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a b s t r a c t 

Measures of resting-state functional connectivity allow the description of neuronal networks in humans and pro- 

vide a window on brain function in normal and pathological conditions. Characterizing neuronal networks in 

animals is complementary to studies in humans to understand how evolution has modelled network architec- 

ture. The mouse lemur ( Microcebus murinus ) is one of the smallest and more phylogenetically distant primates 

as compared to humans. Characterizing the functional organization of its brain is critical for scientists studying 

this primate as well as to add a link for comparative animal studies. Here, we created the first functional atlas of 

mouse lemur brain and describe for the first time its cerebral networks. They were classified as two primary cor- 

tical networks (somato-motor and visual), two high-level cortical networks (fronto-parietal and fronto-temporal) 

and two limbic networks (sensory-limbic and evaluative-limbic). Comparison of mouse lemur and human net- 

works revealed similarities between mouse lemur high-level cortical networks and human networks as the dorsal 

attentional (DAN), executive control (ECN), and default-mode networks (DMN). These networks were however 

not homologous, possibly reflecting differential organization of high-level networks. Finally, cerebral hubs were 

evaluated. They were grouped along an antero-posterior axis in lemurs while they were split into parietal and 

frontal clusters in humans. 
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. Introduction 

Different brain regions are interacting continuously to share informa-

ion through functional cerebral networks built from structural and func-

ional connections. In addition to the myriad of articles that described

ery precisely these networks in humans in normal and pathological

onditions, many studies have evaluated cerebral networks in macaques

s well as marmosets. They suggested homologies of several networks as

or example the executive ( Hutchison et al., 2012 ) or the default-mode

etwork (DMN) ( Vincent et al., 2007 ). Some discrepancies have how-

ver been reported. For example, the main frontal region involved in

he default-mode-like network (DMN-like) of marmosets or macaques is

he dorso-lateral frontal cortex (dlFC) and not the medial frontal cortex

mFC) as in the human DMN ( Liu et al., 2019 ; Mantini et al., 2011 ). 
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To better understand the diversity of cerebral network architecture

n primates, it is necessary to describe networks in primates distant from

sually studied monkeys. The mouse lemur ( Microcebus murinus ) is a

mall strepsirrhine, arboreal and nocturnal primate (12 cm length, 60–

20 g weight). It has a key position on phylogenetic trees of primates

s it presents with one of the longest genetic distances with humans

 Ezran et al., 2017 ). It is the primate with the smallest brain (1.8 g

ersus ~1500 g for humans ( Herculano-Houzel et al., 2015 )) and has

 smooth brain as all animals with light brains ( Mota and Herculano-

ouzel, 2015 ) except for the sylvian and calcarine fissures. It has a small

hite matter/cerebrum index ( Nadkarni et al., 2019 ) but its cerebrotype

cortex/cerebrum index) does not differ from those of other primates
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Table 1 

Cohort of mouse lemurs involved in the study. 

Sex Age (months) Age (years) Anatomical brain lesion 

283EA M 10.6 0.9 No 

365A M 10.6 0.9 No 

285AB M 10.7 0.9 No 

285AAA M 16.5 1.4 No 

283CCA M 16.6 1.4 No 

263BCE M 17.8 1.5 No 

314CA M 18.0 1.5 No 

283CA M 22.4 1.9 No 

285E M 22.6 1.9 No 

276BC M 28.0 2.3 No 

285D M 28.1 2.3 No 

289BB F 28.8 2.4 No 

300BA M 29.8 2.5 No 

288BC F 37.3 3.1 Yes 

208CBF F 37.5 3.1 No 

310C F 39.9 3.3 Yes 
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ds have been proposed to characterize brain networks ( Bassett and

porns, 2017 ). Amongst them, blood-oxygen level dependent (BOLD)

esting-state functional magnetic resonance imaging (rsfMRI) relies on

he fact that, in the absence of explicit tasks ( i.e. in resting state condi-

ions), patterns of oscillations of the fMRI signal are similar in function-

lly connected brain structures ( Biswal et al., 1995 ). The detection of the

ynchronicity of BOLD signal in various brain regions in resting state

onditions can thus be used to describe cerebral organization, includ-

ng both local functional regions and large scale networks composed of

idespread functional regions ( Biswal et al., 1995 ; Power et al., 2014 ).

ere, rsfMR images were recorded from 14 mouse lemurs at 11.7 Tesla.

sing dictionary learning and a large number of components, we de-

ned functional regions that were concatenated into a functional atlas

f mouse lemur brains. Then, using dictionary learning and a smaller

umber of components, we identified 6 regional networks in mouse

emurs. The method used to identify regional networks in lemurs was ap-

lied to a dataset from 42 humans. It identified typical networks usually

eported in the literature. Comparison of cerebral networks in mouse

emurs and humans revealed homologous networks as well as similar

ut non-homologous high-level cortical networks. Hubness evaluation

evealed that hubs follow an antero-posterior axis in lemurs while they

re split into parietal and frontal clusters in humans. 

. Materials and methods 

.1. Animals and breeding 

This study was carried out in accordance with the recommendations

f the European Communities Council directive (2010/63/EU). The pro-

ocol was approved by the local ethics committees CEtEA-CEA DSV IdF

authorization 201506051736524 VI (APAFIS#778)). All mouse lemurs

tudied were born in the laboratory breeding colony of CNRS/MNHN in

runoy, France (UMR 7179 CNRS/MNHN) and bred in the Molecular

maging Research Center (CEA, Fontenay-aux-Roses). The animals were

ransported from the CNRS/MNHN to the Molecular Imaging Research

enter at least two months before the MRI exams. 

