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Abstract: The flexible job shop problem (FJSP) has been studied in recent decades due to its
dynamic and uncertain nature. Responding to a system’s perturbation in an intelligent way and
with minimum energy consumption variation is an important matter. Fortunately, thanks to the
development of artificial intelligence and machine learning, a lot of researchers are using these new
techniques to solve the rescheduling problem in a flexible job shop. Reinforcement learning, which
is a popular approach in artificial intelligence, is often used in rescheduling. This article presents a
Q-learning rescheduling approach to the flexible job shop problem combining energy and
productivity objectives in a context of machine failure. First, a genetic algorithm was adopted to
generate the initial predictive schedule, and then rescheduling strategies were developed to handle
machine failures. As the system should be capable of reacting quickly to unexpected events, a
multi-objective Q-learning algorithm is proposed and trained to select the optimal rescheduling
methods that minimize the makespan and the energy consumption variation at the same time. This
approach was conducted on benchmark instances to evaluate its performance.

Keywords: flexible job shop problem; artificial intelligence; rescheduling; Q-Learning; machine
failure; multi-objective optimization

1. Introduction

Energy consumption control is a growing concern in all industrial sectors.
Controlling the energy consumption and realizing energy savings are the goals of many
manufacturing enterprises. Therefore, the scheduling of a manufacturing production
system must now be approached taking into account aspects relating to sustainability
and energy management [1]. To implement such measures, researchers focused on
developing more energy-efficient scheduling approaches to make a balance between
energy consumption and system stability. In addition to that, manufacturing systems
constitute dynamic environments in which several perturbations can arise. Such
disturbances have negative impacts on energy consumption and system robustness and
make the scheduling process much more difficult. In the literature, a lot of researchers
solve the job shop problem (JSP) under different types of perturbations, they use
different metaheuristics approaches like genetic algorithms [2] or particle swarm
optimization [3]. Other researchers use rescheduling approaches that repair the initial
disrupted schedule Like dispatching rules.

Recently, many researchers have designed reactive, dynamic, and robust
rescheduling approaches using artificial intelligence. These learning-based approaches
gain the knowledge of the manufacturing system to be used in the decision-making
process. In this case, the rescheduling can adapt to the system’s disruption at any time.
Research on reducing energy consumption in job shops has focused on energy
consumption optimization in the predictive phase when building the initial schedule.
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The main contribution of this article is first to develop a new approach where energy
consumption reduction is taken into account in the predictive and reactive phase.
Second, the developed approach integrates a multi-objective machine learning algorithm
to be able to react more quickly in case of disruptions (select best rescheduling method
rapidly). In the predictive phase, a genetic algorithm was set to build the initial schedule,
taking into consideration both energy consumption and completion time optimization.
Then, to get a responsive and energy-efficient production system, a multi-objective
Q-learning algorithm was developed. This algorithm selects the best rescheduling
strategy that minimizes both the completion time and energy consumption in real time,
depending on energy availability.

The remainder of this article is organized as follows: the next section provides a
literature review on energy-aware scheduling and rescheduling methods, as well as
rescheduling approaches using artificial intelligence techniques. Section 3 contains the
FJSP problem formulation and the description of rescheduling methods. The Q-learning
algorithm and selection of the optimal rescheduling approach are described in Section 4.
The experiments and the evaluation of the approach on FJSP benchmarks are presented
in Section 5. Finally, a conclusion and some future directions are provided.

2. Related Works

This section is divided into two parts. The first part presents some of the recent
energy efficient methods for scheduling and rescheduling in manufacturing systems. The
second part focuses on rescheduling methods using artificial intelligence (Al) techniques.
A discussion section is presented to analyze the related works and to highlight their
limits.

2.1. Energy-Efficient Scheduling

The approaches that can be found in literature are very often related to job shops or
flexible job shops. The next subsections present a short overview of both problems.

2.1.1. Job Shop Energy-Efficient Scheduling

One of the most studied production scheduling problems in the literature is the
job-shop scheduling problem (JSSP), in which jobs are assigned to resources at particular
times. In recent years, due to rising energy costs and environmental concerns, researchers
have started working on energy-efficient scheduling problems as a main feature of JSSP.
Two integer programming models were for example used in [4], namely a disjunctive
and a time-indexed formulation, to solve the JSSP in order to minimize electricity cost. A
scheduling model with the turn off/turn on of machines was introduced in [5], and a
multi-objective genetic algorithm based on non-dominated sorting genetic algorithm
NSGA-II was developed to minimize the energy consumption and total weighted
tardiness simultaneously. A metaheuristic to solve the JSSP which includes a power
threshold that must not be exceeded over time was also developed [6], with two power
requirements considered for operations: a peak consumption at the beginning of the
machining and a nominal consumption after. The aim of this work was to minimize the
makespan while respecting the power threshold. Decentralized systems attract the
interest of many other researchers, where the decision making is distributed over several
autonomous actors. For example, an agent-based approach for measuring, in real time,
the energy consumption of resources in job shop manufacturing process [7], where the
energy consumption was individually measured for each operation and the optimization
problem was implemented using IBM ILOG OPL in order to minimize the makespan and
the energy consumption.
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2.1.2. Flexible Job Shop Energy-Efficient Scheduling

Another type of scheduling in job shop is the flexible job shop scheduling problem
(FJSSP) as an extension of JSSP, which has been given widespread attention, due to its
flexibility. An energy-efficient scheduling in FJSSP environment was designed by [8],
with an enhanced evolutionary algorithm based on genetic algorithm and simulated
annealing algorithms incorporated with three objective functions: minimizing total
completion time, maximizing the total availability of the system, and minimizing the
total energy cost. Similarly, an integrated energy and labor perception multi-objective
FJSSP scheduling approach that considers makespan, total energy cost, total labor cost,
maximal and total workload was proposed in [9]. In order to solve the optimization
problem, the non-dominated sorting genetic algorithm-III (NSGA-III) was used.
Likewise, in [10], a hybrid meta-heuristic algorithm based on an artificial immune
algorithm (AIA) and simulated annealing algorithm (SA) was developed, to consider
simultaneously the maximal completion time and the total energy consumption.

The aforementioned research handled the static scheduling, but few focused on the
FJSSP under a real-life environment, considering disturbances such as machine failures,
random and new arrival jobs, unexpected processing times or unavailability of operators.
The accurate detection and control of these events is becoming a topic of concern on shop
floors. The job-shop scheduling problem under disruptions that can occur at any time
was solved by [11]. To achieve this, they used a match-up technique to determine the
rescheduling zone and its feasible reschedule. Then, a memetic algorithm was proposed
to find a schedule that minimizes the energy consumption within that zone. A
rescheduling method based on a genetic algorithm to address dynamic events (i.e., new
job arrivals and machine breakdowns) was introduced by [2]. The objective of their work
was to minimize the energy consumption and the productivity simultaneously. Another
form of unpredictable events that gets a lot of attention lately is the new job arrivals: [12]
developed an energy-conscious FJSSP with new job arrivals, where the minimization of
makespan and energy consumption and instability were considered. To solve the
scheduling problem, they proposed a discrete improved backtracking search algorithm
(BSA), and for the rescheduling they used a novel slack-based insertion algorithm. In
[13], the authors designed a heuristic template for dispatching rules with a potential to
make better routing decisions. As a solution, they developed a genetic programming
hyper-heuristic with delayed routing (GPHH-DR) method for solving multi-objective
DFJSS that optimizes the mean tardiness and energy efficiency simultaneously. Within
this context and to deal with the new job arrival, [14] provided a dynamic energy aware
job shop scheduling model which seeks a trade-off among the total tardiness, the energy
cost and the disruption to the original schedule. An adequate renewed scheduling plan in
a reasonable time, based on a parallel GA algorithm was presented. Scheduling of the
energy-efficient FJSSP can also be settled with distributed approaches: [15] proposed a
negotiation and cooperation- based information interaction and process control method,
which combines IoT and energy-efficient scheduling methods, to quickly handle machine
breakdowns and urgent order arrivals. In this study, a new metaheuristic algorithm,
denoted as PN-ACO, based on timed transition Petri nets (TTPN) and ant colony
optimization (ACO) algorithms, was introduced. An alternate form of metaheuristic
algorithm for scheduling in FJSP is the particle swarm optimization method (PSO), which
was used to minimize the makespan and global energy consumption under machine
breakdowns in [3]. In [16], an evolved version of the PSO was presented, as well as a
multi-agent architecture named EasySched for the predictive and reactive scheduling of
production based on renewable energy availability.

