speech
, (1, 2)

where TFP and TFN are, respectively, the total false positive
time and total false negative time , Tref non-speech represents the
total annotated non-speech time in the reference, and Tref speech

represents the total annotated speech time in the reference.
In the SAD task of the Fearless steps challenge false neg-

ative errors are considered more important than false positive
errors. This is shown in the primary evaluation metric for the
challenge, the DCF, which is calculated as follows:

DCF(θ) = 0.75PFN (θ) + 0.25PFP (θ) , (3)

where PFN is the probability for a false negative and PFP is
the probability for a false positive. Participants are responsible
to choose a threshold (θ) that minimises the DCF.

5. Results
Seeking to obtain a deeper understanding of the information
provided by the new set of learned features, we compare them
to perceptual log Mel-filterbank energies through a t-SNE pro-
jection [29]. Figure 3 shows the t-SNE projection on a 2D plane
of the validation susbet for both 64 log Mel-filterbank energies
and the features obtained through unsupervised learning. It can
be observed that log Mel-filterbank energies show a significant
overlap between the speech and non-speech classes. On the
other hand, unsupervised features provide a much more sepa-
rable representation of both classes, with a minimum amount
of overlap between speech and non-speech when compared to
log Mel-filterbank energies. It is also to interesting to observe
how the unsupervised features tend to assemble on small sub-
clusters. This fact may come motivated by the sequentiality
introduced by the RNN from our unsupervised representation
learning system, grouping together features that are temporally
close.

Once we have experimentally validated the separability
provided by the new unsupervised features, we evaluate them on
our SAD system. Table 1 presents the obtained results for the
different systems submitted. We compare the performance of
all the presented CRNN architectures using log Mel-filterbank
energies and the representation obtained by unsupervised learn-
ing as input. Results are reported in terms of DCF metric for



Table 1: SAD results in terms of DCF metric on the development
and evaluation partition for the CRNN trained using log Mel-
filterbank energies and the proposed unsupervised features.

Mel Unsup
System DCF(%) DCF(%)

Dev Eval Dev Eval

A1 - CRNN 2D (3x3) 1.27 7.82 0.92 3.63

B1 - CRNN 1D 1.44 8.49 0.65 2.98
B2 - CRNN 1D dilation 1.59 7.13 0.91 3.66
B3 - CRNN 1D groups 1.37 8.46 0.96 3.13

C1 - CRNN fusion bilinear 1.30 7.55 0.87 3.86
C2 - CRNN fusion sum 1.28 8.64 0.97 3.11
C3 - CRNN fusion concat 1.48 9.06 0.84 3.36

both, development and evaluation partitions. As a comparison,
we also report the baseline provided by the organisation, which
is based on a statistical approach [30]. This system yielded a
DCF value of 12.50% and 15.61% respectively for the develop-
ment and evaluation partitions. As it can be observed, all our
submissions largely outperform the baseline provided by the
organisation. Concerning the results using log Mel-filterbank
energies as input, competitive results are obtained on the devel-
opment partition, with a DCF metric of 1.27% obtained in the
best case with the 2D convolutional setup. However, a strong
degradation in results can be observed when comparing to the
metric reported in the evaluation partition, with a best case DCF
of 7.13% for the 1D convolutional setup using dilation. This
fact could be expected as new data from unseen channels has
been included in this new edition of the challenge, so unlike our
results in [17], a bigger mismatch is observed between develop-
ment and evaluation results.

An overall improvement can be observed on all the neu-
ral architectures evaluated when using the new learned features.
Best results are obtained with the 1D convolutional setup, yield-
ing a DCF metric of 0.65% and 2.98% on the development
and evaluation partitions respectively. Even though the boost
in performance observed using the unsupervised features is sig-
nificant in the development and evaluation partitions, it should
be noted that this improvement is more relevant in the case of
the evaluation dataset. While the average relative improvement
observed comparing log Mel-filterbank energies and unsuper-
vised features among all the architectures evaluated is around
37% in the development data, this percentage increases to 58%
in the case of the evaluation data. Given the composition of
the evaluation data in this year’s edition of the challenge, with
new unseen channels being present, these results suggest that
learned features show a robust behaviour discriminating speech
and non-speech classes even in possibly shifted acoustic condi-
tions.