Sixteen adult mouse lemurs (12 males and 4 females) were initially

ncluded in this study. Two females that presented brain lesions on

natomical MRI were excluded from the analysis. The 14 analysed an-

mals ranged from 0.9 to 3.1 years old (mean ± SD: 1.7 ± 0.7) ( Table 1 ).

ousing conditions were cages containing one or two lemurs with jump-

ng and hiding enrichment, temperature 24–26 °C, relative humidity

5% and seasonal lighting (summer: 14 h of light/10 h of dark; win-

er: 10 h of light/14 h of dark). Food consisted of fresh apples and a

omemade mixture of bananas, cereals, eggs and milk. Animals had free

ccess to tap water. None of the animals had previously been involved

n pharmacological trials or invasive studies. 
.2. Animal preparation and MRI acquisition 

Animals were scanned under isoflurane anaesthesia at 1.25–1.5%

n air, with respiratory rate monitored to confirm animal stability un-

il the end of the experiment. Body temperature was maintained by an

ir heating system at 32 °C, inducing a natural torpor in mouse lemurs

 Aujard et al., 2001 ). This has the advantage of allowing a low anaes-

hesia level without reawakening. The MRI system was an 11.7 Tesla

ruker BioSpec (Bruker, Ettlingen, Germany) running ParaVision 6.0.1.

ach animal was scanned twice with an interval of 6 months. Anatom-

cal images were acquired using a T2-weighted multi-slice multi-echo

MSME) sequence: TR = 5000 ms, TE = 17.5 ms, 6 echoes, inter-echo

ime = 5 ms, FOV = 32 × 32 mm, 75 slices of 0.2 mm thickness, reso-

ution = 200 μm isotropic, acquisition duration 10 min. Resting state

ime series data were acquired using a gradient-echo EPI sequence:

R = 1000 ms, TE = 10.0 ms, flip angle = 90°, repetitions = 450,

OV = 30 × 20 mm, 23 slices of 0.9 mm thickness and 0.1 mm gap,

esolution = 312 × 208 × 1000 μm, acquisition duration 7 m30 s. 

.3. MRI acquisition in humans 

Forty-two healthy participants from the “Imagerie Multimodale de

a Maladie d’Alzheimer à un stade Précoce ” (IMAP) study (Caen) were

ncluded in the present study (18 males and 24 females ranging from

1 to 60 years old (mean ± SD: 50.0 ± 5.9)). Detailed inclusion and exclu-

ion criteria can be found in ( Chetelat et al., 2008 ). All subjects lacked

bnormality of clinical, MRI, and neuropsychological examinations, as

emonstrated by: (1) normal somatic examination, (2) body weight in

he normal range, (3) no known vascular risk factor and smoking < 10

igarettes per day, (4) no alcohol or coffee abuse, according to DSM4 cri-

eria, (5) blood pressure within normal limits or corrected to, (6) no his-

ory or clinical evidence of sensorineural loss, dementia, or psychiatric

isorder (a formal psychiatric interview was not performed), (7) no cur-

ent use of medication (except birth control pills, oestrogen replacement

herapy, anti-hypertensive drugs), and especially no use of centrally act-

ng drugs (sleeping pills, antidepressant drugs) for at least 6 weeks, (8)

ormal standard T1-, T2- and/or FLAIR-weighted MRI, and notably no

ignificant white matter T2- and FLAIR-weighted hyperintensities. The

attis dementia rating scale ( Mattis, 1976 ) was used for subjects over

0 years to exclude subjects with scores below the normal range for age

ndicating potential underlying neurodegenerative pathology. They also

nderwent cognitive tasks assessing episodic memory, semantic mem-

ry and working memory. There was no evidence of significant cognitive

ecline beyond that expected for normal aging in any subject, and no

ubject complained about his/her memory. In addition, to ensure that

articipants were not in the Alzheimer’s continuum, we only selected

hose who had an amyloid-PET scan and in whom the scan revealed no

ignificant amyloid deposition (amyloid-negative). All participants were

canned on a 3.0 T scanner (Philips Achieva, Amsterdam, Netherlands)

t the Cyceron Center (Caen, France). Anatomical T1-weighted images

ere acquired using a 3D fast-field echo sequence (3D-T1-FFE sagittal

R = 20 ms, TE = 4.6 ms, flip angle = 10°, 180 slices of 1 mm with no

ap, FOV = 256 × 256 mm 

2 , in-plane resolution = 1 × 1 mm 

2 ). Rest-

ng state time series data were acquired using an interleaved 2D T2 ∗ 

ENSE EPI (2D-T2 ∗ -FFE-EPI axial, SENSE = 2; TR = 2382 ms; TE = 30

s; flip angle = 80°; 42 slices of 2.8 mm with no gap, repetitions = 450,

OV = 224 × 224 mm 

2 , in-plane resolution = 2.8 × 2.8 mm 

2 , acquisi-

ion duration = 11.5 min). Head motion was minimized with foam pads.

articipants were equipped with earplugs and the scanner room’s light

as turned off. The detailed procedure for fMRI data acquisition and

andling is described in Mevel et al. (2013) . During this acquisition,

hich was the last of the MRI scanning session, subjects were asked

o relax, lie still in the scanner, and keep their eyes closed while not

alling asleep. Immediately after the scanning, the participants were in-

ited to complete a semi-directed questionnaire especially designed for

he evaluation of their inner experience during the resting state. No-
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ably, the questionnaire allowed to exclude participants who reported

alling asleep during the scan, or being in a drowsy state for more than

0% of the resting-state fMRI session ( > 5 min) and/or showing a con-

tant and focused mental activity about a single thing during the whole

ession. 

