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Discovering PDEs from Multiple Experiments

Automated model discovery of partial differential equations (PDEs) usually considers a single experiment or dataset to infer the underlying governing equations. In practice, experiments have inherent natural variability in parameters, initial and boundary conditions that cannot be simply averaged out. We introduce a randomised adaptive group Lasso sparsity estimator to promote grouped sparsity and implement it in a deep learning based PDE discovery framework 1 . It allows to create a learning bias that implies the a priori assumption that all experiments can be explained by the same underlying PDE terms with potentially different coefficients. Our experimental results show more generalizable PDEs can be found from multiple highly noisy datasets, by this grouped sparsity promotion rather than simply performing independent model discoveries.

Introduction

A classical approach to perform model discovery is by sparse regression and consists in finding ξ such that, u t = Θ • ξ, where u t is the time derivative of the field u. Each column of Θ is a candidate term of the underlying PDE, typically a combination of polynomial and spatial derivative functions (e.g. u, u x , uu x ). Usually, ξ is identified based on a single experiment consisting of n samples of the field u, see [START_REF] Steven L Brunton | Discovering governing equations from data by sparse identification of nonlinear dynamical systems[END_REF][START_REF] Samuel H Rudy | Data-driven discovery of partial differential equations[END_REF][START_REF] Schaeffer | Learning partial differential equations via data discovery and sparse optimization[END_REF][START_REF] Maddu | Stability selection enables robust learning of partial differential equations from limited noisy data[END_REF][START_REF] Both | Deepmod: Deep learning for model discovery in noisy data[END_REF][START_REF] Tod | Sparsistent model discovery[END_REF]. However, in practice observations of the same experiment might lead to some measurement differences. For instance, it might not be possible: [START_REF] Steven L Brunton | Discovering governing equations from data by sparse identification of nonlinear dynamical systems[END_REF] to fix identically the initial and/or boundary conditions of several experiments, (2) some of the parameters might not be controllable and will vary. As a result, there will be experimental results which exhibit natural variability. Let us denote q the number of experiments at hand from which we would like to find the underlying partial differential equations. If we perform q individual model discoveries as described earlier, the data across experiments will not be leveraged, loosing an opportunity for learning. To leverage the data across experiments, the q libraries could be stacked Θ = [Θ 1 , Θ 2 , . . . , Θ q ] T and then a single sparse regression could reveal ξ, see [START_REF] Samuel H Rudy | Data-driven discovery of partial differential equations[END_REF][START_REF] Chen | Deep learning of physical laws from scarce data[END_REF]. However, this approach is not adapted if the coefficients of the underlying PDEs vary from an experiment to another. In this paper, a more general approach to this is proposed: by promoting sparsity group-wise we leverage the data across experiments and are able to handle varying coefficients across datasets. In [START_REF] Rudy | Data-driven identification of parametric partial differential equations[END_REF], a group sequentially thresholded ridge regression was proposed to infer parametric PDEs from a single dataset. In [START_REF] Maddu | Learning physically consistent mathematical models from data using group sparsity[END_REF] a group Iterative Hard Thresholding algorithm is used to enforce conservation laws and impose symmetries. In [START_REF] Silva | Discovery of physics from data: Universal laws and discrepancies[END_REF] a group Lasso is used it to try to infer the law of gravitation from experimental ball drops. Furthermore, experimental data might contain high noise levels and it is known that pure sparse regression based model discovery cannot handle noise levels above 5 %, see [START_REF] Samuel H Rudy | Data-driven discovery of partial differential equations[END_REF][START_REF] Maddu | Stability selection enables robust learning of partial differential equations from limited noisy data[END_REF]. For such cases, deep learning model discovery frameworks, that combine deep neural networks, automatic differentiation with sparse regression excel, see [START_REF] Both | Deepmod: Deep learning for model discovery in noisy data[END_REF][START_REF] Chen | Deep learning of physical laws from scarce data[END_REF][START_REF] Tod | Sparsistent model discovery[END_REF].

Contributions (1) we introduce a randomised adaptive group Lasso to promote grouped sparsity to discover the common underlying PDE from multiple experiments. The group adaptive Lasso [START_REF] Wei | Consistent group selection in high-dimensional linear regression[END_REF] is known to have better asymptotic properties than the group Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] in terms of model selection consistency. The additional randomisation we propose leads empirically to better results, especially once integrated in a stability selection loop -(2) we implement the latter into the deep learning discovery framework DeepMod (see note 1) to perform discoveries from highly noisy datasets. Overall, our experimental results show for the first time, more generalizable PDEs can be found from multiple highly noisy datasets, by promoting grouped sparsity rather than simply performing independent model discoveries. Finally, our results suggest sharing layers across neural networks within DeepMod does not necessarily improve the inference performance.