Additionally, Figure 4 shows a qualitative visualisation of
our SAD system performance on an audio excerpt from devel-
opment partition, comparing the use of log Mel-filterbank en-
ergies and unsupervised features as input for the Conv1D SAD
neural network. As expected, a high speech score is associated
with a strong evidence of speech presence in the audio spectro-
gram. Generally, it can be observed that both solutions can cap-
ture accurately the speech and non-speech fragments (Note that
DCF obtained for file fsc p3 dev 001 is 0.02% for log Mel-
filterbank energies and 0.01% for unsupervised features). It is
also interesting to mention that the system using unsupervised
features as input consistently provides a higher score than the
setup using log Mel-filterbank energies for speech fragments,

Figure 4: Qualitative visualisation of SAD scores in a 16 sec-
onds audio fragment extracted from file “fsc p3 dev 001”.
From top to bottom: spectrogram with SAD ground truth over-
lapped, and speech score for different SAD systems proposed.

and lower scores for the non-speech fragments. Concerning the
behaviour of the averaging filter, it can be seen that some of the
high frequency occurrences in the speech score are eliminated,
resulting in a smoother signal being used in the thresholding
process.

6. Conclusions
In this paper, we presented the ViVoLab submission to the SAD
task of the Fearless Steps Challenge 2021 dealing with audio
from Apollo space missions. For this edition, the focus was set
on testing the systems generalisation capabilities, with an evalu-
ation dataset that includes new unseen channel data. Seeking to
obtain a new and more robust audio representation, for our sub-
mission we explored the unsupervised representation learning
paradigm. Our system uses a contrastive loss to learn a fea-
ture representation combining an strided CNN encoder with a
RNN that provides a context embedding, which is extracted af-
ter training to be used by the SAD neural network as input. The
obtained features are then used to train different variants of a
CRNN architecture.

Experimental results suggest that features learned via un-
supervised learning provide a much more robust representation,
significantly reducing the mismatch observed between develop-
ment and evaluation partition results when compared to a set of
traditional perceptual features such as log Mel-filterbank ener-
gies. Obtained results largely outperform the baseline provided
by the challenge organisation. Our best submission achieved a
DCF metric of 0.65% and 2.98% respectively in the develop-
ment and evaluation sets, ranking third among the 6 participant
teams in the SAD task.

7. Acknowledgements
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 101007666, by
the Spanish Ministry of Economy and Competitiveness and the
European Social Fund (TIN2017-85854-C4-1-R) and the Gov-
ernment of Aragón (Reference Group T36 20R), and by Nuance
Communications, Inc. We gratefully acknowledge the support
of NVIDIA Corporation with the donation of the Titan V GPU
used for this research.



8. References
[1] K.-H. Woo, T.-Y. Yang, K.-J. Park, and C. Lee, “Robust voice

activity detection algorithm for estimating noise spectrum,” Elec-
tronics Letters, vol. 36, no. 2, pp. 180–181, 2000.

[2] J. Ramırez, J. C. Segura, C. Benıtez, A. De La Torre, and A. Ru-
bio, “Efficient voice activity detection algorithms using long-term
speech information,” Speech communication, vol. 42, no. 3-4, pp.
271–287, 2004.

[3] S. V. Gerven and F. Xie, “A comparative study of speech detection
methods,” in Fifth European Conference on Speech Communica-
tion and Technology, 1997.

[4] J.-C. Junqua, B. Mak, and B. Reaves, “A robust algorithm for
word boundary detection in the presence of noise,” IEEE Transac-
tions on speech and audio processing, vol. 2, no. 3, pp. 406–412,
1994.

[5] J.-H. Chang, N. S. Kim, and S. K. Mitra, “Voice activity detec-
tion based on multiple statistical models,” IEEE Transactions on
Signal Processing, vol. 54, no. 6, pp. 1965–1976, 2006.

[6] T. Ng, B. Zhang, L. Nguyen, S. Matsoukas, X. Zhou, N. Mes-
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