2.2. Job Shop Scheduling Using Artificial Intelligence

After the emergence of artificial intelligence (AI) and machine learning (ML)
techniques, intelligent and automated scheduling and rescheduling have become
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possible, and methods based on ML techniques began to arise. In general, there are three
types of machine learning: supervised learning, unsupervised learning, and
reinforcement learning. Starting with supervised learning techniques, the training data
generally includes examples of the input vectors along with their corresponding target
vectors [17]. In other terms, it is the learning of a function that maps an input to an output
based on example input-output pairs. Decision tree (DT) is a well-known supervised
technique used in literature: the scheduling knowledge can, for example, be modeled
through data mining to identify a rule-set [18]. Three modules were designed here,
namely optimization, simulation, and learning: (i) optimization provides efficient
schedules based on tabu search (TS), (ii) simulation transforms the solution provided by
the optimization module into a set of dispatching decisions and (iii) the learning module
makes use of the implicit knowledge contained in the problem domain and efficient
solution domain to approximate the behavior of efficient solution. Similarly, [19] applied
a data mining module based on DT knowledge extraction. Here, timed Petri nets were
used to describe the dispatching processes of JSSP, a Petri net-based branch-and-bound
algorithm was used to generate efficient solutions, and finally the extracted knowledge
was formulated as DTs and produced a new dispatching rule. This solution solved the
conflicts between operations, by predicting which operation should be dispatched first.
Another machine learning technique that combines several decision trees is random
forest (RF). The authors in [20] started by generating and processing data samples of
machine failures, then designed the RF-based rescheduling model that would decide
which rescheduling strategy has to be made (no rescheduling, right-shift rescheduling or
total rescheduling). In [21], a comparison between several machine learning techniques
was made. They developed a model for the FJSSP with sequence-dependent setup and
limited dual resources, solved the scheduling problem through a hybrid metaheuristic
approach based on GA and TS to minimize the makespan, then trained the ML
classification models such as support vector machines (SVM) and RF for identifying
rescheduling patterns when machines and setup workers are not available.

A subset of supervised learning in literature is deep learning. In [22] GA was used to
solve the scheduling problem in a job shop in order to minimize the makespan, coupled
with an artificial neural network (ANN), which was employed to predict the total energy
consumption. GA was also used in [23] to minimize the makespan, but they handled the
dynamic events and perturbations in a job shop environment, they therefore designed a
back-propagation neural network (BPNN) to describe machine breakdowns and new job
arrivals. Thanks to their feedback adjustments, BPNN can generate a feasible solution for
the JSP by resolving the conflicts. In [24] cumulative time error was used as the
quantitative index of implicit disturbance, locally linear embedding (SLLE) and general
regression neural networks (GRNN) were applied to reduce and map the data, and then
a least square-support vector machine (LS-SVM) was used to select the best rescheduling
mode.

Other works treated the new job arrival disturbance. The authors of [25] presented a
scheduling and dispatching rule-based approach for solving a realistic FJSSP, through a
combination of a discrete event simulation (DES) model and a BPNN model to find
optimal or near-optimal solutions while favoring the fast reactivity to unexpected new
arrival jobs. An appropriate management of both methods in the GA optimization
process (GA-Opt) was achieved to minimize the makespan.

Compared with supervised learning, unsupervised learning operates upon only the
input data without outputs or target variables. The goal in such problems may be to
discover groups of similar examples within the data, in an operation called clustering
[17]. K-means, an unsupervised technique, was used in [26]. They developed the
modified variable neighborhood search (MVNS) method in the optimization process to
minimize the mean flow time. This method was combined with the k-means algorithm as
a cluster analysis algorithm. It was used to place similar jobs according to their
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processing time into the same clusters, then jobs in the farther clusters have greater
probability to be selected in the replacement mechanism.

The third type of machine learning is reinforcement learning (RL). This type was
widely used to solve the scheduling problem in job shop. It describes a class of problems
where an agent operates in an environment and must learn to operate using feedback.
The use of an environment means that there is no fixed training dataset. In other words,
reinforcement learning is learning what to do, how to map situations to actions to
maximize a numerical reward signal. The learner is not told which actions to take, but
instead must discover which actions yield the most reward by trying them [27]. There are
different types of reinforcement learning such as Q-learning, deep Q-learning, SARSA,
policy gradient, prioritized experience replay ... [28] are among the first ones to have
used reinforcement learning in their work. They proposed an approach to learn local
dispatching policies in a job shop with the aim of reducing the summed tardiness. They
applied an ANN- based agent to each resource which was trained by Q-learning. This
approach demonstrated a better performance than common heuristic dispatching rules.
The authors of [29] developed a rule-driven dispatching method. To do so, they used
reinforcement learning to train the intelligent agent in order to obtain the knowledge to
set appropriate weight values of elementary rules to solve the work in process fluctuation
of a machine. The objective of their work was to minimize the mean flow time and mean
tardiness time in JSSP. In a different way of using RL, [30] used a policy gradient method
for autonomous dispatching to minimize the makespan. They designed a multi-agent
system where each machine was attached to an agent which employed probabilistic
dispatching policies to decide which operation is currently waiting to be processed. In the
same context, to select the best dispatching rule, in [31] the rescheduling strategy was
acquired by the agent of the proposed Q-learning. The agent-based approach can then
select a best strategy under different machine failures. In [32], the Q-learning algorithm
was applied to update the parameters of the variable neighborhood search (VNS) at any
rescheduling point. New job insertion was also handled using Q-learning. In [33], six
composite dispatching rules were developed to select an unprocessed operation and
assign it on an available machine when an operation is completed or a new job arrives.
Later, a deep Q-learning agent was trained to select the appropriate dispatching rules. In
a distributed way, [34] used a Q-learning algorithm associated with Intelligent Products
(IP) which collected data to pinpoint the current scheduling context, and then
determined the most suitable machine selection rule and dispatching rule in a dynamic
flexible job shop scheduling problem with new job insertion. The authors of [35]
proposed a multi-agent system containing machine, buffer, state and job agents for
dynamic job shop scheduling to minimize earliness and tardiness punishment. A
weighted Q-learning algorithm based on a dynamic greedy search was adopted to
determine the optimal scheduling rules.

A comparison between all the above-mentioned studies is summarized in Table 1.
The first column indicates the reference of the works, the second column specifies the
type of problem studied, the third column defines the type of perturbation considered. In
the fourth column, the scheduling or rescheduling method is presented. In the fifth and
sixth column the solving method architecture is mentioned: centralized, which means
that only one actor handles the scheduling problem, or distributed, through different
communicating agents. In the seventh and eighth columns, the nature of the objective
function and the objectives to minimize are presented. Finally, in the last column, the
artificial intelligence techniques used in relevant works are presented.
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Table 1. An overview of the literature review for energy-efficient scheduling.

Architectur . . Al
Objective Function .
e Techniques
Refere Tzlf)e . Schedulirfg/
nce Probl Type of Disturbance Reschefluhng Ce.ntr Distri Mono-Ob o
Techniques alize . . Multi-Objective
em d buted jective
[4]  JSP Integer lino.ear y Energy
programming cost
Energy consumption
[51 ISP NSGA-II x And total weighted
tardiness
[6] JSP GRASP x ELS x Makespan
7] JSP IBM ILOG OPL: y Makespan and energy
ILOG CP Optimizer consumption
Total completion time;
8] FISP Evoluti.onary y total availability of
algorithm system; energy
consumption
Makespan; total energy
cost; total labor cost;
o1 FSjP NSGA-III * maximal workload;
and total workload
hybrid Maximal completion
[10] FJSP meta-heuristic: x Time and total energy
AIA and SA consumption
match-up technique
[11] ISP Disruptions and x Makespan and energy
. . consumption
memetic algorithm
New jobs arrival and Energy consumption
2] FJSP machine breakdown GA i and schedule efficiency
. Makespan, total ener
[12] FJSP  New job arrivals BS_A WIt,h slack-based Conimption, andgy
insertion strategy . .
instability
[13] FJSP  New job arrivals GPHH-DR x Mean tardiness and
energy efficiency
Total tardiness; total
[14] DJSP  New job arrivals parallel GA x energy cost; disruption
to the original schedule
Machine breakdown Energy
[15] FJSP  and urgent order PN-ACO + 10T x  consumpti
arrival on
Makespan and
[3] FJSP Machine breakdowns PSO x Less global energy
consumption
[16] FJSP Machine breakdowns PSO with editable y Makespan and energy
ponderation factor consumption
[28] JSP x  Summed neural
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tardiness network +
Q-learning
[22] JSP GA x Makespan ANN

. Mean flow time and .
[29] JSP  Fluctuation of WIP x Mean tardiness Q-learning

[30] JSP x  Makespan Poh.cy

gradient

[18] JSP TS x Lateness DT
Petri net-based

[19] JSP branch-and-bound  x Makespan DT
algorithm

(23] Dysp Machine breakdown GA x Makespan BPNN
and new job arrivals

Recessive Time SLLE +
[24] JSP disturbalr‘llces RSR/PR/TR x accumulat GRNN +
ion error LS-SVM
. . Delay and
[20] DJSP  Machine failure RSR/TR x S RF
deviation
Random job arrival
andom job arrivals Mean flow

[26] DJSP and MVNS x k-means

Machine breakdowns time
Random job arrivals Mean flow
[32] DJSP and VNS x Hime Q-learning
Machine breakdowns
[31] FJSP  Machine failure GA x Makespan Q-learning
Availability of ML
[21] FJSP machines and setup GA+TS x Makespan e
workers classification
[25] FJSP New job insertions GA-Opt x Makespan BPNN
[33] FSJP New job insertions x Total DON
tardiness
Makespan; total
[34] FSJP New job insertions x weighted completion Q-learning
time;
Earliness
and
[35] JSP  New job insertions x  tardiness Q-learning
punishme
nt
Our FJSP Breakdown of GA 5 MakeZizne,If;)f;ysmess Multi-objecti
method machines ve Q-learning

consumption

2.3. Discussion

Most works in the literature consider energy-efficiency scheduling as a
multi-objective strategy, which includes reducing the energy consumption or the energy
cost alongside the traditional scheduling objectives, e.g.,, makespan, mean tardiness,
mean flow time, maximal workload and many other objectives. Considering the energy
related strategies and the traditional objectives proved to be a good solution to increase
scheduling efficiency, this new technique is inspiring a lot of research and has become an
important topic.
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To reduce energy consumption, many aspects were reviewed. Processing, machine
idle time reduction, machine speed, transportation, maintenance, setup and switching
energy are examples of energy consumption aspects. Many articles handle the energy
efficiency in scheduling but do not clearly outline the energy consumption aspects, or
only consider one aspect, mainly the processing energy, and ignore the rest that can have
a great impact on energy consumption.

