Working out the energy efficiency and sustainability equation for the wood fuel chip sector?
Nicolas Bilot

To cite this version:
Nicolas Bilot. Working out the energy efficiency and sustainability equation for the wood fuel chip sector?. 2021. hal-03447563

HAL Id: hal-03447563
https://hal.science/hal-03447563
Preprint submitted on 24 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
WORKING OUT THE ENERGY EFFICIENCY AND SUSTAINABILITY EQUATION FOR THE WOOD FUEL CHIP SECTOR?

Nicolas Bilot


ABSTRACT

The rapid development of renewable energies in Europe requires accurate knowledge of the resources and of the consequences of their utilisation. The various sources must be evaluated in terms of energy performance but also for their sustainability. This study considers the production of forest biomass particularly in the form of wood fuel chips. The aim is to develop a method for evaluating the energy balance and the mineral export according to various management scenarios along the production chain. For that purpose, a simulator was developed, covering the entire process, from felling of the trees in the forest to the delivery of the chips to the end user. The simulation tool, named ForEnerChips, is implemented on the software platform CAPSIS, and is first connected to the growth and yield simulator FAGACEES. In the final stage, the simulation tool is used to evaluate and compare various production and supply scenarios that are representative of current trends or serve to explore potential alternative practices.

Nicolas Bilot
INRA Centre de Nancy-Lorraine
LERFoB
F-54280 CHAMPENOUX
(nicolas.bilot@nancy.inra.fr)