.4. MRI pre-processing 

.4.1. Mouse lemur data 

Scanner data were exported as DICOM files then converted

nto NIfTI-1 format. Then spatial pre-processing was performed us-

ng the python module sammba-mri (SmAll MaMmals BrAin MRI;

ttp://sammba-mri.github.io , ( Celestine et al., 2020 )) which, using

ipype for pipelining ( Gorgolewski et al., 2011 ), leverages AFNI

 Cox, 1996 ) for most steps and RATS ( Oguz et al., 2014 ) for brain ex-

raction. Anatomical images were mutually registered to create a study

emplate, which was further registered to a high-resolution anatomi-

al mouse lemur template ( Nadkarni et al., 2019 ). RsfMR images were

orrected for slice timing (interleaved), motion, and B0 distortion (per-

lice registration to respective anatomicals), then all brought into the

ame space of the mouse lemur template by successive application of the

ndividual anatomical to study template and study template to mouse

emur atlas transforms. Functional images were further pretreated us-

ng Nilearn ( Abraham et al., 2014 ). Nuisance signal regression was ap-

lied including a linear trend as well as 24-motion confounds (6 motion

arameters, those of the preceding volume, plus each of their squares

 Friston et al., 1994 )). Images were then spatially smoothed with a

.9 mm full-width at half-maximum Gaussian filter. The first 10 volumes

ere excluded from analysis after the preprocessing to ensure steady-

tate magnetization. 

.4.2. Human data 

Artefacts were inspected in individual datasets using the TS-

iffAna routines ( http://imaging.mrc-cbu.cam.ac.uk/imaging/

ataDiagnostics ). Datasets displaying significant movements ( > 1.5°

otation or > 3 mm translation) and abnormal variance distribution

nd/or artefacts were excluded from the analysis. Data were then pre-

rocessed as defined in Mutlu et al. (2017) with slice timing correction,

ealignment to the first volume and spatial normalization within native

pace to correct for distortion effects. EPI volumes were registered to

heir own high resolution anatomical image and then registered and

ormalized to MNI template space. Nuisance signal regression was

pplied including a linear trend as well as 24-motion confounds (6

otion parameters, those of the preceding volume, plus each of their

quares ( Friston et al., 1994 )). Images were then spatially smoothed

ith a 2 mm full-width at half-maximum Gaussian filter. Brain regions

ere classified using the AAL2 atlas (( Rolls et al., 2015 ; Tzourio-

azoyer et al., 2002 ), http://www.gin.cnrs.fr/fr/outils/aal-aal2/ ,

uppl. Fig. 1 ). Analyses requiring nodes used 90 regions corresponding

o cortical and grey matter subcortical regions without hindbrain. 

.5. 3D functional atlas of mouse lemur brain 

The following procedure was used to create a functional atlas of

ouse lemur brains. Multi-animal dictionary learning statistical anal-

sis was performed with Nilearn (random_state = 0) ( Mensch et al.,

016 ) on preprocessed rsfMR images. A mask excluding the corpus cal-

osum, hindbrain, ventricles and systematically artefacted regions (ol-

actory bulb, temporal pole, entorhinal cortex and prepiriform cortex)

as used to restrict functional data to non-noisy voxels prior to dic-

ionary learning analysis. During a pilot investigation, several analyses

ere performed using 20, 30, 35, 40, 45, 50, and 60 sparse components.

he study based on 35 sparse components was selected for the final anal-

sis as it highlighted either unilateral local functional regions or bilat-

ral regions that matched well to anatomy ( Nadkarni et al., 2019 ). The

5 sparse components were used to create a 3D functional atlas of the
ouse lemur brain. Each bilateral sparse component was split into two

nilateral regions. Regions smaller than 5 mm 

3 were excluded. Subcor-

ical regions were manually corrected to fit with the current anatomical

escription of subcortical regions ( Nadkarni et al., 2019 ). This led to a

D functional atlas presenting with 46 local functional regions that were

amed using ITK-SNAP ( Yushkevich et al., 2006 ). The name of each

tructure was defined using the names of brain structures reported in

he AAL2 human brain atlas ( Rolls et al., 2015 ; Tzourio-Mazoyer et al.,

002 ). The definition of each region was based on cytoarchitectonic

 Brodmann, 1999 (original in 1909); Le Gros Clark, 1931 ; Zilles et al.,

979 ) and anatomical ( Bons et al., 1998 ; Nadkarni et al., 2019 ) atlases

f mouse lemurs as well as AAL2 human brain atlas ( Rolls et al., 2015 ;

zourio-Mazoyer et al., 2002 ). 

.6. Identification of large scale networks 

.6.1. Connectivity matrices based on lemur and human atlases 

Partial correlation matrices were created using fully preprocessed

R images by calculating the partial correlation coefficients between

OLD MR signal time-courses within each region of the lemur and hu-

an 3D atlases. Partial correlations were used because they select direct

ssociations between regions and allow the control of indirect corre-

ations ( Mechling et al., 2014 ). Individual partial correlation matrices

ere computed from shrunk covariance matrices using the Ledoit and

olf shrinkage coefficient ( Ledoit and Wolf, 2004 ) as recommended by

aroquaux et al. (2012) and Brier et al. (2015) . Partial correlation coef-

cients were then Fisher’s z -transformed. Values from different human

ubjects or animals were averaged and thresholded based on a one-tailed

 -test ( p ≤ 0.01) ( Mechling et al., 2014 ). 

In graph theory, large scale networks are defined as community

tructures (or modules), which are groups of nodes densely intercon-

ected. Several methods have been proposed in order to partition a

etwork into communities ( Lambiotte et al., 2015 ). Here, the num-

er of modules was chosen following pilot investigations based on the

stability of a network partition ” method implemented in Gephi 0.9.2

 Bastian et al., 2009 ) as well as visual evaluation of the obtained net-

orks. The “stability of a network partition ” method requires fixing a

arameter called “resolution limit of modularity ”. It imposes a limit on

he size of the smallest community obtained by modularity optimisation

 Lambiotte et al., 2015 ). This parameter was set to 0.8 for lemurs and hu-

ans leading to partition of lemur and human connectivity matrices into

 and 8 modules. The modularity of a partition (Q), reflects the degree

o which a network can be subdivided into non-overlapping groups of

odes with maximum within-group connections and minimum number

f between-group connections ( Blondel et al., 2008 ; Newman, 2006 ).

his parameter, calculated by Gephi 0.9.2, was 0.45 and 0.63 when

emur and human matrices were partitionned into 6 and 8 modules. 