About rescheduling, many methods are dynamically used in job shops, but these
methods depend on the state of the system in a particular moment. Due to the changing
and uncertain nature of job shops, rules have to be modified dynamically and at the right
time. Therefore, rescheduling can be handled using machine learning algorithms. In that
case, the system is able to select the best method and adapt to the system’s perturbation.
The learning methods are trained to acquire the system’s knowledge which will be used
in the decision-making process. From the literature review, a lot of works applied these
learning-based approaches using inductive learning, neural networks, or reinforcement
learning, especially RL which has been widely used and has proved to have high
performance in selecting the best approaches for rescheduling or modifying existing
approaches. However, they have not integrated energy-efficiency in these approaches
and are usually interested in minimizing the operations execution time. In this article
both makespan and energy consumption reductions are considered in the learning
process.

A classical GA was chosen for the initial solving of FJSSP (predictive phase). GAs
have already been successfully adopted to solve FJSSP, as proven by the growing number
of articles on the topic. Genetic algorithms might not be the best solution in a generic
context in terms of solving time. However, this solving is performed in an offline phase
that is not penalizing in the context of this work. Moreover, a different choice can be
made by a practitioner according to a specific context, without questioning the validity of
the overall approach.

On the reactive phase of rescheduling, as no prior knowledge of the environment is
considered (because no coherent pre-trained data of manufacturing system were
available to use in the learning process), Q-learning was chosen in this work. Literature
provides many works that have used Q-learning for a single objective, optimization of
productivity, whereas this article develops a multi-objective optimization that also
considers energy consumption. In addition, the learning is generally performed on
classical dispatching rules. This article presents a learning phase on actual multi-objective
optimization methods of rescheduling.

In addition, Q-learning is an agent-based approach which facilitates its integration
in distributed approaches that can be developed on embedded systems which is the topic
of possible future works.

3. A Dynamic Flexible Job Shop Scheduling with Energy Consumption Optimization

The FJSSP has been widely researched in recent decades due to its complexity. On
top of that, dynamic events can occur frequently and randomly in job shop systems,
which increases its complexity. Many metaheuristics have been proposed in literature to
solve this problem. In this section, a solution to FJSSP considering energy consumption
optimization is proposed. Then, corresponding rescheduling methods are proposed to
handle the dynamic nature of the system.

3.1. Description of FJSSP

In FJSSP, there are  jobs that should be processed on M machines. Each job consists
of a predetermined sequence of n; operations which should be processed in a certain
order. The objective of FJSSP is to assign each operation to the suitable machine and
arrange the sequence of operations on each machine [36].
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We define the notations used in this article to model the FJSSP:

e [=];...], isaset of n independent jobs to be scheduled.

e 0y is the operation i of job j.

e M=M,..M, is a set of m machines. We denote P;j; the processing time of
operation 0;; when executed on machine Mk.

FJSSP is a generalization of the job shop scheduling problem, where an operation
can be processed on several machines, usually with varying costs. Here after a list of
characteristics of FJSP problem:

1. Jobs are independent and no priorities are assigned to any job type.

2. Operations of different jobs are independent.

3. Each machine can process only one operation at a time.

4. Each operation can be processed without interruption during its performance on
one of the set of machines.

There are no precedence constraints among operations of different jobs.

Two assumptions are considered in this work:

7. All machines are available at time 0 and the transportation time is neglected.

SN

An example of an FJSSP instance is presented in Table 2. A processing machine and
time of FJSSP includes 3 jobs and 4 machines.

A full description of the mathematical mixed integer programming (MIP)
formulation for FJSP considering energy consumption proposed MIP has been proposed
in [37].

Table 2 illustrates an example of a small FJSP instance.

Table 2. An instance of FJSSP.

Processing Machine and Time (Time Units)

Jobs Operations M1 M2 M3 M4
014 3 5 - 7
Ji 011 5 - 4 5
034 9 12 8 10
0, 2 2 1 4
J2 0,, - - - 9
05, 5 2 4 2
013 - 5 6 5
Js 0,3 4 4 4
033 5 6 8 -

3.2. Genetic Algorithm (GA)

In this article, we propose to use a classical GA for the initial solving of FJSSP [38]. It
is an optimization method based on an evolutionary process. The performance validation
of the proposed algorithm is detailed in Section 5.1.

The aim of the FJSSP is to find a feasible schedule that minimizes makespan and
energy consumption at the same time. Therefore, makespan and energy consumption are
integrated into one objective function (F) using a weighted sum approach. The relative
importance of each objective can be modified in F, which represents the fitness of the GA.
Since the values of energy consumption and makespan are not proportional, we have to
normalize both measures [39]. As presented in equation 1, makespan is divided by
MaxMakespan, which is the maximum makespan value for the given problem, and
energy consumption is divided by the MaxEnergy, which is the sum of the energy
needed to execute all tasks of the problem. A is the weight that reflects the importance of
each objective function, A € [0...1]. This weight is modified statically, in this work. A
dynamic evolution of A is out of the scope of this article, and future perspectives may
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consider using an agent that controls the energy availability and triggers a rescheduling
order when a threshold is reached.

makespan ener
F=A x—0XPIN 1 A)x 9y

MaxMakespan MaxEnergy (1)

A flow chart illustrating the process of the genetic algorithm is represented in Figure
1. The overall structure of GA can be described in the following steps:

1. Encoding: Each chromosome represents a solution for the problem. The genes of the
chromosomes describe the assignment of operations to the machines, and the order
in which they appear in the chromosome describes the sequence of operations.

2. Tuning: The GA includes some tuning parameters that greatly influence the
algorithm performance such as the size of population, the number of generations,
etc. Despite recent research efforts, the selection of the algorithm parameters
remains empirical to a large extent. Several typical choices of the algorithm
parameters are reported in [40,41].

3.  Initial population: a set of initial solution is selected randomly.

4. Fitness evaluation: A fitness function is computed for each of the individuals, this
parameter indicates the quality of the solution represented by the individuals.

5. Selection: At each iteration, the best chromosomes are chosen to produce their
progeny.

6. Offspring generation: The new generation is obtained by applying genetic operators
like crossover and mutation

7.  Stop criterion: when a fixed number of generations is reached, the algorithm ends
and the best chromosome, with their corresponding schedule, is given as output.
Otherwise, the algorithm iterates again steps 3-5.
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Encoding

]

Tuning
Size of population
Maximum number of generations, a.o.

I

Population initialization
(random initialization)

Fitness evaluation:
makespan energy

F=2x MaxMakespan (=M%

MaxEnergy

I

| Seiection

I

| Crossover

]

| Mutation

Max
number of
generations
reached?

Optimal schedule, minimizing F

Figure 1. Genetic algorithm process.

3.3. Disturbances in F[SSP

FJSSP considers a large variety of disturbances. These perturbations are random and
uncertain and will bring instability to the initial schedule. In this work, one of the most
common and frequent disruption in production scheduling will be considered: machine
failures. We will deal with these events using rescheduling methods that will be
discussed in the next section. These methods will try to maintain the stability of the

system.

To simulate a machine failure [3], we have to select:

e The moment when the failure occurs (rescheduling time). These failures are
randomly occurring, with a uniform distribution between 0 and the makespan of the

original schedule generated with GA algorithm.
e  The machine failing.

e  The breakdown duration, which obeys to a uniform distribution between 25% and

50% of the makespan.

To simplify the problem, some assumptions about machine failures are considered:

1. There is only one broken-down machine at a time.

2. The time taken to transfer a job from the broken-down machine to a properly

functioning machine is neglected.

3. Machine maintenance is immediate after the failure.
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3.4. Rescheduling Strategies

One question can arise when dealing with the system disturbances, or the changed
production circumstances: what kind of rescheduling methodologies should be used to
produce a new schedule for the disturbance scenario? In the literature, many
rescheduling methodologies were reported. Researchers classified these methods into
two categories: (i) repairing a schedule that has been disrupted and (ii) creating a
schedule that is more robust with respect to disruptions [42,43].

There are common methods used to repair a schedule that is no longer feasible due
to disruptions: right shifting rescheduling, partial rescheduling, and total rescheduling.
Their definitions are described respectively as follows [24]:

e Right shifting rescheduling (RSR): postpone each remaining operation by the
amount of time needed to make the schedule feasible.

e Partial rescheduling (PR): reschedule only the operations affected directly or
indirectly by the disturbances and preserve the original schedule as much as
possible.

e Total rescheduling (TR): reschedule the entire set of operations that are not
processed before the rescheduling point.