Methods

Sparse regression based model discovery An approach to discover PDEs from q experiments is to repeat q times a method used to perform discoveries from single experiments. Following [START_REF] Tod | Sparsistent model discovery[END_REF] a randomised adaptive Lasso to select the terms of the PDE can be used for i th experiment,

ξi = arg min ξ 1 2n ||∂ t u i -Θi ξi || 2 2 + λ p j=1 || ξi,j || 1 W i,j (1) 
where Θi,j = Θ i,j / ŵi,j , ξi,j = ŵi,j • ξ i,j , ŵi,j = 1/| ξi,j | γ , with γ = 2 and W i,j is randomly selected from a beta distribution, w ∼ β(1, 2) to promote weights close to 0. While this randomised version2 of the adaptive Lasso is less common than its deterministic counter part, it is known to perform better in terms of variable selection consistency [START_REF] Meinshausen | Stability selection[END_REF][START_REF] Tod | Sparsistent model discovery[END_REF]. Similar observationsas in [START_REF] Tod | Sparsistent model discovery[END_REF] appear with grouped variables, see Appendix A.

Grouped sparsity By assuming the underlying PDE terms are the same across multiple experiments, with potentially different coefficients, grouped sparsity allows to leverage the data across the experiments. The previous estimator can be generalised (inspired by [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]) to grouped variables,

ξ = arg min 1 2n ||∂ t u -Θ ξ|| 2 F + λ p g=1 || ξg || 2 W g (2) 
where Θi,g = Θ i,g / ŵi,g , ξi,g = ŵi,g • ξ i,g , ŵi,g = 1/| ξi,g | γ and W g is randomly selected from w.

If there is one element per group, the randomised adaptive group Lasso3 becomes the randomised adaptive Lasso. The amount of regularisation parametrized by λ is found automatically using stability selection with some error control, see Appendix B.

Deep learning based model discovery In practice, experimental data contains not only natural variability but also noise. It is known that pure sparse regression based model discovery cannot handle high noise levels (>5 %) -for such cases, deep learning model discovery frameworks excel see [START_REF] Both | Deepmod: Deep learning for model discovery in noisy data[END_REF][START_REF] Chen | Deep learning of physical laws from scarce data[END_REF] . Here, we extend DeepMod [START_REF] Both | Deepmod: Deep learning for model discovery in noisy data[END_REF] to handle multiple experiments (see note 1). The framework combines a function approximator of u, typically a deep neural network which is trained with the following loss,

L = q i=1 1 n ||u i -ûi || 2 2 LMSE + 1 n ||∂ t ûi -Θ i ( ξi • M i )|| 2 2 Lreg (3) 
The first term L MSE learns the data mapping (x, t) → ûi , while the second term L reg constrains the function approximator to solutions of the partial differential equation given by ∂ t u i , Θ i and ( ξi • M i ).

The terms to be selected in the PDEs are determined using a mask M derived from the result of the randomised adaptive Lasso/group Lasso,

M i = 1 if ξj ∈ S Λ * stable 0 otherwise ( 4 
)
where j is the index of a potential term and S Λ * stable is determined by equation [START_REF] Chen | Deep learning of physical laws from scarce data[END_REF]. The coefficients ξ in front of the potential terms are computed using a Ridge regression on the masked library

(Θ i • M i ).
During training, if q i=1 L MSE on the test set does not vary anymore or if it increases, the sparsity estimator is triggered periodically. As a result, the PDE terms are selected iteratively by the dynamic udpate of the mask M during the training.

Experiments

In this section, we first present two cases based on the viscous Burgers' equation:

u t = νu xx -uu x .
The first case consists in generating three spatiotemporal datasets with an identical initial condition (Dirac delta) and different viscosity parameters ν = {0.1, 0.2, 0.4}, see figure 1(a). For the second case we fix ν = 1 and vary the initial conditions (Dirac delta, periodic and step-like functions) see figure 1(b). These datasets are generated from analytical solutions [START_REF] Tod | Sparsistent model discovery[END_REF], on top of which we add a high noise level of 10% Gaussian white noise. In both cases, 40 points in time and 50 points in time are considered leading to 2000 samples per experiment. In such conditions, the observations of the fields u are coarsely sampled and noisy enough such that it would not be possible to compute accurate enough derivatives for the libraries using classical methods such as finite differences or polynomial interpolation. By leveraging automatic differentiation and physics informed neural networks to compute the libraries, these cases are typically the ones where deep learning based model discovery frameworks excel. We compare the two different methods for promoting sparsity in DeepMod described in the previous sections: the individual sparsity promotion method is performed q times (once per experiment) or the grouped sparsity promotion is performed, see figures 2 and 4. The sparsity patterns that are recovered might be different, see figure 2(a): the individual randomised adaptive Lasso is incapable of recovering the nonlinear advection term for the last experiment. This can be explained physically, as it happens for the experiment with the highest diffusion coefficient (ν = 0.4): diffusion is predominant over nonlinear advection. On the other hand, by promoting grouped sparsity, the ground truth underlying PDE can be recovered and it can be verified that it actually generalises better since MSE test,group = 1.1749e -3 < MSE test,individual = 1.1761e -3 . We report a similar conclusion for the chaotic Kuramoto-Sivashinsky equation, MSE test,group = 5.51e -3 < MSE test,individual = 5.59e -3 , see figure 3. The same hyperparameters were used, see Appendix C and 2 × 2000 points are randomly sampled from a numerical solution [START_REF] Samuel H Rudy | Data-driven discovery of partial differential equations[END_REF], on top of which we add a high noise level of 20% Gaussian white noise. Since we use NNs to interpolate across samples, we also investigated the impact of sharing NN layers across tasks for cases 1 and 2. Interestingly, sharing layers across neural networks does not help DeepMod finding better coefficient estimates nor improves the variable selection performance -it can actually be the opposite, see figure 4 andAppendix D.

It is important to keep in mind when promoting grouped sparsity, that if a term is important to recover a PDE, it will be forced to be conserved for all the other PDEs. By doing so, we create a learning bias that implies the a priori assumption that all experiments can be explained by the same underlying PDE terms with potentially different coefficients. Obviously, the learning bias can also turn into a negative learning transfer if the latter assumption is wrong. A limitation of our approach is reported when the discovery problem does not have unique solutions, see Appendix E. 

Conclusion

We extend the limitation of relying on a single experiment to infer PDEs and explore how to leverage the information across multiple experiments with different parameters, initial and/or boundary conditions. To do so, we first introduce a randomised adaptive group Lasso to promote grouped sparsity. This creates a learning bias in the model discovery process which assumes there is a common underlying PDE with potentially different coefficients across experiments. Second, once integrated in the deep learning model discovery framework DeepMod, our results show more generalizable PDEs can be found from highly noisy datasets, by promoting grouped sparsity rather than simply performing independent model discoveries.

Future work will focus on the extension of the approach to additional spatial dimensions in order to tackle real life experimental applications such as retrieving recovering fluid flow equations in turbulent conditions from particle image velocimetry. From 2 × 36 terms libraries computed from two analytical solutions with single and double solitons. Group norms of coefficients paths show the group Lasso would not manage to find the KdV equation for any λ, while the Adaptive Group Lasso would.

A Group Lasso and Adaptive Group Lasso

An illustration of when the group Lasso might not recover the underlying PDEs where the adaptive group Lasso would is given, see see figure 5. We find the irrelevant term u x is highly correlated with the relevant term u xxx . In that situation, the group Lasso would not manage to find the KdV equation for any λ, see figure 5, while the Adaptive Group Lasso would. An idea of why such a behavior can be found in [START_REF] Tod | Sparsistent model discovery[END_REF].

B Stability selection for the randomised adaptive Lasso/group Lasso

This appendix extends stability selection with error control from [START_REF] Tod | Sparsistent model discovery[END_REF] to the randomised adaptive group Lasso. With stability selection, variables are chosen according to their probabilities of being selected with some warranty on the selection error, [START_REF] Meinshausen | Stability selection[END_REF]. The first step consists in finding the probability of a variable k of being selected under some data perturbation: let I b be one of B random sub-samples of half the size of the training data drawn without replacement. For a given λ an estimation of the probability of k being selected is given by,

Πλ k = 1 B B b=1 1 if f λ k (I b ) > 0 0 otherwise (5) 
where

f λ k (I b ) = || ξλ k (I b )|| 1
for the randomised adaptive Lasso. The extension to the randomised adaptive group Lasso simply requires

f λ k (I b ) = || ξλ k (I b )|| 2 .
Second, by computing the probabilities of being selected over a given range of λ's the stability paths can be obtained. That range is initially denoted Λ = [ λ max ; λ max ], where is the path length and λ max is the regularisation parameter where all coefficients ξ are null. [START_REF] Meinshausen | Stability selection[END_REF] derive an upper bound on the expected number of false positives E(V ), that can help determining a smaller Λ region where some control on the selection error can be warrantied. By fixing this bound to EV max , the regularisation region becomes,

Λ * = λ ∈ Λ such that, E(V ) ≤ q 2 Λ (2π thr -1)p ≤ EV max (6) 
where π thr is the minimum probability threshold to be selected and q Λ is the average of selected variables that we propose to approximate by qΛ = k Πλ k . Finally, the set of stable variables with an upper bound on the expected number of false positives is,

S Λ * stable = k such that max Πλ k ≥ π thr for λ ∈ Λ * (7) 
C A single set of hyperparameters A single set of hyperparameters is used for all cases presented in this work -except for the experiments presented in figure 4 where the NN architectures vary.