.6.2. Large scale network identification by statistical dictionary learning 

nalysis 

Dictionary learning is an analysis that produces network probabil-

ty maps on concatenated individual records from groups of subjects.

ictionary learning based on a small number of sparse components was

erformed in mouse lemurs and humans in order to highlight large net-

orks and to compare them. Six and eight sparse components were used

n lemurs and humans, respectively, based on the number of modules

ound with the graph theory analysis. In humans, a mask excluding the

indbrain and white matter was used prior to the analysis to compare

he dictionary learning of the two species in a similar space. Dictio-

ary learning produced maps showing voxels belonging to different net-

orks. The generation of these maps does not require any atlas. 

.6.3. Identification of brain regions belonging to large scale networks 

3D atlases were used to name the regions belonging to each large

cale networks using the following criteria. One region of the 3D atlas

as considered to belong to a network if the network occupied at least

http://sammba-mri.github.io
http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics
http://www.gin.cnrs.fr/fr/outils/aal-aal2/
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Fig. 1. Functional regions in mouse lemurs. These regions were identified following dictionary learning analyses of rsfMR images using 35 components. They are 

shown on coronal and axial anatomical templates with an automatic slice selection based on the center of mass of each component. 
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0% of its volume or if the network represented 120 voxels of this region

or mouse lemurs or 200 voxels for humans. Values of 20%, 120 and

00 voxels were arbitrary. In the case of regions that were close to these

riteria, bilateralism of the regions was assessed to include only bilateral

egions in the networks and exclude unilateral ones. Visual inspection

f the maps was always performed to confirm the assignment of brain

egions to different networks. 

.7. Evaluation of functional hubness and small-worldness features by 

raph theory analysis 

We consider in this analysis the absolute value of the correlation

oefficient as performed routinely in human fMRI graph theory studies

 De Vico Fallani et al., 2014 ). 

.7.1. Hubness 

Hubness describes the centrality of nodes in a network and reflects

he node influence within the whole brain network. It can be measured

y eigenvector centrality. For each node, this index is mainly calculated

ased on its partial correlation values (edges) with all regions of an at-

as, weighted by the eigenvector scores of its neighbourhood nodes. In

ther words, nodes which display high eigenvector centrality scores are

trongly linked to other nodes and/or to strongly connected nodes. Hub-

ess was evaluated in mouse lemur and human brains using eigenvector

entrality measures based on NetworkX ( Hagberg et al., 2008 ). 

.7.2. Small-worldness 

Network topology was characterized using two small-world coeffi-

ients ( 𝜎 ( Watts and Strogatz, 1998 ) and 𝜔 ( Telesford et al., 2011 ))

NetworkX ( Hagberg et al., 2008 )). 

is def ined as σ = 

𝐶∕ Crand 
𝐿 ∕ Lrand 

( Wat t s and Strongatz , 1998) 
 is def ined as 𝜔 = 

𝐿 

Lrand 
− 

𝐶 

Crand 
( Telesford et al ., 2011) 

With C and L being, respectively, the average clustering coefficient (a

easure of network segregation) and the average shortest path length

a measure of integration) of the network. Crand and Lrand are their

quivalent derived random networks. Small-world networks have 𝜎 val-

es superior to 1 and 𝜔 values close to 0 ( Telesford et al., 2011 ). 

. Results 

.1. Functional atlas of mouse lemur brain 

We identified functional regions in mouse lemurs by perform-

ng a dictionary learning based on a high number of components

35 sparse components, Fig. 1 ). Components associated with bilat-

ral structures as shown, for example, for the precentral cortex in

ig. 1 were classified as two different regions ( i.e. one in each hemi-

phere). Thus, 46 local functional regions (including 27 cortical re-

ions) could be extracted from the 35-component dictionary analysis

 Fig. 2 ). The name given to these 46 local functional regions as well

s their comparison with regions of the human atlas are presented

n the Suppl. Table 1 . This functional atlas can be downloaded from

ttps://www.nitrc.org/projects/fmri_mouselemur/ . 

.2. Cerebral networks in mouse lemurs 

Dictionary learning based on six sparse components was then per-

ormed to highlight the following large networks ( Fig. 3 , Fig. 4 , Table 2 ,

ttps://www.nitrc.org/projects/fmri_mouselemur/ ). 

1) The somato-motor network embedded the frontal anterior lateral

and all the parietal regions including the precentral (primary motor)

and postcentral (primary region involved in body sensation) areas.

https://www.nitrc.org/projects/fmri_mouselemur/
https://www.nitrc.org/projects/fmri_mouselemur/
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Fig. 2. 3D functional atlas of mouse lemur brain. This atlas was extracted from 46 functional regions identified following dictionary learning analyses of rsfMR 

images. Temporal pole that could not be included in the analysis is transparent/blue. 
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It also involved the anterior cingulate cortex/supplementary motor

area/frontal superior region, and the medium cingulate/paracentral

lobule. 

2) The occipito-parietal network involved all the occipital regions as

well as regions in the parietal posterior, temporal middle/inferior,

and cingulum posterior/precuneus cortices. The strong labelling of

occipital and parietal regions evokes the visual network reported in

humans ( Lee et al., 2012 ; Raichle, 2011 ). 

3) The fronto-parietal network involved the frontal anterior lateral cor-

tex and dorsal part of the frontal superior medial (dlFC regions), pari-

etal posterior cortex, medial and posterior cingulate cortices as well

as retrosplenial regions (classified as cingulum posterior/precuneus

and precuneus/cuneus in our atlas). It also embedded temporal mid-

dle/inferior cortex, hippocampus, and occipital regions ( Figs. 3–4 ,

Table 2 ). 

4) The fronto-temporal network involved the frontal anterior medial

and lateral regions, the precentral cortex, all the temporal regions,

the parietal posterior cortex, the anterior and medial cingulum cor-

tices, and the insular cortex. 

5) The sensory-limbic network involved limbic structures (basal fore-

brain, septal nuclei, midbrain, hippocampus, hypothalamus) and a

large number of regions involved in vision (occipital cortex, superior

colliculi) or audition (inferior colliculi). It also embedded the cingu-

lum posterior/precuneus and subcortical regions (thalamus, caudate

nucleus and the globus pallidus). 