The choice of the most appropriate methodology depends on the nature of the
perturbation and is generally made by experts. Rescheduling methods have different
advantages and drawbacks: RSR and PR can quickly respond to machines’ breakdowns,
however TR can offer a high-performance rescheduling, but with excessive
computational effort. In this work, the targeted rescheduling strategy is the optimal one
that minimizes the makespan and the energy consumption.

4. Proposed Multi Objective Q-Learning Rescheduling Approach

The proposed Q-learning-based rescheduling is described in Figure 2. The system is
composed of two modes:

e An offline mode: in the first place the predictive schedule is obtained using a genetic
algorithm, which represents the environment of the Q-learning agent. By interacting
with this schedule and simulating experiments of machine failures, this agent learns
how to select the optimal rescheduling solution for different states of the system.

¢  Anonline mode: when a machine failure occurs, the state of the system at the time of
the interruption is delivered to the Q-learning agent. It responds by selecting the
optimal rescheduling decision for this particular type of failure.
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Figure 2. Proposed reschedule decision-making approach under machine failure.

A key aspect of RL is that an agent has to learn a proper behavior. This means that it
modifies or acquires new behaviors and skills incrementally [44]. An improvement of the
Q-learning algorithm was also made to consider different criteria (multi-objective
Q-learning). Next sections detail this algorithm.

4.1. Q-Learning Terminologies

In order to be more accurate in the description of the algorithm, some terminologies
of Q-learning are recalled below [45]:

e Agent: The agent interacts with its environment, selects its own actions, and
responds to those actions;

e  States: The set of environmental states S is defined as the finite set {s%,..., sV}, where
the size of the state space is N;

e Actions: The set of actions A is defined as the finite set {a%,..., a¥}, where the size of
the action space is K. Actions can be used to control the system’s state;

e  Reward function: The reward function specifies rewards for being in a state or doing
some action in a state.

To sum up, the agent will make optimal decisions using experiences, make an action
in a particular state, and evaluate its consequences based on a reward. This process is
done repeatedly until it becomes able to choose the best decision.

Q-learning is a value-based learning algorithm; it updates the value function based
on a Bellman equation. The ‘Q’ here stands for quality of an action. The agent maintains a
table of Q(s, a), updated along time based on Equation (2):
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Qe ar) =1 -a) Q(se, ap) + a(Tegq+y maxQ(sep1, a)) )

where 71, is the reward received when the agent transferring from the state s, to the
state s;41, a is the learning rate (0 < a < 1) (representing the extent to which our Q-values
are being updated in every iteration), and y is the discount factor (0 <y < 1) (determining
what importance is given to future rewards).

The algorithm of Q-learning is detailed in Algorithm 1.

Algorithm 1 Q-Learning
Initialize Q(s, Aa)randomly
Repeat for each episode:

Initialize s

Repeat for each step of episode
Choose an action from a using a policy derived from Q (e-greedy)
Take an action a and observe the reward R and the next state s’
Update

Q(se, ar) =1 -a)Q(se, ar) +a(re4r +y maxQ(sers, a))

s<s'
until s is terminal

4.2. Multi-Objective Q-Learning

In this case the agent has to optimize two objective functions at the same time. Here,
the reward will transform from a scalar value to a vector of the size of the number of
objective functions:

R(s, a)=[Ri(s, a),Ry(5, @) cevervrnnnnn. R, (s, a)] 3)

where m is the number of objective functions.
The same thing occurs with action-state value (Q(s,a) which becomes also a
m-dimensional vector which is defined as follow:

Q(s,a)=[Q1(s, a), Qx(5, @) ceverenernenne Qm(s, a)l 4)

where every value corresponds to a reward value from the reward vector.

In this article a multi-objective Q-learning with single policy approach is used. This
means that it reduces the dimensionality of the multi-objective function. This new
function fairly represents the importance of all objectives. For the single policy approach,
many methods have been proposed. The most well-known is the weighted sum approach
where scalarizing function is applied to Q(s, a) to acquire a scalar value Q(s,a) that
considers all the objective functions. The linear scalarizing function is used and described
as follows:

Q(s,a) =X Qi(s,a)] *w; )

where 0 <w;<1 is the weight that specifies the importance of each objective function,
and must satisfy the following equation: Y% w; = 1
The algorithm of the multi-objective Q-learning is detailed in Algorithm 2.

Algorithm 2 Multi-Objective Q-Learning
Initialize Q(s, a) randomly
Repeat for each episode:

Initialize s

Repeat for each step of episode
Choose an action from a using a policy derived from Q (e-greedy)
Take an action a and observe the rewards R; and R, and the next
state s’
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Update
Q1(sy ar)=(1—-a) Q1 (St ar) + ARy, +y maxQy (Sgp1, @))
Qx(se, ar)=(1-a) Qz (St ag) +a(Ry,,, +y maxQy (Sesr, @))
s«s'
until s is terminal

4.3. State Space Definition

The state space is the set of all possible situations the agent could inhabit. We have to
select the number of states that will give the optimal solution and how to define these
states. In this article, two indicators were used to establish the state space:

e sl:indicates the moment when the perturbation happens, e.g., in the beginning, the
middle or in the end of the schedule. For this purpose, the initial makespan was
divided into 3 intervals, so s1 can take the values 0, 1 or 2.

e  52: defined by the indicator SD which is the ratio of the duration of the directly
affected operation by the machine’s breakdown to the total processing time of the
remaining operations on failed machine. The formula is described as follows:

SD= 2L 100 6)

where O is the directly affected operation by the breakdown machine and RT is the total
processing time of the remaining operations on failed machine. s2 is an integer between 0
and 9 depending on the value of SD.

The couple (s1, s2) represents the state of the system at a particular time, given the
rescheduling time, the failure machine, and the breakdown duration. In total we have 30
states, where 0 <s1 <2 and 0 <52 <9 (s1 and s2 are integers).

4.4. Actions and Reward Space Definition

The agent encounters one of the 30 states, and it takes an action. The action in this
case is one of the rescheduling methods:

e Action 0: Partial rescheduling (PR)
e  Action 1: Total rescheduling (TR)
e Action 2: Right shifting rescheduling (RSR)

The definition of the reward plays an important role in the algorithm since the
Q-learning agent is reward-motivated. This means that it selects the best action by
evaluating the reward. In this work, the reward is a vector with two scalars

R(S, a) = [Rl(s,a )/ RZ(Sra )] (7)

where R;(s,a) depends on delay time (the longer the delays, the smaller the rewards)
and R,(s,a) depends on the difference of energy consumption between the initial
scheme and the scheme after rescheduling (the bigger these differences, the smaller the
rewards). The rewards are set to be between 5 and -5, based on how much delay time
there is and the difference in energy consumption the action will cause.

5. Experiments and Results

In order to evaluate the performance of the proposed model, benchmark problems
are used. At the authors’ best knowledge, there are currently no benchmarks available in
the literature considering energy in an FJSSP. Therefore, instances had to be created in
order to test and validate this work. The choice was made to extend classical problems
from the literature to support energy consumption. The chosen problems are taken from
Brandimarte [46]. This consists of 10 problems (mk1 to mk10), where the jobs range from
10 to 20 operations, machines from 6 to 15, and operations for each job from 5 to 15. An
energy consumption of every operation was added randomly, obeying a uniform
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distribution between 1 and 100. Thus, for each instance, the machining energy
consumption and the idle power of machines are specified as inputs.

In this article, the unit of the makespan is unit of time and the unit of the energy
consumption is in kWh.

5.1. Predictive Schedule Based on GA

Initially, the optimal scheduling scheme is acquired based on GA. Python
programming is used to develop the proposed method using the distributed
evolutionary algorithms in python framework (DEAP), which is a novel evolutionary
computation framework. The parameters of GA are set as follows: the size of initial
population is 50 and the number of generations is 500.

To validate the GA, a comparison with other methods in literature was made, such
as PSO proposed by [47] and TS proposed by [48]. The result of the Brandimarte
instances in terms of makespan of these different algorithms is presented in Table 3. The
weight of the objective function of genetic algorithm is set to 1, to give importance to
makespan rather than energy reduction.

Table 3. Results in terms of makespan (in time units) of the Brandimarte instances for different
algorithms.

Instances The Proposed GA bI;S[Z;] byT[i 8]
MkO1 42 41 42
Mk02 32 26 32
MkO03 206 207 211
Mk04 67 65 81
MkO05 179 171 186
Mk06 86 61 86
Mk07 164 173 157
MKk08 523 523 523
Mk09 342 307 369
Mk10 292 312 296

Italics here identify the most effective algorithm through the lowest value of the makespan.

As can be seen from Table 3, the proposed GA gives similar results to PSO and TS
algorithm when the weight is set to 1. Therefore, we consider this proposition as
satisfying.

In the next step, more importance is given to energy reduction, therefore the weight
of the objective function is modified. The Gantt chart of the predictive schedule using GA
of MkO01 for different weight values is shown in Figure 3.
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Figure 3. The predictive schedule for different weights of the objective functions. (a—d) represent respectively the
predictive schedule when the weight of the objective function of GA algorithm is set to 1, 0.5, 0.2, or 0 respectively.