Stability selection expected number of false positives upper bound EV max = 3, number of resamples B = 40 and the minimum probability to be selected π thr = 0.9.

Library consists of polynomials and partial derivatives up to the fifth order leading to a library size of p =36 potential terms.

Neural network architecture & optimiser NNs are 4 layers deep with 65 neurons per layer and sinus activation functions with a specific initialisation strategy, see [START_REF] Vincent Sitzmann | Implicit neural representations with periodic activation functions[END_REF]. The NNs are trained by an Adam optimiser with a learning rate of 5 • 10 -5 and β = (0.99, 0.99).

D Multitask neural networks performance

When sharing layers, the samples used to train for a task are going to be used in the training of other tasks as well, creating another learning bias. To verify more systematically the performance of the promotion of grouped sparsity and multitask neural networks, we vary the methods to promote sparsity and the NN architectures 4 , see figure 4.

Performance metrics

We introduce two metrics: (1) the result of an experiment is declared as a success, if and only if, the terms of the ground truth underlying PDE are found. In the case of failure, the metric is uninformative about whether an additional term was discovered or a term was missing - Overall the variance of the results is much lower when promoting sparsity as a group. When no layers are shared, the coefficients error is the lowest and the success rate of the discoveries is equal to 1 when the grouped sparsity method is leveraged. Furthermore, the common underlying PDE across experiments with varying ICs can only be found when grouped sparsity is promoted. Interestingly, sharing layers across neural networks does not help DeepMod finding better coefficient estimates nor improves the variable selection performance -it can actually be the opposite.

E Non-unique solutions limitation

In this experiment, we infer the equations from two analytical solutions of the Kortweg-de-Vries equation (u t = -6uu xu xxx ): with single and double solitons, see figure 6(a). Each dataset consists of 2 × 2000 samples with 10% Gaussian white noise. The resulting sparsity pattern, see figure 6(b), from the individual sparsity promotion is correct: the single soliton solution of the KdV equation is also a solution of the simpler travelling wave equation: u t = -c • u x , where c is the velocity of the wave. This illustrates the non-uniqueness of solutions of the PDE discovery problem. The promotion of grouped sparsity results in the discovery of a PDE with the 3 terms: u x , uu x and u xxx . While we know the single soliton is a solution of a PDE containing those 3 terms, the double soliton solution is not. The spurious term u x can be discerned by remarking its small magnitude: u t = -0.083u x -5.9uu x -0.99u xxx -alternatively, it can also be diagnosed by comparing MSEs on some out of training data: MSE test,group = 5.48e -4 > MSE test,individual = 5.41e -4 . However, without the addition of noise, the library Θ can be constructed analytically and the randomised adaptive group Lasso does find the KdV equation as the underlying PDE for both datasets. We speculate the origin of the limitation of DeepMod in the case of non-unique solutions, comes from the Ridge regression used to compute the regularisation term of the loss, see equation 3. As a matter of fact, we remark for this experiment only, the results from DeepMod are very sensitive to the regularisation parameter fixed for the Ridge regression.

  (a) case 1: with different parameters ν. (b) case 2: with different initial conditions.
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 14 Figure 1: Cases 1 and 2 datasets. Burgers' PDE is solved analytically for (a) different values of the viscosity ν and (b) the initial conditions vary at fixed viscosity. Each case dataset contains 3 × 2000 samples with the addition of 10% Gaussian white noise.
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 5 Figure 5: When the group Lasso fails to recover the Kortweg-de-Vries equation (u t = -6uu x -u xxx ).From 2 × 36 terms libraries computed from two analytical solutions with single and double solitons. Group norms of coefficients paths show the group Lasso would not manage to find the KdV equation for any λ, while the Adaptive Group Lasso would.
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 6 Figure 6: Case 4 dataset and sparsity patterns recovered by DeepMod.. In this experiment, we infer the equations from two analytical solutions of the Kortweg-de-Vries equation (u t = -6uu xu xxx ): with single and double solitons. The dataset consists of 2 × 2000 samples with the addition of 10% Gaussian white noise.

Data, code and results shared on: https://github.com/georgestod/multi_deepmod. Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS

2021).

A lose connection can be made here with the transformation from decision trees to random forests: the randomisation will select features randomly.

Implementation wise, the group Lasso python library MuTaR is used, see[START_REF] Janati | Multi-task regression in python[END_REF].

To make sure the NN architectures are comparable, the total number of weights and biases ∼ 40k are fixed.
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