6) The evaluative-limbic network embedded limbic structures (basal

forebrain, septal nuclei, amygdala, hippocampus), the insula, as well

as subcortical structures (striatum including the caudate nucleus,

putamen and the accumbens nucleus of the ventral striatum, and
the globus pallidus). 2  

2

.3. Cerebral networks in humans 

Human resting state networks have been described in great de-

ail in several articles. Here, the method used in lemurs was applied

o a human dataset mainly to evaluate its ability to detect relevant

etworks. The human functional matrix was segregated into 8 mod-

les that were used to further characterize large scale networks using

ictionary learning. The 8 networks were classified using information

rom the literature and indeed revealed well characterized human net-

orks ( Fig. 4 , Suppl. Fig. 2 , Suppl. Table 2 ). For example, the DMN

as identified based on its three core clusters: i. the medial frontal

ortex (mFC), ii. the medial parietal ( i.e. precuneus region) and pos-

erior cingulate/retrosplenial cortices, and iii. the parietal and angu-

ar cortices ( Lee et al., 2012 ; Liu et al., 2019 ; Raichle, 2011 ). Some

ther clusters usually associated with these core clusters ( Liu et al.,

019 ) were also detected: lateral frontal regions (dorso-lateral frontal

ortex (dlFC)), anterior (and to a lower extent medial) cingulate re-

ions, temporal and occipital regions. The 7 other networks identi-

ed were the dorsal fronto-parietal (classified as dorsal attention net-

ork (DAN) in ( Corbetta and Shulman, 2002 ; Hopfinger et al., 2000 ;

ee et al., 2012 )), fronto-supramarginal ( Lee et al., 2012 ) (classified as

xecutive control network (ECN) in ( Raichle, 2011 ; Sole-Padulles et al.,

016 )), somato-motor ( Lee et al., 2012 ; Raichle, 2011 ), fronto-temporal

classified as ventral attention network in ( Farrant and Uddin, 2015 ;

ee et al., 2012 )), occipito-parietal network classified as visual network

n ( Lee et al., 2012 ; Raichle, 2011 ). This latter network corresponded

ainly to the dorsal stream of the visual network ( Migliaccio et al.,

016 ). We also detected an occipito-temporal network that could cor-

espond to the ventral part of the visual network ( Migliaccio et al.,

016 ). Finally, the salience network was identified ( Goulden et al.,

014 ; Lee et al., 2012 ; Zhou et al., 2018 ). 
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Fig. 3. Cerebral networks identified in mouse lemurs. These bilateral networks were classified as fronto-parietal, somato-motor, fronto-temporal, occipito-parietal, 

evaluative-limbic, and sensory-limbic networks. 
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.4. Functional hubs and small-worldness features of mouse lemur and 

uman brains 

.4.1. Brain hubs in mouse lemurs and humans 

Hubness describes the centrality of nodes in a network and reflects

he node influence within the whole brain network. It can be measured

y eigenvector centrality. In mouse lemurs, the main hubs were all con-

ected together along the rostro-caudal axis ( Fig. 5 A, Suppl. Table 3).

he nodes presenting the highest eigenvector centrality were the me-

ial, posterior, and anterior cingulum cortices, the anterior and poste-

ior parietal cortices, the temporo-parietal cortex as well as the postcen-

ral cortex ( Fig. 5 A, Suppl. Table 3). All these regions that are part of

he 10 strongest hubs belong to the fronto-parietal, fronto-temporal and

omato-motor networks. In humans, the three nodes presenting the high-

st eigenvector centrality were localized in the integrative parietal re-

z  
ions (angular, precuneus and inferior parietal cortices) ( Fig. 5 B, Suppl.

able 4). Then the next hubs were localized in the frontal cortex (frontal

nferior orbital, middle frontal, frontal superior medial, and frontal su-

erior cortices). All these regions that are part of the 10 strongest hubs

elong to the DMN. There was a lack of spatial continuity between the

ubs distributed within parietal and frontal clusters. A striking differ-

nce between hubs of lemurs and humans was the involvement of the

ingulate cortices in mouse lemurs and not in humans. 

.4.2. Small-worldness of mouse lemur and human brain networks 

Network topology describes properties of regional specialization and

lobal information transfer efficacy of a network. Three main classes

f networks have been described: random, lattice and small-world net-

orks ( Telesford et al., 2011 ). Usually, mammal brains have small-

orld properties ( Mechling et al., 2014 ), which is an optimal organi-

ation for local information processing in specialized regions and for
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Fig. 4. Comparison of fronto-parietal and fronto-temporal net- 

works in mouse lemurs to dorsal attentional (DAN), executive 

control (ECN), and default mode (DMN) networks in humans. 

The fronto-parietal network of the mouse lemurs embedded the 

frontal anterior lateral cortex and dorsal part of the frontal supe- 

rior medial (dlFC regions), parietal posterior cortex, medial and 

posterior cingulate cortices as well as the precuneus. It also em- 

bedded temporal middle/inferior cortex, hippocampus, and occip- 

ital regions. The fronto-temporal network of mouse lemurs embed- 

ded the frontal anterior medial and lateral regions (dlFC and mFC 

regions), temporal regions, the parietal posterior cortex, the ante- 

rior and medial cingulum cortices, and the insular cortex. These 

networks presented similarities with human networks than can be 

identified based on their core clusters. The DAN that embeds the 

dlFC, the medial cingulate, the parietal, the middle and inferior 

temporal, and the occipital cortices. The ECN that embeds the dlFC 

and parietal supramarginal regions (labelled in pink). The DMN 

that embeds the mFC, medial parietal ( i.e. precuneus region) and 

posterior cingulate/retrosplenial cortices, the parietal and angular 

cortices as core clusters (labelled in yellow). It also involved other 

regions as the dlFC, anterior and medial cingulate cortices, tempo- 

ral and occipital regions. 
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Table 2 

Brain regions of mouse lemurs participating to different networks. Regions belonging to one of the top fifteen hubs are presented with bold letters. Detail of the 

regions involved in the different networks is also presented: mFC: medial frontal cortex; dlFC: dorso-lateral frontal cortex. SMA: supplementary motor area; PreC: 

precuneus. 