The makespan and energy consumption values for different cases are described in
Table 4. This shows that the two objective functions are antagonistic. When the weight is
set to 1, importance is given to makespan, therefore in this case GA provides the best
makespan (42) but the biggest energy consumption value (2812). On the opposite, when
the weight is set to 0, the importance is given to energy reduction, in this case GA
provides the worst makespan (73) but the best energy consumption value (2229). It may
be noted that when the weight decreases, makespan decreases but energy consumption
increases.

Table 4. Makespan (MK in time units) and energy consumption (EC in kWh) calculation example
on MKO1 instance.

. . KPIs
Instance Size Weight MK EC
1 42 2812
0.5 44 2457
K01 1
MKO 06 02 49 2411
0 73 2229

5.2. Rescheduling Strategies

To illustrate the difference between the different rescheduling methods presented in
Section 3.4, the predictive schedule of the instance MKO1 where the weight is set to 1 is
taken as example. A random perturbation (machine failure) is applied, assuming that at
time t = 20, machine 1 is broken down and t' = 6 is the duration of the breakdown. The
new schedules acquired by the three rescheduling methods (PR, TR and RSR) are
presented in Figure 4, the red line representing the starting time and ending time of
machine failure.
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Figure 4. Demonstration of initial scheme, PR scheme, TR scheme and RSR scheme. (a) illustrates the predictive
schedule, (b—d) illustrate the reactive schedule provided by the three rescheduling methods PR, TR and RSR respectively.

The directly affected operations by the failure machine are Os¢, Og, , Ogg,
0,10, and O3, these operations are executed by the broken-down machine. In PR, Osg,
Og2 , 0610 are postponed after the breakdown and the Ogs and O3 are executed
respectively on machine 4 and 5 with a different processing time (Figure 4b). In TR, all
the remaining jobs are rescheduled using the GA algorithm after the breakdown (Figure
4c). As for RSR, all the remaining jobs are postponed by the breakdown duration (Figure
4d). The performance of the rescheduling methods is described in the Table 5.

Table 5. The makespan (time units) and energy consumption (kWh) calculation for rescheduling
methods on MKO1 instance.

Schedule Makespan (MK) Energy Consumption(EC)
Predictive schedule 42 2812
Reacti PR schedule 50 3046
CACUVE TR schedule 49 2895
schedule
RSR schedule 57 2887

As can be seen from Table 5, the three rescheduling methods gives different results.
Both makespan and energy consumption are increased due to the presence of the
machine failure that affects a set of operation. In terms of makespan, TR gives the best
result (42), but in terms of energy consumption, RSR gives the best result (2887). This
result can be explained by the date of the failure, which happened close to the end of the
initial schedule.
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5.3. Rescheduling Based on Q-Learning

To test the performance of the proposed Q-learning algorithm, we designed

simulation experiments of machine failures. The parameters are set as follows:

a = 1: A learning rate of 1 means the old value will be completely discarded, the
model converges quickly, no large number of episodes are required;

y = 0: The agent considers only immediate rewards. In each episode, one state is
evaluated (the initial state of the system at a particular time, given the rescheduling
time, the failure machine and the breakdown duration)

€ =0.8, the balance factor between exploration and exploitation. Exploration refers to
searching over the whole sample space while exploitation refers to the exploitation
of the promising areas found. In the proposed model, 80% is given to exploitation, so
in 80% of cases the agent will choose the action with the biggest reward and in 20%
of cases he will randomly choose an action to explore more of its environment.

The number of episodes is 1000, for the model to converge.

In each episode the Q-table is updated depending on the value of the rewards

(Figure 5).
Actions Actions
Q-table Q-table
PR TR RSR . PR TR RSR
Training
00 | 0 0 0 i (0,0) 0 0 0
States | (1,5) | 0 0 0 States | (1,5) | -1 20 -4
29 |0 0 0 (29) | 22 -10 -54

Figure 5. Q-table initialization and update.

5.3.1. The Single Objective Q-Learning

Two types of Q-learning algorithm are proposed in this article: the single objective

Q-learning and multi-objective Q-learning.

The aim of the single objective function Q-learning is to minimize the makespan,

which means the minimization of the delay time. The curve of the reward and the delay
time in the first 50 episodes are described in Figure 6. It can be seen that the longer the
delay time, the lower the reward value.
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Figure 6. The evolution of reward value and delay time along episodes.

To show how the Q-values are updated in each episode, the state (0.7) is taken as
example. Figure 7 describes the variation of Q-values of each action. The agent first
selects the action 0 and gets a positive reward so its Q-value increases. After a few
episodes, action 0 is chosen again because it has the biggest Q-value but gets a negative
reward. Its Q-value thus decreases, giving the chance for action 1 to be selected. After
that, action 1 is chosen in every episode because it gets a positive reward each time so its
Q-value increases. Action 2 is selected in 100" and 800" episodes due to the e-greedy
where the agent still has a 20% probability to explore but its Q-value decreases because it
gets negative rewards.

Q predict of the state (0.6)
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Figure 7. Q-value prediction of state (0.6).
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5.3.2. The Multi-Objective Q-Learning

The goal of the multi-objective Q-learning approach is to minimize the makespan
and the energy consumption at the same time. In this case, two rewards are considered:
reward R; that depends on the delay time and reward R, that depends on the energy
consumption deviation. Figure 8 describes the variation of the reward along the first 50
episodes. It can be seen that R; increases when the delay time decreases and R,
increases when the energy consumption deviation decreases.

Reward R1 Reward R2
5 E
25
-
-5 -
- - 00 4
£0 2
- ‘2A5 E
_5 1 T T T _50 -‘l T T
0 20 40 0 20 40
Delay time Energy consumption deviation
20 4
> - .
% g 200
- 10 1 s
0 4
D 1 T T T T T T
0 20 40 0 20 40
episodes episodes

Figure 8. The change of rewards, delay time and energy consumption variation along episodes.

This time, state (1.9) is taken as an example and the weight of the objective function
of the multi Q-learning algorithm is set to 0.5 (which means that makespan and energy
consumption have the same importance). Throughout the episodes, action 1 gets positive
rewards and its Q-value increases so it is selected most of the times, on the other hand
action 0 and action 2 get negative rewards so their Q-values decrease, they are chosen
only in the exploration phase. The Q-value prediction of the state (1.9) is presented in
Figure 9.
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Figure 9. Q-value prediction of state (1.9).

5.4. Models Validation

The results of the optimal rescheduling methods for the Brandimarte [46] instances
and the solution given by the Q-learning agent are represented in Appendix A. In Table
6, an extraction of Appendix A, corresponding to the instance MKO01, is taken as example.
The first column is the name of the instance, followed by its size and its level of flexibility.
In the fourth column, the weight of the objective function of the GA and of the
multi-objective Q-learning is defined. In the fifth column, makespan and energy
consumption of the predictive schedule are calculated. In the sixth column, different
types of machine failures are defined by their failure time, the reference of the failing
machine and the failure duration. Next comes the state definition, then the rescheduling
methods and their performance. In the last column the evaluated Q-learning approach is
presented by giving the makespan (MK) and the energy consumption (EC) of the selected
optimal rescheduling solution using single objective Q-learning and multi-objective
Q-learning.

Table 6. Performance measurement of the predictive and reactive schedule in MKO1 instance.

Predictive Machine Failure Reactive Schedule Q-Learning
Schedule State PR TR RSR
. . MK .
Instance Size Weight MK Fail Broken-D Failure of the MK EC (Tim MK Slr}gle. Multi-O
of BF | EC ure . Syste . EC (Time EC Objecti ., .
(Time (KWh) Tim own Durati m (Time (KW e (KWh) Units (kWh)  ve bjective
Units) o Machine on Units) h) Ut;it )
s
3 5 20 (05) 46 3064 45 3115 61 3160 TR TR
16 4 19 (19) 60 3128 55 3243 66 3180 TR TR
1 O 3046 8 1 17 (0.6) 57 3099 50 3190 58 3142 TR TR
MKO1 10x6 2 23 3 14 (1.7) 57 3101 56 3218 58 3142 TR TR
13 5 10 (04) 46 3058 45 3028 52 3106 TR TR
13 6 20 (09) 56 3098 54 3204 59 3148 TR TR
0.5 49 2837 11 1 12 (05) 54 2872 58 2826 61 2909 TR TR
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7 5 23  (09) 56 2890 57 2724 76 2999 PR TR

22 2 22 (19) 62 2950 56 2968 65 2993 TR TR

5 2 12 (03) 54 2935 54 2853 55 2939 TR TR

11 1 12 (06) 54 2872 58 2826 61 2909 PR PR

13 4 13 (02) 50 2839 54 2816 54 2867 PR PR

31 2 15 (19 64 2702 67 2711 67 2672 PR PR

4 2 20 (04) 75 2797 78 2757 75 2800 TR PR

02 5 2672 10 4 14 (0.0) 52 2673 58 2670 59 2714 PR PR
10 1 21 0.6) 64 2728 68 2632 73 2798 TR PR

20 2 22 (17) 72 2769 76 2773 75 2820 PR PR

6 5 26 (09) 65 2727 68 2704 74 2804 PR TR

23 6 20 (09) 91 2649 99 2612 102 2692 PR TR

1 5 26 (0.3) 79 2560 79 2574 102 2686 PR PR

0 79 o554 31 2 37 (1.8) 92 2668 110 2706 116 2776 PR PR
3 2 24 (1.6) 88 2639 100 2666 106 2689 PR PR

16 2 34 (0.6) 98 2700 110 2744 116 2776 PR PR

30 6 20 (19 79 2564 79 2605 98 2668 PR PR

In the predictive schedule, when the weight decreases, the makespan increases but
the energy consumption decreases. This is normal because importance is given to energy
consumption each time the weight is decreased. After simulating different types of
failure randomly, it can be seen that the Q-learning is able to choose the best rescheduling
methods each time; the single objective Q-learning selects the best methods that
minimize the makespan but the multi objective Q-learning selects the best methods that
minimize the makespan and energy consumption depending on the value of the weight
of the objective function.

