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Optical Coherence Tomography (OCT) has evolved into a powerful clinical tool, with a wide range of applications in 

ophthalmology. However, most OCT systems for real-time volumetric (3D) and in vivo imaging suffer from image 

distortion due to motion artifacts induced by involuntary and physiological movements of the living tissue. Several 

methods have been proposed to obtain motion-free images, yet they are generally limited in their applicability due to 

long acquisition times, requiring multiple volumes [1], and/or the need for additional hardware [2]. Here we propose 

and analyze a motion-compensated 3D-OCT imaging system that uses a higher-order regression analysis and show 

that it can effectively correct the motion artifacts within 0 to 5 Hz in real time without requiring additional hardware. 

Method

The scanning protocol of the proposed motion-compensated 3D-OCT 

system is shown in Figure 1. Three reference images in the slow-axis are 

utilized to obtain reference images within the C-Scan volume and 

compensate for the motion artifacts. Note that mainly axial motion is 

considered in this analysis, such as the one induced by involuntary 

vascular pulsation and respiration. We define 𝑑 as the distance between 

adjacent references. 𝐿 is the width of the B-scan raw image. 𝛼 is defined 

as the ratio between 𝑑 and 𝐿. The system is implemented in an in-house 

built 100kHz swept-source OCT centered at 1060nm with 110 nm tuning 

range. 

The flowchart of the system algorithm is shown in Figure 2. The algorithm consists of two main steps, namely pre-

processing and motion compensation. First, we apply a gaussian filter to every B-Scan of the raw C-scan data and 

remove the saturation artifacts introduced by light reflected from a highly specular surface generating signals that are 

over the dynamic range of the data-acquisition system. We simplified the saturation removal method based on 

minimum variance mean-line subtraction (MVMS) [3, 4], to reduce the computation cost. Specifically, the A-line 

value of position (x, y) will be assigned as 

subtraction of the mean value of raw data 

𝐴Ω(𝑥, 𝑦) from 𝐴Ω(𝑥, 𝑦). After thresholding and 

the connect component analysis, we remove any

noisy portion, including tissue inside the cornea, 

then generate the initial segmentation. We revise 

the surface using the pixel with the largest 

gradient around the initial segmentation and fit it 

with a polynomial curve. To test this pre-

processing algorithm, we applied it to clinical 

OCT images of corneas with normal and 

abnormal surface topography (e.g. from bullous 

keratopathy and keratoconus). As shown in Figure 

3, the results indicate that the 4th order 

polynomial is accurate enough to represent the 

topological surface of both the healthy and 

pathological corneas.

Figure 1. Schematic of the scanning protocol 

of the motion-compensated 3D-OCT system. 

Figure 2 Flowchart of system algorithm, with (left) pre-processing (a 

through d) and (right) motion-compensation steps. 
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Figure 3. Polynomial fitting results of corneal boundary. a), b), and c) shows the different polynomial order fitting results and 

corresponding fitting error d), e) and f) of the normal cornea, cornea with bullous keratopathy, and cornea with keratoconus,

respectively. 

We compare the B-scan surface detection result with the three reference images and obtain the motion during the three 

intersecting planes. Then, the movement of every A-scan within the B-scan is predicted and compensated by the 

polynomial fitting. 

Results

Because most involuntary motion frequency of the human body ranges from 0 to 5Hz [5], we explored the movement 

over this frequency range in this study.  Figure 4. a)-c) shows an example of the motion-compensation result during 

corneal C-scan volume imaging with axial movement around 1Hz. As another example, Figure 4. d)-f) shows 

volumetric imaging of a phantom with motion around 3.6Hz. The algorithm successfully corrects the motion artifacts 

in these two frequency settings.  

Figure 4. Motion-compensation result of (top) cornea and (bottom) phantom C-scan volume. a) is the static reference of the cornea, 

b) is the cornea with motion around 1Hz. c) is the reconstructed corneal image after motion compensation. The red line in b) and 

blue line in c) represents the B-scan location, representing the corneal surface before and after compensation, respectively. Both 

are also shown in the inset of c), which provides a direct comparison between pre- and post-compensation. d), e) and f) are the 

static reference of the phantom, phantom with motion around 3.6Hz, and reconstruction of phantom after motion compensation. 
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The Root Mean Square Error (RMSE) is used as our quantitative metric of the result, to measure the difference between 

the reference and compensated sample in micrometers. To test the performance of the system and the algorithm, we 

compensated for the motion around 1Hz using different order polynomial fittings with four cornea samples as shown 

in Figure 5. The result shows that 4th order fitting achieves the best fitting accuracy, with minimal RMSE.

The compensation result could be affected by the distance between the adjacent reference planes, which is defined as 

𝛼. Since the middle reference is fixed in the center of the x-direction, 𝛼 can range from 0 to 0.5. Figure 6 shows that 

𝛼 around 0.37 achieves the best result, that is, a minimal RMSE, below around 2.6 𝜇𝑚. 

In conclusion, we propose and analyze a motion-compensated 3D-OCT system and show that it can compensate 

motion over the frequency range from 0 to 5 Hz effectively with less than 2.6 𝜇𝑚 error. Implementing such motion 

compensation into clinical OCT systems has the potential to improve the reliability of 3D imaging and reduce

associated computational cost.
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Figure 5. RMSE between four compensated cornea samples and the static reference with different polynomial orders.

Figure 6. Error between motion compensation and static reference as a function of 𝛼 for 4 different a) corneas 

with 1Hz axial motion and b) phantoms with diverse motion frequencies. 
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