Label name Fronto-parietal Fronto-temporal Somato-motor Visual 

Sensory 

limbic 

Evaluative 

limbic 

Frontal and precentral Frontal anterior medial X 

Frontal anterior lateral X (dlFC) X X 

Precentral 

+ Frontal inferior triangularis part 

+ Frontal inferior opercular part 

+ Rolandic operculum 

X X 

Cingulum Precuneus Cingulum anterior 

+ Frontal superior medial 

+ Supplementary motor area 

X (dlFC) X X (SMA) 

Cingulum median 

+ Paracentral lobule 

X X X 

Cingulum posterior 

+ Precuneus 

X X 

(PreC) 

X 

Precuneus 

+ cuneus 

X X X 

Insular Insular cortex X X 

Parietal Postcentral X 

Parietal anterior X 

Parietal posterior X X X X 

Temporal Temporo-parietal X X 

Temporal superior X X 

Temporal middle / inferior X X X 

Occipital Occipital middle X X 

Occipital inferior X X 

Occipital pole X 

Limbic regions Hippocampus X X + /- 
Amygdala X 

Basal forebrain X X 

Septal nuclei X X 

Hypothalamus X 

Subcortical regions Caudate nucleus X X 

Putamen X 

Globus pallidus X X 

Thalamus X 

Others Colliculus X 

Midbrain X 
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ts global transfer to share the processed information in communicat-

ng regions to further process it ( Telesford et al., 2011 ). Network topol-

gy can be characterized using two small-world coefficients ( 𝜎 and 𝜔 )

 Hagberg et al., 2008 ). Small-world networks have 𝜎 values superior to

 and 𝜔 values close to 0 ( Telesford et al., 2011 ). As expected we found

mall-world properties in mouse lemur and human brains ( 𝜎 = 1.48 and

.20 and 𝜔 = 0.46 and 0.53). 

. Discussion 

RsfMRI was used to characterize functional cerebral regions, neu-

onal networks, and hubs of mouse lemur primates. 

.1. Functional atlas of mouse lemur brain 

After the seminal work of Brodmann (1999 (original in 1909)),

ytoarchitectural and other histology-based labeling techniques were

he standard methods for brain parcellation and, up to now, descrip-

ion of mouse lemur functional organisation was relied on these meth-

ds ( Bons et al., 1998 ; Le Gros Clark, 1931 ; Nadkarni et al., 2019 ;

illes et al., 1979 ). New techniques of brain parcellation based on task-

ssociated functional MRI or resting-state functional MRI are now used

n humans ( Craddock et al., 2012 ; Glasser et al., 2016 ; Yeo et al., 2011 )

nd animals ( Liang et al., 2011 ). Here, using dictionary learning with

 large number of components, we created a 3D atlas showing 46 func-

ional regions. No predetermined anatomical atlas was required during

he creation of this atlas. In association with the evaluation of functional

erebral networks, this analysis provides the capacity to evaluate brain
rganization in precious species. Functional atlases are highly relevant

s they were shown to be superior to anatomical atlases to define func-

ionally homogeneous regions of interest ( Craddock et al., 2012 ). In the

ase of mouse lemurs, the two published atlases of cortical regions based

n cytoarchitectony display major discrepancies ( Le Gros Clark, 1931 ;

illes et al., 1979 ). For example, in Zilles atlas the somatosensorial cor-

ex (Brodmann 1-3) and the primary motor cortex (Brodmann 4) follow

 ventro-dorsal axe, while they follow a postero-anterior axe in Le Gros

lark atlas. Our functional atlas suggests that they follow a ventro-dorsal

xe, consistently with what was suggested by Zilles. Likewise the cau-

al border of the primary motor area is in a more posterior position in

e Gros Clark than in Zilles atlas and our functional atlas is consistent

ith Zilles description. More interestingly, our atlas shows that the most

ostral part of the frontal lobe is functionally separated from the motor

rontal region and thus probably represents the mouse lemur prefrontal

ortex, which had never been described until now. 

.2. Primary cortical networks 

Here we outlined four cortical networks in lemurs. Two of them

somato-motor and occipito-parietal (visual)) were highly similar in

ouse lemurs and humans. They are also identified in several species

rom rodents ( Grandjean et al., 2017 ) to primates ( Belcher et al.,

013 ). In evolutionary science, homology is defined as structural or

unctional similarities derived from common ancestry ( Deacon, 1990 ),

nd we considered that these networks are homologous in lemurs and

umans. 
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Fig. 5. Comparison of major hubs in mouse lemurs and humans . For each species, the 10 strongest hubs are displayed in red and the 5 following strongest hubs 

are labelled in pink. Other brain regions are blue/transparent. 
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.3. High level cortical networks 

The fronto-parietal and fronto-temporal networks were two other

ortical networks identified in mouse lemurs. Most of the regions asso-

iated to the fronto-parietal network (frontal anterior lateral cortex and

orsal part of the frontal superior medial (dlFC regions), parietal poste-

ior cortex (pPC), medial cingulate cortex, precuneus/cuneus, temporal

iddle/inferior cortex, and occipital regions) are the ones that char-

cterize the human DAN network as reported by Corbetta and Shul-

an (2002) , Hopfinger et al. (2000) or our study (Suppl. Table 2 , Fig. 4 ).