When this weight is set to 1, the single objective and multi-objective Q-learning have
the same results. They both choose the methods that minimize the makespan regardless
of the value of the energy consumption. From Table 7, in the case of the MKO01, TR proved
to have the highest performance and was selected in both algorithms. Giving the same
importance to energy consumption, which implies setting the value of the weight to 0.5,
the selected method changes to make a compromise between the two objectives. There is
a difference between the result of single objective and multi-objective Q-learning. Taking
the state (0.9) as example, PR and TR gives 56 and 57 as makespan respectively and 2890
and 2724 as energy consumption respectively, so PR is selected by the single-objective
Q-learning because it generates the minimum makespan, but TR is selected by the
multi-objective Q-learning because it has better result than PR in terms of energy
consumption.

By further decreasing the value of the weight to 0.2, more prominence is given to
energy consumption. Taking the example of the state (0.4), PR and TR give 75 and 79 as
makespan respectively and 2797 and 2757 as energy consumption respectively. Here PR
is selected by the single objective Q-learning because it minimizes the makespan, but TR
is selected by the multi-objective Q-learning because it has better optimization of the
energy consumption that was given more importance. Once the weight is set to 0, the
multi-objective Q-values selects the methods that optimizes the energy consumption
regardless of the value of the makespan, as in state (0.9) when PR gave the best makespan
(91) so it was selected by the single-objective Q-learning, but TR was selected by the
multi-objective Q-learning because it gave the best energy consumption (2612).

Considering all the instances of the Brandimarte benchmark, in Appendix A, we can
also deduce that the right shift rescheduling turned out to have the worst performance,
this is due to the postponement of the remaining tasks which increases both the
makespan and the energy variation. Another deduction that can be taken is that generally
TR have the best performance in early failures and PR gives better results when the
failures occur in the middle or in the end of the schedule and especially with instances
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that have high flexibility. The results of RSR also become improved at the end of the
schedule because the number of postponed operations is smaller.

The Q-learning algorithm not only selects the optimal methods for rescheduling but
also responds immediately to perturbation. Table 7 indicates the CPU time comparison
between the time spent to execute the three rescheduling methods (PR, TR, RSR) and to
select the optimal one and the time spent by the Q-learning algorithm to select the best
method from the Q-table. The reported values are evaluated using a laptop computer
with Intel core i5-8250U with 1.8 GHZ speed and with 12 Gb memory. The offline
training of the Q-learning algorithm can take minutes or even some hours depending on
the instance size, but it can be seen that, in online execution, the learning-based
rescheduling selection of the optimal solution takes only one millisecond compared with
traditional rescheduling that can exceed one minute, this time corresponds to state
calculation of the system after perturbation and the selection of the best methods that
have the highest Q-values from the corresponding Q-values table. However, the
execution of the three rescheduling methods and the selection of the best method can
take several seconds, even minutes when the instance is large.

Table 7. CPU time comparison.

Instances CPU Time (5
Traditional Rescheduling Q-Learning
MKO01 6.173
MKO02 7.261
MKO03 45.068
MKO04 13.680
MKO05 24.488 0.001
MKO06 48.855
MKO07 30.716
MKO08 61.261
MKO09 85.610
MK10 84.545

6. Conclusions

This work deals with the flexible job shop scheduling problem under uncertainties.
A multi-objective Q-learning rescheduling approach is proposed to solve the FJSSP under
machine failures. Two key performance indicators are used to select the best schedule:
the makespan and the energy consumption. The idea was not only to maintain
effectiveness but also to improve energy efficiency. The approach is hybrid and combines
predictive and reactive phases. The originality of this work is to combine Al and
scheduling techniques to be able to rapidly solve a bi-objectives problem (makespan and
energy consumption) of rescheduling in a context of FJSP.

First, a genetic algorithm was developed to provide an initial predictive schedule
that minimizes the makespan and energy consumption simultaneously. In this predictive
phase, different types of machine failures were simulated and classical rescheduling
policies (RSR, TR, PR) were executed to repair the predictive scheduling and to find new
solutions. Based on these results, the Q-learning agent is trained. To consider the energy
consumption even in the rescheduling process, a multi-objective Q-learning algorithm
was proposed. A weighting parameter is used to make a tradeoff between the makespan
and the energy consumption. In the reactive phase, the Q-learning agent is tested on new
machine disruptions. The Q-learning agent seeks to find the best action to take given the
current state. In fact, the main goal of using Al tools is to be able to react quickly facing
failures while rapidly selecting the best rescheduling policy related to the state of the
environment. In order to assess the performance of the developed approach, the
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Brandimarte [46] benchmark was extended to support energy consumption. On this new
benchmark, the Q-learning based rescheduling approach was tested to respond to
unexpected machine failures and select the best rescheduling strategy.

The results of this study show that the approach proved to be effective in
responding quickly and accurately to unexpected machine failures. The Q-learning
algorithm provided appropriate strategy choices based on the state of the environment
with various balance between the objectives of energy consumption and productivity.
The learning phase was therefore efficient enough to enable these efficient choices. The
choices of genetic algorithm and Q-learning algorithm proved their efficiency on the
extended classical instances of Brandimarte in this work. Nevertheless, the approach
leaves the possibility to the user to integrate their own choice of algorithm according to
the specific context.

Future works are oriented to take into consideration other types of disruptions like
new job insertions, variety of availability of energy, urgent job arrivals, etc. Another
future perspective that can be expected is the evaluation of the proposed approach on
other types of learning techniques in order to compare with the Q-learning algorithm. On
a more global perspective, this work contributes to the development of efficient
rescheduling approaches for the control of future industrial systems. Such systems are
meant to integrate more and more flexibility, and the performance evaluation of this
work on a FJSP shows the compatibility of the approach with this objective. This work
also contributes to the integration of multi-objective rescheduling strategies in industry,
which is especially relevant for sustainability concerns.
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Appendix A

Table A1l. Performance evaluation of the Q-learning approach on the Brandimarte benchmark.