o it is tempting to assume a partial homology between the mouse lemur

ronto-parietal network and the human DAN. This network however

lso presents some regions that are not usually associated to the hu-

an DAN (hippocampus and posterior cingulate cortex (pCC)) but are

ey regions of the DMN. It also involved another key regions of the

uman DMN i.e. the pPC ( Liu et al., 2019 ). Thus, as an alternative hy-

othesis, the fronto-parietal network could be compared to the human

MN. One major difference is however that in humans the DMN is also

haracterized by the mFC ( Liu et al., 2019 ), a region that was not de-

ected in mouse lemur fronto-parietal network. In a network identified

s DMN-like in several primates, the mFC is either absent as in mar-

osets ( Liu et al., 2019 ) or much smaller than that of human DMN as

n macaques ( Mantini et al., 2011 ). Interestingly, the main frontal re-

ion involved in the DMN-like network of marmoset or macaques is the

lFC ( Liu et al., 2019 ; Mantini et al., 2011 ). This region was also the

ain frontal region involved in mouse lemur fronto-parietal network.

he fronto-parietal network identified in lemurs could thus be a net-

ork similar to the “mFC-free ” DMN-like network identified in other

rimates. One of the characteristics of the human DMN or of the DMN-

ike network of marmosets or macaques is that they are deactivated

uring functional tasks. Future studies should thus evaluate the activ-
ty of the mouse lemur fronto-parietal network during functional task. In

he absence of perfect homology between lemur fronto-parietal network

nd human networks, one can propose hypotheses on the function of

he lemur network based on its anatomical regions. This fronto-parietal

etwork involves critical regions for visual function (occipital and infe-

ior temporal), for spatial processing and action in space (parietal poste-

ior, precuneus, posterior cingulate regions, hippocampus), as well as for

otor function (dorso-lateral frontal cortex, supplementary motor area)

 Fattori et al., 2017 ; Jacobs and Schenk, 2003 ; Rolls, 2019 ; Snyder et al.,

997 ). Thus, our hypothesis is that the lemur fronto-parietal network

ubserves visuo-spatial function leading to motor activity, i.e. control of

ctions based on exteroceptif visuo-spatial stimuli. 

The fronto-temporal network is the second high-level network in

ouse lemurs. It is composed of the frontal anterior medial and lat-

ral regions, the precentral cortex, all the temporal regions, the pari-

tal posterior cortex, the anterior to mid cingulate, and the insular cor-

ex. This network may be partly homologous with the human ECN. In-

eed, both networks cover the mFC, dlFC, part of the parietal cortex,

he anterior/medial cingulate cortices and the insula (( Beckmann et al.,

005 ; Sole-Padulles et al., 2016 ), Fig. 4 ). As an alternative hypothe-

is, the mouse lemur fronto-temporal network could be compared to

he human DMN as it displayed two of the DMN core clusters i.e. the

FC and the parietal posterior cortex. However, the posterior cingu-

ate cortex, another core region of the human DMN is not part of the

emur fronto-temporal network. We also identified similarities between

he mouse lemur fronto-temporal network and the human salience net-

ork because of the presence of insula, cingulate and temporal regions

n both networks. Finally, the mouse lemur fronto-temporal network

an obviously be compared to the human fronto-temporal network, as

hey both embed fronto-temporal cortices and the insula. In the absence

f perfect homology between lemur fronto-temporal network and hu-



C.M. Garin, N.A. Nadkarni, B. Landeau et al. NeuroImage 226 (2021) 117589 

m  

n  

l  

g  

t  

l  

r  

m  

n  

n  

f

4

 

T  

a  

t  

(  

t  

(  

g  

m  

c  

u  

s  

b  

p  

a  

s  

b  

s  

b  

t  

d  

f  

n  

v  

w  

b  

i  

r

4

 

s  

a  

f  

w  

a  

2  

G  

t  

s  

L  

S  

T  

c  

w  

a  

t  

K  

c  

m  

i  

n  

i  

t

 

m  

a

4

 

r  

n  

t  

l  

w  

fi  

r  

w  

r  

i  

2  

r  

o  

w  

d  

2  

o  

r  

(  

n  

t  

p  

i  

i  

fl  

w  

o  

c  

t

 

p  

e  

e  

s  

t  

2  

b  

a  

t  

n  

2

 

t  

a  

t  

o  

b  

b

5

 

a  

t  

w  

c  
an networks, we also propose hypotheses on the function of the lemur

etwork based on its anatomical regions. Several regions of the mouse

emur fronto-temporal network (medial frontal, the anterior to mid cin-

ulate and the insular cortex) are the core regions involved in an “in-

eroceptive system ” ( Barrett and Simmons, 2015 ). This system modu-

ates attentional, sensory and behavioral responses to homeostatically

elevant stimuli, as autonomic and hormonal changes ( Barrett and Sim-

ons, 2015 ). Thus, our hypothesis is that the lemur fronto-temporal

etwork is involved in self-referential decisions. As for many complex

etworks, this hypothesis does not rule out its implication in many other

unctions. 

.4. Limbic networks 

Two networks, involving the limbic system, were found in lemurs.

he first one (sensory-limbic) embedded regions involved in visual and

uditory sensory input, the hypothalamus (implicated in the regula-

ion of endocrine and autonomic systems) as well as brain structures

basal forebrain, septum and midbrain) that contain ascending exci-

atory cholinergic neurons involved in arousal due to sensory input

 Knudsen, 2011 ; Wenk, 1997 ). It also involved nuclei of the basal gan-

lia (caudate nucleus, globus pallidus) involved in the processing of

ovement-related information. Our hypothesis is that these structures

ould form a bottom-up arousal system in response to sensory stim-

li. The second limbic network (evaluative-limbic) also comprised brain

tructures with ascending excitatory cholinergic neurons (basal fore-

rain, septum) as well as the basal ganglia (caudate nucleus, globus

allidus, putamen). It also involved the amygdala and the insula. The

mygdala processes information about the positive/negative valence of

timuli and, in particular via its connections with the basal ganglia, can

ias behaviors in an adaptive manner ( Janak and Tye, 2015 ). The in-

ula is involved in the perception of the physiological condition of the

ody and transmits signals regarding the bodily states to guide emo-

ion and behavior ( Bechara, 2005 ; Craig, 2002 ). Thus, both the amyg-

ala and the insula are implicated in evaluative, motivational and af-

ective processing ( Berntson et al., 2011 ). Our hypothesis is that this

etwork could subserve behavioral responses to the positive/negative

alence of stimuli as well as to the internal state of the body. Although

e did not detect them in our analysis, human networks involving the

asal ganglia that resemble the evaluative-limbic network are reported

n ( Sierakowiak et al., 2015 ; Wen et al., 2012 ). Limbic networks are also

eported in macaques ( Hutchison et al., 2012 ). 