Predictive Machine Fail Reactive Schedule Q-Learning
ine Failur
Schedule achine atiure PR TR RSR
Weig MK State MK MK
Instanc _, 8 . . Failur of the . . Single Multi-
Size p ht (Tim Failur Broken- MK EC (Ti (Ti e pe e
EC e Syste EC EC Objecti Objecti
of BF ¢ (kWh) e Down Durat m (Time (kW me (kWh) me (Wh)  ve ve
Unit Time Machine .ura Units) h) Unit Unit
ion
s) s) s)
3 5 20 (0.5) 46 3064 45 3115 61 3160 TR TR
16 4 19 (19) 60 3128 55 3243 66 3180 TR TR
1 0 3046 8 1 17 (0.6) 57 3099 50 3190 58 3142 TR TR
23 3 14 (1.7) 57 3101 56 3218 58 3142 TR TR
MKOL 10%x6 2 13 5 10 (04) 46 3058 45 3028 52 3106 TR TR
13 6 20 (09) 56 3098 54 3204 59 3148 TR TR
11 1 12 (0.5) 54 2872 58 2826 61 2909 TR TR
5 23 0.9 56 2890 57 2724 76 2999 PR TR
05 49 2837 (09)
22 2 22 (19) 62 2950 56 2968 65 2993 TR TR
5 2 12 (0.3) 54 2935 54 2853 55 2939 TR TR
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11 1 12 (0.6) 54 2872 58 2826 61 2909 PR PR
13 4 13 (0.2) 50 2839 54 2816 54 2867 PR PR
31 2 15 (1.9 64 2702 67 2711 67 2672 PR PR
4 2 20 (04) 75 2797 78 2757 75 2800 TR PR
02 52 2672 10 4 14 (0.0) 52 2673 58 2670 59 2714 PR PR
10 1 21 (0.6) 64 2728 68 2632 73 2798 TR PR
20 2 22 (L.7) 72 2769 76 2773 75 2820 PR PR
6 5 26 (09) 65 2727 68 2704 74 2804 PR TR
23 6 20 (0.9) 91 2649 99 2612 102 2692 PR TR
1 5 26 (0.3) 79 2560 79 2574 102 2686 PR PR
0 79 2554 31 2 37 (1.8) 92 2668 110 2706 116 2776 PR PR
3 2 24 (1.6) 88 2639 100 2666 106 2689 PR PR
16 2 34 (0.6) 98 2700 110 2744 116 2776 PR PR
30 6 20 (1.9) 79 2564 79 2605 98 2668 PR PR
15 1 12 (1.7) 46 3234 45 3223 45 3263 TR TR
4 2 16 (0.7) 45 3216 47 3330 49 3263 PR PR
1 0 3173 18 6 9 (1.8) 40 3205 37 3296 43 3239 TR TR
1 6 12 (0.3) 44 3223 46 3071 44 3245 PR PR
10 2 4 (09 49 3232 52 3386 51 3287 PR PR
2 4 9 (0.4) 38 3191 37 3282 43 3239 TR TR
5 6 17 (0.6) 49 2525 48 2334 56 2593 TR TR
17 6 11 (1.9 42 2494 45 2334 50 2557 PR TR
05 37 2479 25 6 13 (29) 45 2497 46 2384 50 2557 PR TR
10 1 9 (0.7) 44 2503 47 2187 46 2533 PR TR
18 6 9 (1.6) 42 2490 40 2342 46 2490 TR TR
MK02 10x6 3.5 5 4 11 (0.3) 38 2487 42 2288 50 2557 PR TR
23 2 14 (1.7) 59 2035 62 2014 65 2088 PR TR
16 1 23 (0.9) 53 2018 54 1996 64 2082 PR TR
02 49 1992 1 6 16 (04) 55 2017 50 1935 60 2058 TR TR
11 1 18 (0.7) 63 2014 52 1983 67 2100 TR TR
24 2 20 (1.9) 64 2062 57 2071 72 2130 PR TR
5 6 18 (0.6) 60 2040 58 1940 66 2040 TR TR
21 4 16 (19 56 1990 52 1996 66 2066 TR PR
35 3 20 (29) 66 2010 68 2045 71 2030 PR PR
0 19 1964 2 4 15 (0.5) 55 2000 64 1990 65 2060 PR TR
10 4 19 (0.6) 61 2035 55 1992 69 2084 TR TR
10 5 20 (09) 60 2038 60 1985 68 2087 TR TR
22 1 14 (1.6) 52 1995 54 1981 64 2054 PR PR
113 4 70 (1.8) 255 9120 239 9135 279 9430 TR TR
45 6 66 (0.4) 254 9262 246 9042 272 9374 TR TR
1 206 8846 55 2 59 (0.6) 250 9063 221 9263 268 9342 TR TR
75 2 53 (1.7) 250 9078 219 8824 272 9374 TR TR
1 2 65 (0.3) 221 9839 238 9001 246 9166 PR PR
MKO03 15x8 3 57 8 82 (0.8) 269 9276 237 9160 301 9606 TR TR
83 8 67 (1.8) 278 7787 254 7201 309 8171 TR TR
182 4 88 (2.9) 310 7905 296 7874 317 8235 PR PR
0.5 227 7515 66 2 77 (0.6) 244 7618 249 7209 302 8115 PR TR
44 1 80 (0.4) 304 8014 307 7516 317 8235 PR TR
94 4 66 (1.4) 266 7791 242 7387 297 8075 PR PR
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97 3 67 (1.4) 264 7969 243 7426 276 7907 PR PR
94 2 98 (1.9) 273 7408 263 7275 335 8032 TR TR
29 4 76 (0.5) 284 7598 291 7222 300 7832 PR TR
13 1 111  (0.6) 355 8042 368 8118 355 8192 PR PR
02 231 7200
98 3 116 (1.8) 337 7907 278 7327 349 8136 TR TR
170 4 88 (2.9) 304 7544 282 7497 313 7856 TR TR
40 1 116 (0.7) 334 7958 350 7742 353 8176 PR TR
152 6 97 (1.9) 328 7040 336 6952 348 7239 PR TR
64 4 67 (0.4) 282 6790 325 6900 325 7150 PR PR
0 253 6574 105 1 103 (1.8) 341 7081 338 7080 369 7502 TR TR
43 8 121  (0.7) 296 7010 276 6816 358 7414 TR TR
30 8 104 (0.6) 278 6983 299 6916 361 7438 PR TR
86 3 73  (1.5) 297 6846 288 6805 334 7222 PR TR
6 4 31 (0.6) 102 5427 84 5214 102 5486 TR TR
1 3 17 (0.1) 74 5249 77 5398 84 5334 PR PR
1 7 5206 49 3 27 (29) 110 5398 94 5347 109 5470 TR TR
30 2 17 (1.3) 67 5206 72 5315 84 5342 PR PR
11 2 19 (0.3) 67 5206 75 5342 87 5366 PR PR
1 7 26 (04) 83 5324 87 5495 93 5422 PR PR
43 3 26 (1.9) 96 4976 87 4891 99 5080 TR TR
34 4 25 (1.7) 71 4999 68 5054 98 5072 TR TR
05 73 4872 3 1 23 (04) 95 5015 93 5023 99 5080 TR TR
28 6 18 (1.8) 98 5007 84 4976 95 5048 TR TR
3 6 20 (0.3) 84 4974 85 4723 94 5040 PR TR
MKO04 15x8 2 36 2 28 (14) 73 4886 78 4930 80 4886 PR PR
40 4 35 (1.9) 106 4738 92 4724 112 4850 TR TR
7 1 27 (0.4) 103 4779 107 4723 104 4786 PR TR
02 76 4562 42 7 21 (1.7) 95 4635 88 5479 101 4579 PR TR
21 3 30 (0.7) 109 4750 90 4615 109 4826 PR TR
30 1 37 (1.8) 110 4742 105 4810 113 4858 TR PR
11 6 25 (0.5) 87 4621 85 4600 103 4778 PR TR
37 4 32 (1.7) 107 4510 102 4572 126 4658 TR PR
23 2 41 (0.7) 94 4459 96 4462 131 4734 PR PR
0 90 4406 33 3 39 (1.9) 113 4528 107 4559 129 4679 TR PR
8 7 36 (0.5) 135 4611 121 4580 130 4726 TR TR
3 5 28 (0.8) 96 4492 105 4488 121 4654 PR TR
20 7 24 (0.4) 108 4490 103 4518 114 4598 TR PR
30 2 81 (0.5) 260 5866 227 6121 286 5925 TR TR
116 3 50 (1.9) 224 5702 225 5676 230 5781 PR PR
1 179 5577 84 2 48 (1.5) 229 5741 206 5777 229 5777 TR TR
124 4 48 (2.8) 229 5749 216 5639 230 5781 TR TR
28 3 48 (0.3) 234 5766 210 5496 234 5797 TR TR
MKO05 15x4 1.5 5 3 78 (0.4) 257 5855 234 5911 257 5889 TR TR
134 1 79 (29) 257 5243 231 5248 262 5309 TR TR
57 3 67 (0.5) 256 5197 247 5177 256 5257 PR PR
0.5 186 4977 77 2 86 (1.8) 262 5227 234 5162 273 5325 TR TR
49 3 87 (0.6) 276 5277 252 5384 276 5337 TR TR
122 4 65 (1.9) 246 5202 240 5216 255 5253 TR TR
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13 4 64 (0.4) 257 5247 223 5120 257 5261 TR TR
89 2 51 (1.5) 241 4990 216 4882 252 5054 TR TR
2 3 55 (0.3) 256 5030 232 4956 254 5062 TR TR
43 2 71 (0.5) 261 5058 212 4925 274 5142 TR TR
0.2 197 4834
159 4 80 (2.9) 280 5156 274 5112 280 5166 TR TR
15 2 62 (1.8) 243 4982 218 4888 260 5086 TR TR
105 4 57 (1.6) 247 5027 243 4958 255 5066 TR TR
171 4 92 (29) 311 5015294 5050 311 5103 TR TR
15 3 58 (0.3) 284 4980 286 5049 289 5007 PR RR
0 23 4751 19 1 77 (0.5) 257 4901 247 4911 299 5055 TR PR
93 3 66 (1.5) 287 4998 270 4950 295 5039 TR TR
111 4 68 (1.7) 287 5002 268 4922 291 5023 TR TR
140 2 104 (1.9) 281 5002 284 4990 284 5139 PR TR
6 7 30 (0.5) 116 8359 114 8646 121 8458 TR TR
57 7 33 (1.9) 116 8317 107 8317 119 8438 TR TR
1 86 8108 25 8 25 (0.3) 106 8235 107 8317 114 8388 PR PR
37 8 26 (1.7) 104 8202 95 8563 107 8318 TR TR
18 8 43 (0.7) 143 8471 115 8597 130 8548 TR TR
35 6 43  (1.6) 106 8242 99 8421 118 8428 TR TR
57 5 33 (1.8) 127 8156 117 8039 135 8364 TR TR
25 7 47 (0.7) 143 8359 141 7669 147 8484 TR TR
05 99 8004 3 6 41 (0.3) 131 8193 121 7749 141 8424 TR TR
54 2 49 (1.9) 135 8885 120 7800 140 8414 TR TR
83 1 46 (2.9) 142 8212 139 8164 145 8346 TR TR
MEKO6 10 x 3 29 4 50 (0.8) 130 8265 133 7728 153 8534 PR TR
15 1 8 51 (1.8) 143 7630 138 7254 162 7915 TR TR
6 7 31 (0.3) 147 7748 149 7140 150 7795 PR TR
02 114 7435 91 5 32 (1.9) 161 7843 153 7438 171 8005 TR TR
78 8 34 (29) 131 7547 128 7370 150 7795 TR TR
34 9 35 (0.5) 121 7528 134 7071 145 7725 PR TR
26 9 51 (0.7) 239 7658 239 7459 164 7935 PR TR
26 9 64 (0.6) 148 6807 163 6885 206 7214 PR PR
66 5 51 (1.8) 150 6716 159 6746 186 7014 PR PR
0 141 6564 36 1 60 (0.7) 172 6930 181 6875 202 7147 PR TR
94 7 39 (29) 167 6702 162 6753 185 6916 TR PR
30 2 61 (0.9) 159 6881 160 6700 196 7114 PR TR
49 9 44 (1.7) 155 6822 158 6643 184 6994 PR TR
43 1 59 (0.5) 220 5803 200 5702 226 5909 PR TR
112 5 77 (29) 242 5891 221 5841 244 5999 TR TR
1 164 5599 8 5 73 (0.4) 228 5861 208 5834 237 5964 TR TR
65 2 75 (1.8) 217 5872 196 5656 240 5979 TR TR
52 4 75 (0.7) 244 5942 245 5875 244 5999 PR PR
MKO7 20x5 3 1 5 58 (0.3) 214 5495 222 5633 223 5894 PR PR
5 1 86 (0.5) 270 4920 228 4695 280 5154 TR TR
86 4 84 (1.9) 274 4950 248 4932 274 5124 TR TR
05 189 4699 77 2 54 (1.5) 243 4982 206 4624 258 5044 TR TR
59 1 84 (0.7) 243 4899 234 4569 273 5119 TR TR
145 1 89 (29) 272 4859 254 4964 285 5179 TR TR
94 1 48 (1.7) 233 4799 208 4564 248 4994 TR TR
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81 5 62 (1.5) 285 4577 248 4277 290 4695 TR TR
157 1 94 (2.9) 288 4493 275 4553 317 4830 TR TR
02 220 4345 39 3 92 (0.5) 307 4750 273 4267 312 4805 TR TR
87 2 78 (1.7) 253 4518 257 4366 299 4740 PR TR
35 2 102  (0.8) 276 4658 294 4498 339 4890 PR TR
110 4 80 (1.8) 299 4696 288 4563 300 4745 TR TR
44 2 61 (0.7) 253 4216 272 4092 297 4407 PR TR
79 3 111  (1.9) 285 4381 290 4290 350 4667 PR TR
0 236 4097 51 3 99 (0.9) 267 4319 271 4198 332 4577 PR TR
55 4 77 (0.5) 297 4355 310 4228 326 4547 PR TR
172 4 104 (2.9) 316 4298 325 4452 341 4517 PR PR
99 1 72 (1.5) 302 4331 269 4178 308 4457 TR TR
292 7 250 (1.9) 613 1;29 604 14,405 775 15,523 PR PR
13,6
125 7 192 (0.7) 579 33 582 13,250 715 14,983 PR PR
14,7
94 1 153 (0.3) 681 35 693 14,974 681 14,677 PR PR
1 523 13,255 138
242 3 185 (1.8) 584 Oé 577 13,755 701 14,938 TR TR
13,5
86 9 207 (0.5) 559 79 567 13,712 727 15,091 PR PR
13,6
238 3 151 (1.7) 568 " 555 13,458 672 14,596 TR TR
13,8
81 5 258 (0.8) 495 5 401 13,451 487 14,596 TR TR
12,9
216 2 189 (1.9) 292 0”2 293 12,979 372 13,642 PR PR
12,6
106 9 139 (0.5) 280 99 273 12,587 371 13,552 TR TR
20 x 0.5 524 12,499 140
MKO08 10 1.5 10 7 227 (0.6) 434 4é 340 13,581 491 14,632 TR TR
13,0
418 10 152 (2.9) 404 48 393 13,226 420 13,495 TR TR
13,4
42 3 196 (0.4) 359 81 330 13,013 458 14,335 TR TR
12,8
337 7 159 (1.9) 619 48 595 12,872 682 13,616 TR TR
13,3
132 5 226 (0.8) 646 - 632 13,348 773 14,435 TR TR
13,1
201 8 174 (1.6) 631 08 589 12,976 720 13,958 TR TR
0.2 543 12,365 140
131 1 184 (0.4) 717 Oé 734 13,683 728 14,030 PR TR
13,4
320 1 158 (1.8) 689 67 699 13,173 709 13,859 PR TR
12,8
15 3 147 (0.3) 592 39 581 12,550 690 13,688 TR TR
12,8
0 561 12,320 194 9 260 (1.9) 590 584 12,949 785 14,336 TR PR