.5. Cerebral hubs 

Brain networks are organized around hubs that are integrators of

egregated brain systems. Hubs are critical for efficient brain functions

nd are also points of vulnerability susceptible to disconnection and dys-

unction in brain disorders. The strongest cortical hubs of mouse lemurs

ere grouped along a dorsal antero-posterior axis and involved frontal

nterior medial, whole cingulate and parietal cortices. Mice ( Liska et al.,

015 ), rats ( D’Souza et al., 2014 ), and marmosets ( Belcher et al., 2016 ;

hahremani et al., 2017 ) display a similar antero-posterior organiza-

ion of cortical hubs. In humans, the literature suggests that hubs are

plit into distinct parietal and frontal clusters ( Ardesch et al., 2019 ;

i et al., 2013 ; Miranda-Dominguez et al., 2014 ; van den Heuvel and

porns, 2013 ). Our results in humans are consistent with this literature.

he splitting of hubs into frontal and posterior (retrospenial/parietal)

lusters is also described in macaques and chimpanzees ( Li et al., 2013 ),

hich led to the hypothesis that cerebral network evolution is associ-

ted with the occurrence of non-contiguous clusters of associative mul-

imodal regions connected by hubs ( Ardesch et al., 2019 ; Buckner and

rienen, 2013 ). Splitting cerebral modules into different brain regions

onnected by strong hubs may be an efficient way to integrate infor-

ation processed by distant associative regions. The splitting of hubs

nto distinct clusters is, however, not a primate characteristic, as it was
ot found in marmosets or mouse lemurs. This might be a character-

stic of larger brains, that arose to reduce wiring cost while maximize

opological integration in large brains ( van den Heuvel et al., 2016 ). 

Mouse lemur hubs also involved subcortical structures ( i.e. the puta-

en). This is similar to data in marmosets in which putamen, caudate

nd thalamus were reported as hubs ( Belcher et al., 2016 ). 

.6. Limitations and perspectives 

This study is the first to describe neuronal networks in a strepsir-

hine primate. It was based on images recorded with the highest mag-

etic field ever used in primates (11.7 Tesla) to provide highly sensi-

ive images. It was conducted on sedated animals, although we used the

owest possible non-awakening isoflurane level (1.25%). Compared to

ake state, anaesthesia induces a poorer repertoire of functional con-

gurations ( Barttfeld et al., 2015 ), small topological changes, such as

educed (but not supressed) detection of the posterior cingulate cortex

ithin the DMN ( Greicius et al., 2008 ) or lack of detection of frontal

egions in the DMN ( Hori et al., 2020 ). Changes in thalamic connectiv-

ty have also been reported during isoflurane anaesthesia ( Hori et al.,

020 ). However, when rsfMR images are recorded across a long time pe-

iod, as done in our study, several studies reported that general patterns

f functional brain activity and the number of detected resting-state net-

orks are globally similar in wake and anaesthesia state, including un-

er isoflurane ( Barttfeld et al., 2015 ; Hori et al., 2020 ; Vincent et al.,

007 ). Also several high level cortical networks ( e.g. the fronto-parietal

r fronto-temporal) were detected in lemurs and were close to networks

eported in awake marmosets ( e.g. the DMN-like network reported in

 Liu et al., 2019 )). Thus, although we cannot rule out that some of the

etworks reported in anaesthetised lemurs are different than the one

hat would be detected in awake animals, the differences are not ex-

ected to be major. Some studies in rats however reported that under

soflurane, cortico-cortical functional connectivity is stronger than dur-

ng wake state and that isoflurane induces synchronous striato-cortical

uctuations. In addition to masking functional connectivity in some net-

orks ( Paasonen et al., 2018 ), this effect could lead to the detection

f false positive resting state networks during isoflurane anaesthesia as

ompared to the wake state. Further studies are now required to confirm

he results obtained in this first study in particular in wake animals. 

The dictionary method used to characterize networks requires an a

riori selection of the number of components the observer wishes to

xtract. Due to the gradualness of the interactions between the differ-

nt regions of the brain, there are no absolute boundaries between large

cale networks and several methods have been proposed in order to par-

ition a network into communities ( Blondel et al., 2008 ; Lambiotte et al.,

015 ). Thus the number of networks selected in a resting state study can

e seen as “arbitrary ”. Here, the number of networks identified in lemurs

nd humans was based on the same method ( “stability of a network par-

ition ” method implemented in Gephi 0.9.2). Increasing the number of

etworks would have split some networks into subnetworks ( Yeo et al.,

011 ). 

Another limitation of our study concerns the functional interpreta-

ion of the networks reported in lemurs. Studies in wake or in stimulated

nimals will have to be performed in the future to explore the function of

he networks identified in lemurs. In particular, as the characterization

f DMN networks relies on its deactivation by task-based fMRI, it will

e critical to perform such study in lemurs. This experiment is however

eyond the scope of the current article. 

. Conclusion 

This study provides the first functional atlas of mouse lemur brains

nd the first characterisation of functional brain networks and hubs in

his primate. By comparing networks and hubs in lemurs and humans,

e could identify homologies for the somato-motor and visual corti-

al networks. The fronto-parietal and fronto-temporal higher order net-
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orks found in lemurs were not homologous to human networks but

isplayed similarities with some of them as the DAN, ECN, or DMN.

imbic networks were detected in lemurs. This is consistent with the

iew that high level networks have evolved in primates and that this

volution is associated to differential organization of regions that are

ssociated to the DAN, ECN and DMN networks ( Dixon et al., 2018 ). 
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