10
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13,7
29 10 146 (0.3) 750 20 714 13,661 722 13,769 TR TR
13,0
126 4 260 (0.9) 607 2 612 12,789 821 14,660 PR TR
13,4
214 10 140 (1.4) 6% 64 667 13,404 703 13,598 TR TR
13,3
430 10 204 (29) 782 96 744 13,420 782 13,876 TR PR
13,8
86 3 263 (0.8) 689 09 640 13,244 826 14,687 TR TR
14,9
189 2 132 (1.8) 464 65 413 14,429 567 15,250 TR TR
14,4
244 7 97 (29) 518 33 488 14,404 531 14,890 TR TR
14,1
68 10 107 (0.2) 372 o1 382 14,259 441 14,890 PR PR
1 342 13,900 140
50 9 94 (04) 377 Sé 379 14,044 424 14,720 PR PR
14,5
115 1 97 (1.5) 413 33 478 14,341 423 14,810 PR PR
14,2
112 9 91 (0.5) 467 12 451 14,176 442 14,900 TR TR
13,8
215 4 144 (1.9) 504 13 438 13,166 507 14,238 TR TR
12,8
115 6 90 (0.4) 369 A1 382 12,566 445 13,518 PR TR
12,8
141 6 91 (1.6) 369 84 373 12,642 462 13,788 PR TR
0.5 362 12,788 136
20 x 261 2 102 (2.9) 443 3'7 442 13,389 442 13,798 TR TR
MKO09 10 13,5
122 5 175 (1.7) 458 8[1’) 452 13,434 529 14,458 TR TR
13,6
29 10 181 (0.6) 726 35 693 12,213 815 14,618 TR TR
13,2
228 8 134 (1.9) 501 60 483 13,236 506 13,827 TR TR
12,5
34 10 97 (0.2) 378 29 393 12,566 448 13,247 PR PR
13,2
43 9 169 (0.7) 455 58 486 13,009 538 14,147 PR TR
0.2 367 12,437 107
184 6 93 (1.5) 405 66 412 12,314 452 13,287 PR TR
13,4
245 8 177 (2.9) 537 69 514 13,413 549 14,257 TR TR
13,0
92 9 142 (0.6) 441 1 435 12,495 510 13,867 TR TR
13,3
118 8 126 (0.4) 548 58 528 13,451 562 13,062 TR TR
0 434 12,322 130
187 10 192 (1.7) 520 "7 457 12,622 628 14,262 TR TR

31
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46 2 185 (0.6) 514 153411 491 13,579 612 14,102 TR TR
13,5
186 1 193 (1.8) 555 85 541 13,309 627 14,252 TR TR
13,7
13 1 215 (0.5) 569 29 563 14,034 651 14,492 TR TR
13,3
244 1 158 (1.9) 532 30 527 13,199 588 13,862 TR TR
14,4
1 8 148 (1.8) 365 00 356 14,376 421 15,126 TR TR
14,1
57 9 79 (0.4) 342 55 330 13,920 367 14,631 TR TR
14,6
88 9 132 (0.7) 396 30 367 14,336 531 15,236 TR TR
1 292 13,707 144
203 1 130 (2.9) 415 3é 366 14,331 429 15,214 TR TR
14,0
41 1 86 (0.3) 345 50 326 14,246 379 14,664 TR TR
14,4
119 4 139 (1.7) 363 00 345 14,095 419 15,104 TR TR
13,9
10 7 146 (0.5) 420 46 409 13,082 453 14,426 TR TR
13,4
212 2 135 (2.9) 319 o4 393 13,629 436 14,239 TR TR
13,2
122 6 86 (1.7) 370 35 322 12,722 390 13,733 TR TR
0.5 297 12,710 107
17 13 128 (0.4) 307 311 12,340 359 13,392 PR TR
20 x 87
MK10 15 1.5 136
157 4 138  (1.9) 391 6’7 368 12,983 444 14,327 TR TR
13,3
91 3 125 (0.7) 372 7 359 12,538 414 13,997 TR TR
12,2
8 3 150 (0.4) 352 23 385 12,334 474 13,564 PR PR
12,2
125 8 83 (1.6) 354 5 350 11,921 406 12,816 TR TR
12,8
123 7 156 (1.9) 410 0” 401 12,610 484 13,674 TR TR
0.2 316 11,826 107
50 6 150 (0.6) 403 Oé 400 12,049 469 13,509 TR TR
12,8
151 5 123 (1.8) 427 5 388 12,249 450 13,300 PR PR
12,5
254 3 156 (2.9) 457 16 438 12,582 463 13,296 TR PR
11,8
54 10 91 (0.7) 375 48 370 11,747 438 12,517 TR TR
0 344 11,483 1
72 8 126  (0.5) 405 " 440 11,758 473 12,902 PR TR

17
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162 1 102 (1.6) 410 19159 378 11,732 451 12,553 PR TR
11,8

272 7 136 (2.9) 451 38 435 12,241 485 12,750 TR PR
12,4

112 8 143 (0.8) 436 41 422 12,176 494 13,133 TR TR
12,3

178 4 169 (1.9) 438 81 429 12,135 514 13,183 TR TR
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